The Impact of World Trade Center Related Medical Conditions on the Severity of COVID-19 Disease and Its Long-Term Sequelae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Measurements
2.3.1. Demographic Data
2.3.2. COVID-19 Report Status: Complete and Incomplete
2.3.3. COVID-19 Severity: Asymptomatic, Mild, Moderate, Severe
2.3.4. Post-Acute COVID-19 Symptoms
2.3.5. WTC-Related Diagnoses
2.3.6. Other Health Indicators
2.4. Statistical Analysis
2.5. Severity
2.6. Post-Acute COVID-19 Syndrome
3. Results
3.1. Severity
3.2. Post-Acute COVID-19 Syndrome
Bivariable Associations
3.3. Multivariable Poisson Regression Models of Post-Acute COVID-19 Sequelae
4. Discussion
4.1. Severity
4.2. Post-Acute COVID-19 Sequelae
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Basics of COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/your-health/about-COVID-19/basics-COVID-19.html (accessed on 24 March 2022).
- World Health Organization. Severe Acute Respiratory Syndrome (SARS). Available online: https://www.who.int/health-topics/severe-acute-respiratory-syndrome#tab=tab_2 (accessed on 28 March 2022).
- World Health Organization. Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Available online: https://www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers#tab=tab_2 (accessed on 28 March 2022).
- Gavriatopoulou, M.; Korompoki, E.; Fotiou, D.; Ntanasis-Stathopoulos, I.; Psaltopoulou, T.; Kastritis, E.; Terpos, E.; Dimopoulos, M.A. Organ-specific manifestations of COVID-19 infection. Clin. Exp. Med. 2020, 20, 493–506. [Google Scholar] [CrossRef]
- Bertsimas, D.; Lukin, G.; Mingardi, L.; Nohadani, O.; Orfanoudaki, A.; Stellato, B.; Wiberg, H.; Gonzalez-Garcia, S.; Parra-Calderon, C.L.; Robinson, K.; et al. COVID-19 mortality risk assessment: An international multi-center study. PLoS ONE 2020, 15, e0243262. [Google Scholar] [CrossRef] [PubMed]
- Ebinger, J.E.; Achamallah, N.; Ji, H.; Claggett, B.L.; Sun, N.; Botting, P.; Nguyen, T.T.; Luong, E.; Kim, E.H.; Park, E.; et al. Pre-existing traits associated with COVID-19 illness severity. PLoS ONE 2020, 15, e0236240. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. COVID-19 Risks and Vaccine Information for Older Adults. Available online: https://www.cdc.gov/aging/covid19/covid19-older-adults.html#increased-risk (accessed on 30 March 2022).
- Gao, Y.D.; Ding, M.; Dong, X.; Zhang, J.J.; Kursat Azkur, A.; Azkur, D.; Gan, H.; Sun, Y.L.; Fu, W.; Li, W.; et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy 2021, 76, 428–455. [Google Scholar] [CrossRef]
- Gallo Marin, B.; Aghagoli, G.; Lavine, K.; Yang, L.; Siff, E.J.; Chiang, S.S.; Salazar-Mather, T.P.; Dumenco, L.; Savaria, M.C.; Aung, S.N.; et al. Predictors of COVID-19 severity: A literature review. Rev. Med. Virol. 2021, 31, 1–10. [Google Scholar] [CrossRef]
- Guan, W.J.; Liang, W.H.; Zhao, Y.; Liang, H.R.; Chen, Z.S.; Li, Y.M.; Liu, X.Q.; Chen, R.C.; Tang, C.L.; Wang, T.; et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur. Respir. J. 2020, 55, 2000547. [Google Scholar] [CrossRef] [Green Version]
- Wolff, D.; Nee, S.; Hickey, N.S.; Marschollek, M. Risk factors for COVID-19 severity and fatality: A structured literature review. Infection 2021, 49, 15–28. [Google Scholar] [CrossRef]
- Bello-Chavolla, O.Y.; Bahena-Lopez, J.P.; Antonio-Villa, N.E.; Vargas-Vazquez, A.; Gonzalez-Diaz, A.; Marquez-Salinas, A.; Fermin-Martinez, C.A.; Naveja, J.J.; Aguilar-Salinas, C.A. Predicting Mortality Due to SARS-CoV-2: A Mechanistic Score Relating Obesity and Diabetes to COVID-19 Outcomes in Mexico. J. Clin. Endocrinol. Metab. 2020, 105, dgaa346. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. People with Certain Medical Conditions. Available online: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html (accessed on 30 March 2022).
- Clouston, S.; Luft, B.J.; Sun, E. History of premorbid depression is a risk factor for COVID-related mortality: Analysis of a retrospective cohort of 1387 COVID+ patients. medRxiv 2021. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. People with Moderate to Severe Asthma. Available online: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/asthma.html (accessed on 30 March 2022).
- Centers for Disease Control and Prevention. Post-COVID Conditions; CDC: Atlanta, GA, USA, 2021.
- Wanga, V.; Chevinsky, J.R.; Dimitrov, L.V.; Gerdes, M.E.; Whitfield, G.P.; Bonacci, R.A.; Nji, M.A.M.; Hernandez-Romieu, A.C.; Rogers-Brown, J.S.; McLeod, T.; et al. Long-Term Symptoms Among Adults Tested for SARS-CoV-2—United States, January 2020-April 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Chertow, D.; Stein, S.; Ramelli, S.; Grazioli, A.; Chung, J.-Y.; Singh, M.; Yinda, C.K.; Winkler, C.; Dickey, J.; Ylaya, K.; et al. SARS-CoV-2 infection and persistence throughout the human body and brain. Biol. Sci. 2021. [Google Scholar] [CrossRef]
- Ssentongo, P.; Ssentongo, A.E.; Heilbrunn, E.S.; Ba, D.M.; Chinchilli, V.M. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0238215. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. [Google Scholar] [CrossRef]
- Vanichkachorn, G.; Newcomb, R.; Cowl, C.T.; Murad, M.H.; Breeher, L.; Miller, S.; Trenary, M.; Neveau, D.; Higgins, S. Post-COVID-19 Syndrome (Long Haul Syndrome): Description of a Multidisciplinary Clinic at Mayo Clinic and Characteristics of the Initial Patient Cohort. Mayo Clin. Proc. 2021, 96, 1782–1791. [Google Scholar] [CrossRef]
- Morozova, O.; Clouston, S.A.P.; Valentine, J.; Newman, A.; Carr, M.; Luft, B.J. COVID-19 cumulative incidence, asymptomatic infections, and fatality in Long Island, NY, January-August 2020: A cohort of World Trade Center responders. PLoS ONE 2021, 16, e0254713. [Google Scholar] [CrossRef] [PubMed]
- Luft, B.J.; Schechter, C.; Kotov, R.; Broihier, J.; Reissman, D.; Guerrera, K.; Udasin, I.; Moline, J.; Harrison, D.; Friedman-Jimenez, G.; et al. Exposure, probable PTSD and lower respiratory illness among World Trade Center rescue, recovery and clean-up workers. Psychol. Med. 2012, 42, 1069–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. 9.11 World Trade Center Health Program. Available online: https://www.cdc.gov/wtc/ataglance.html#enrollmentWTC (accessed on 30 March 2022).
- CDC. World Trade Center Health Program Requirements for Enrollment, Appeals, Certification of Health Conditions, and Reimbursement; CDC: Druid Hills, GA, USA, 2011.
- Dasaro, C.R.; Holden, W.L.; Berman, K.D.; Crane, M.A.; Kaplan, J.R.; Lucchini, R.G.; Luft, B.J.; Moline, J.M.; Teitelbaum, S.L.; Tirunagari, U.S.; et al. Cohort Profile: World Trade Center Health Program General Responder Cohort. Int. J. Epidemiol. 2017, 46, e9. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Symptoms of COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html (accessed on 31 March 2022).
- National Institutes of Health. Clinical Spectrum of SARS-CoV-2 Infection. Available online: https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/ (accessed on 30 March 2022).
- Centers for Disease Control and Prevention. World Trade Canter Health Program Administrative Manual. Available online: https://www.cdc.gov/wtc/ppm.html#medical (accessed on 31 March 2022).
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Frank, E.; Harrell, J. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis; Springer: New York, NY, USA, 2015; Volume 3. [Google Scholar]
- James, G.W.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer Science: New York, NY, USA, 2017. [Google Scholar]
- Fox, J. John Fox and Sanford Weisberg. In An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Venables WN, R.B. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; Volume 4. [Google Scholar]
- Behrens, T.; Taeger, D.; Wellmann, J.; Keil, U. Different methods to calculate effect estimates in cross-sectional studies. A comparison between prevalence odds ratio and prevalence ratio. Methods Inf. Med. 2004, 43, 505–509. [Google Scholar] [PubMed]
- Zeileis, A.; Köll, S.; Graham, N. Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R. J. Stat. Softw. 2020, 95, 1–36. [Google Scholar] [CrossRef]
- Zeileis, A. Object-Oriented Computation of Sandwich Estimators. J. Stat. Softw. 2006, 16, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Cameron, A.C.; Trivedi, P.K. Microeconometrics Using Stata; Stata Press: College Station, TX, USA, 2010; Volume 2. [Google Scholar]
- Wang, Y.; Yang, Y.; Ren, L.; Shao, Y.; Tao, W.; Dai, X.J. Preexisting Mental Disorders Increase the Risk of COVID-19 Infection and Associated Mortality. Front. Public Health 2021, 9, 684112. [Google Scholar] [CrossRef]
- Dixit, N.M.; Churchill, A.; Nsair, A.; Hsu, J.J. Post-Acute COVID-19 Syndrome and the cardiovascular system: What is known? Am. Heart J. Plus 2021, 5, 100025. [Google Scholar] [CrossRef]
- Renaud-Charest, O.; Lui, L.M.W.; Eskander, S.; Ceban, F.; Ho, R.; Di Vincenzo, J.D.; Rosenblat, J.D.; Lee, Y.; Subramaniapillai, M.; McIntyre, R.S. Onset and frequency of depression in post-COVID-19 syndrome: A systematic review. J. Psychiatr. Res. 2021, 144, 129–137. [Google Scholar] [CrossRef]
Subcategory | Description |
---|---|
Respiratory | e.g., dyspnea, chest discomfort, cough, rhinitis, rhinorrhea, wheeze, sinusitis |
Fatigue | e.g., “tired,” “low energy” |
CNS | e.g., loss or reduction of smell/taste, mental fog, dizziness, vertigo, tinnitus, headache, balance issues |
Musculoskeletal | e.g., myalgias, joint pain |
Total (N = 1280) | COVID-19 Report Status | a FDR-p | |||
---|---|---|---|---|---|
Completed (N = 742) | Incomplete (N = 538) | ||||
Age | t-test | 0.084 | |||
Mean (SD) | 56.9 (7.37) | 57.3 (7.38) | 56.3 (7.31) | ||
Gender | Chi-square | 0.931 | |||
Male | 1170 (91.4%) | 680 (91.6%) | 490 (91.1%) | ||
Female | 110 (8.6%) | 62 (8.4%) | 48 (8.9%) | ||
Race | Fisher exact | 0.970 | |||
White | 1096 (87.3%) | 635 (87.1%) | 461 (87.6%) | ||
Black | 70 (5.6%) | 42 (5.8%) | 28 (5.3%) | ||
Hispanic | 66 (5.3%) | 40 (5.5%) | 26 (4.9%) | ||
Other | 23 (1.8%) | 12 (1.6%) | 11 (2.1%) | ||
Acute COVID Severity | Chi-square | <0.001 | |||
Asymptomatic | 129 (10.1%) | 78 (10.5%) | 51 (9.5%) | ||
Mild | 511 (39.9%) | 289 (38.9%) | 222 (41.3%) | ||
Moderate | 536 (41.9%) | 288 (38.8%) | 248 (46.1%) | ||
Severe | 104 (8.1%) | 87 (11.7%) | 17 (3.2%) | ||
Upper Respiratory Disease | Chi-square | 0.378 | |||
Yes | 778 (60.8%) | 464 (62.6%) | 314 (58.4%) | ||
No | 501 (39.2%) | 277 (37.4%) | 224 (41.6%) | ||
Obstructive Airway Disease | Chi-square | 0.378 | |||
Yes | 450 (35.2%) | 273 (36.8%) | 177 (32.9%) | ||
No | 829 (64.8%) | 468 (63.2%) | 361 (67.1%) | ||
Gastroesophageal Reflux Disorder | Chi-square | 0.879 | |||
Yes | 627 (49.0%) | 368 (49.7%) | 259 (48.1%) | ||
No | 652 (51.0%) | 373 (50.3%) | 279 (51.9%) | ||
Obesity | Chi-square | 0.088 | |||
Yes | 707 (55.2%) | 430 (58.0%) | 277 (51.5%) | ||
No | 573 (44.8%) | 312 (42.0%) | 261 (48.5%) | ||
Hypertension | Chi-square | 0.088 | |||
Yes | 420 (32.8%) | 263 (35.4%) | 157 (29.2%) | ||
No | 859 (67.2%) | 479 (64.6%) | 380 (70.8%) | ||
Diabetes | Chi-square | 0.879 | |||
Yes | 130 (10.2%) | 78 (10.5%) | 52 (9.7%) | ||
No | 1148 (89.8%) | 663 (89.5%) | 485 (90.3%) | ||
Heart Disease | Chi-square | 0.433 | |||
Yes | 131 (10.3%) | 83 (11.2%) | 48 (9.0%) | ||
No | 1143 (89.7%) | 655 (88.8%) | 488 (91.0%) | ||
High Cholesterol | Chi-square | 0.609 | |||
Yes | 512 (40.1%) | 305 (41.2%) | 207 (38.6%) | ||
No | 765 (59.9%) | 436 (58.8%) | 329 (61.4%) | ||
Depressive Symptoms | t-test | 0.609 | |||
Mean (SD) | 3.42 (4.47) | 3.32 (4.28) | 3.55 (4.73) |
COVID-19 Severity | a FDR-p | |||||
---|---|---|---|---|---|---|
Asymptomatic (N = 129) | Mild (N = 511) | Moderate (N = 536) | Severe (N = 104) | Method | ||
Age | Kruskal–Wallis | 0.003 | ||||
Mean (SD) | 56.7 (8.51) | 56.4 (6.89) | 56.8 (7.15) | 59.8 (8.53) | ||
Gender | Chi-square | 0.024 | ||||
Male | 119 (10.2%) | 476 (40.7%) | 475 (40.6%) | 100 (8.5%) | ||
Female | 10 (9.1%) | 35 (31.8%) | 61 (55.5%) | 4 (3.6%) | ||
Race | Fisher Exact | 0.113 | ||||
White | 108 (9.9%) | 455 (41.5%) | 450 (41.1%) | 83 (7.6%) | ||
Black | 7 (10.0%) | 19 (27.1%) | 32 (45.7%) | 12 (17.1%) | ||
Hispanic | 7 (10.6%) | 24 (36.4%) | 27 (40.9%) | 8 (12.1%) | ||
Other | 2 (8.7%) | 7 (30.4%) | 13 (56.5%) | 1 (4.3%) | ||
Upper Respiratory Disease | Chi-Square | <0.001 | ||||
Yes | 66 (8.5%) | 281 (36.1%) | 360 (46.3%) | 71 (9.1%) | ||
No | 63 (12.6%) | 229 (45.7%) | 176 (35.1%) | 33 (6.6%) | ||
Obstructive Airway Disease | Chi-Square | <0.001 | ||||
Yes | 34 (7.6%) | 131 (29.1%) | 224 (49.8%) | 61 (13.6%) | ||
No | 95 (11.5%) | 379 (45.7%) | 312 (37.6%) | 43 (5.2%) | ||
Gastro- esophageal Reflux Disorder | Chi-Square | <0.001 | ||||
Yes | 48 (7.7%) | 218 (34.8%) | 300 (47.8%) | 61 (9.7%) | ||
No | 81 (12.4%) | 292 (44.8%) | 236 (36.2%) | 43 (6.6%) | ||
Obesity | Chi-Square | 0.006 | ||||
Yes | 58 (8.2%) | 279 (39.5%) | 298 (42.1%) | 72 (10.2%) | ||
No | 71 (12.4%) | 232 (40.5%) | 238 (41.5%) | 32 (5.6%) | ||
Hypertension | Chi-Square | 0.048 | ||||
Yes | 37 (8.8%) | 163 (38.8%) | 173 (41.2%) | 47 (11.2%) | ||
No | 92 (10.7%) | 347 (40.4%) | 363 (42.3%) | 57 (6.6%) | ||
Diabetes | Chi-Square | 0.022 | ||||
Yes | 18 (13.8%) | 40 (30.8%) | 54 (41.5%) | 18 (13.8%) | ||
No | 111 (9.7%) | 470 (40.9%) | 481 (41.9%) | 86 (7.5%) | ||
Heart Disease | Chi-Square | 0.297 | ||||
Yes | 9 (6.9%) | 49 (37.4%) | 58 (44.3%) | 15 (11.5%) | ||
No | 118 (10.3%) | 460 (40.2%) | 477 (41.7%) | 88 (7.7%) | ||
High Cholesterol | Chi-Square | 0.415 | ||||
Yes | 43 (8.4%) | 208 (40.6%) | 217 (42.4%) | 44 (8.6%) | ||
No | 86 (11.2%) | 300 (39.2%) | 319 (41.7%) | 60 (7.8%) | ||
Depressive Symptoms | Kruskal–Wallis | <0.001 | ||||
Mean (SD) | 2.54 (3.88) | 2.70 (3.59) | 4.06 (5.02) | 4.72 (5.24) |
OR | 95% CI | FDR-p | |
---|---|---|---|
Age a | 1.21 | (1.06, 1.38) | 0.015 |
Female | 1.15 | (0.78, 1.70) | 0.583 |
Race: Black | 2.01 | (1.24, 3.27) | 0.015 |
Race: Hispanic | 1.22 | (0.76, 1.95) | 0.583 |
Race: Other | 1.55 | (0.72, 3.30) | 0.408 |
Gastroesophageal Reflux Disorder | 1.27 | (1.00, 1.60) | 0.131 |
Obstructive Airway Disease | 1.86 | (1.46, 2.38) | <0.001 |
Upper Respiratory Disease | 1.16 | (0.91, 1.48) | 0.396 |
Obesity | 1.16 | (0.94, 1.45) | 0.332 |
Hypertension | 1 | (0.78, 1.29) | 0.999 |
High Cholesterol | 0.94 | (0.74, 1.18) | 0.615 |
Heart Disease | 1.13 | (0.78, 1.62) | 0.583 |
Diabetes | 1.15 | (0.80, 1.67) | 0.583 |
Depressive Symptoms a | 1.27 | (1.12, 1.43) | <0.001 |
Total (N = 1280) | No Post-Acute COVID-19 Sequelae (N = 853) | Post-Acute COVID-19 Sequelae (N = 366) | Method | FDR-p | |
---|---|---|---|---|---|
Age | t-test | 0.969 | |||
Mean (SD) | 56.9 (7.37) | 56.9 (7.27) | 56.9 (7.41) | ||
Gender | Chi-square | 0.397 | |||
Male | 1170 (91.4%) | 786 (92.1%) | 329 (89.9%) | ||
Female | 110 (8.6%) | 67 (7.9%) | 37 (10.1%) | ||
Race/Ethnicity | Chi-square | 0.667 | |||
White | 1096 (87.3%) | 737 (87.9%) | 306 (86.0%) | ||
Black | 70 (5.6%) | 44 (5.3%) | 23 (6.5%) | ||
Hispanic | 66 (5.3%) | 42 (5.0%) | 23 (6.5%) | ||
Other | 23 (1.8%) | 15 (1.8%) | 4 (1.1%) | ||
Acute COVID Severity | Chi-square | <0.001 | |||
Asymptomatic | 129 (10.1%) | 118 (13.8%) | 3 (0.8%) | ||
Mild | 511 (39.9%) | 391 (45.8%) | 98 (26.8%) | ||
Moderate | 536 (41.9%) | 307 (36.0%) | 206 (56.3%) | ||
Severe | 104 (8.1%) | 37 (4.3%) | 59 (16.1%) | ||
Upper Respiratory Disease | Chi-square | <0.001 | |||
Yes | 778 (60.8%) | 486 (57.0%) | 254 (69.4%) | ||
No | 501 (39.2%) | 366 (43.0%) | 112 (30.6%) | ||
Obstructive Airway Disease | Chi-square | <0.001 | |||
Yes | 450 (35.2%) | 267 (31.3%) | 160 (43.7%) | ||
No | 829 (64.8%) | 585 (68.7%) | 206 (56.3%) | ||
Gastroesophageal Reflux Disorder | Chi-square | <0.001 | |||
Yes | 627 (49.0%) | 379 (44.5%) | 220 (60.1%) | ||
No | 652 (51.0%) | 473 (55.5%) | 146 (39.9%) | ||
Obesity | Chi-square | 0.372 | |||
Yes | 707 (55.2%) | 463 (54.3%) | 214 (58.5%) | ||
No | 573 (44.8%) | 390 (45.7%) | 152 (41.5%) | ||
Hypertension | Chi-square | 0.889 | |||
Yes | 420 (32.8%) | 282 (33.1%) | 125 (34.2%) | ||
No | 859 (67.2%) | 570 (66.9%) | 241 (65.8%) | ||
Diabetes | Chi-square | 0.277 | |||
Yes | 130 (10.2%) | 81 (9.5%) | 46 (12.6%) | ||
No | 1148 (89.8%) | 771 (90.5%) | 319 (87.4%) | ||
Heart Disease | Chi-square | 0.020 | |||
Yes | 131 (10.3%) | 74 (8.7%) | 51 (14.0%) | ||
No | 1143 (89.7%) | 774 (91.3%) | 314 (86.0%) | ||
High Cholesterol | Chi-square | 0.635 | |||
Yes | 512 (40.1%) | 350 (41.2%) | 141 (38.5%) | ||
No | 765 (59.9%) | 500 (58.8%) | 225 (61.5%) | ||
Depressive Symptoms | Kruskal–Willis | <0.001 | |||
Mean (SD) | 3.42 (4.47) | 3.06 (4.23) | 4.23 (4.71) |
aRR | 95% CI | FDR-p | |
---|---|---|---|
Severity Asymptomatic | 0.13 | (0.04, 0.41) | 0.002 |
Severity Moderate | 1.82 | (1.47, 2.26) | <0.001 |
Severity Severe | 2.87 | (2.23, 3.71) | <0.001 |
COVID-19 Report Status: Incomplete | 1.13 | (0.95, 1.34) | 0.327 |
Age a | 0.98 | (0.89, 1.08) | 0.853 |
Female | 1.12 | (0.84, 1.49) | 0.615 |
Race: Black | 0.99 | (0.70, 1.40) | 0.971 |
Race: Hispanic | 1.10 | (0.81, 1.50) | 0.708 |
Race: Other | 0.71 | (0.31, 1.64) | 0.615 |
Gastroesophageal Reflux Disorder | 1.22 | (1.01, 1.48) | 0.128 |
Obstructive Airway Disease | 1.02 | (0.85, 1.22) | 0.954 |
Upper Respiratory Disease | 1.19 | (0.97, 1.46) | 0.259 |
Obesity | 1.00 | (0.84, 1.19) | 0.971 |
Hypertension | 0.98 | (0.81, 1.19) | 0.954 |
High Cholesterol | 0.91 | (0.75, 1.09) | 0.490 |
Heart Disease | 1.34 | (1.07, 1.67) | 0.037 |
Diabetes | 1.2 | (0.95, 1.53) | 0.295 |
Depressive Symptoms | 1.07 | (0.99, 1.16) | 0.259 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lhuillier, E.; Yang, Y.; Morozova, O.; Clouston, S.A.P.; Yang, X.; Waszczuk, M.A.; Carr, M.A.; Luft, B.J. The Impact of World Trade Center Related Medical Conditions on the Severity of COVID-19 Disease and Its Long-Term Sequelae. Int. J. Environ. Res. Public Health 2022, 19, 6963. https://doi.org/10.3390/ijerph19126963
Lhuillier E, Yang Y, Morozova O, Clouston SAP, Yang X, Waszczuk MA, Carr MA, Luft BJ. The Impact of World Trade Center Related Medical Conditions on the Severity of COVID-19 Disease and Its Long-Term Sequelae. International Journal of Environmental Research and Public Health. 2022; 19(12):6963. https://doi.org/10.3390/ijerph19126963
Chicago/Turabian StyleLhuillier, Elizabeth, Yuan Yang, Olga Morozova, Sean A. P. Clouston, Xiaohua Yang, Monika A. Waszczuk, Melissa A. Carr, and Benjamin J. Luft. 2022. "The Impact of World Trade Center Related Medical Conditions on the Severity of COVID-19 Disease and Its Long-Term Sequelae" International Journal of Environmental Research and Public Health 19, no. 12: 6963. https://doi.org/10.3390/ijerph19126963
APA StyleLhuillier, E., Yang, Y., Morozova, O., Clouston, S. A. P., Yang, X., Waszczuk, M. A., Carr, M. A., & Luft, B. J. (2022). The Impact of World Trade Center Related Medical Conditions on the Severity of COVID-19 Disease and Its Long-Term Sequelae. International Journal of Environmental Research and Public Health, 19(12), 6963. https://doi.org/10.3390/ijerph19126963