# A New Compartment Model of COVID-19 Transmission: The Broken-Link Model

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results

#### 3.1. The $\delta $ Epidemic Surge in Japan

#### 3.2. The $o$ Epidemic Surge in Japan

#### 3.3. The Status of the $\delta $ and $o$ Surges in Other Countries

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Kermack, W.O.; McKendrick, A.G. A Contribution to the Mathematical Theory of Epidemics. Proc. R. Soc. A
**1927**, 115, 700–721. [Google Scholar] - Hethcote, H.W. Qualitative analyses of communicable disease models. Math Biosci.
**1976**, 28, 335–356. [Google Scholar] [CrossRef] - Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.J.; Mellan, T.A.; Coupland, H.; Whittaker, C.; Zhu, H.; Berah, T.; Eaton, J.W.; et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature
**2020**, 584, 257–261. [Google Scholar] [CrossRef] [PubMed] - Gatto, M.; Bertuzzo, E.; Mari, L.; Miccoli, S.; Carraro, L.; Casagrandi, R.; Rinaldo, A. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proc. Natl. Acad. Sci. USA
**2020**, 117, 10484–10491. [Google Scholar] [CrossRef] [Green Version] - Tuite, A.R.; Fisman, D.N.; Greer, A.L. Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada. CMAJ
**2020**, 192, E497–E505. [Google Scholar] [CrossRef] [Green Version] - Davies, N.G.; Klepac, P.; Liu, Y.; Prem, K.; Jit, M.; Eggo, R.M. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med.
**2020**, 26, 1205–1211. [Google Scholar] [CrossRef] - Courtemanche, C.; Garuccio, J.; Le, A.; Pinkston, J.; Yelowitz, A. Strong Social Distancing Measures In The United States Reduced The COVID-19 Growth Rate. Health Aff.
**2020**, 39, 1237–1246. [Google Scholar] [CrossRef] - Britton, T.; Ball, F.; and Trapman, P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science
**2020**, 369, 846–849. [Google Scholar] [CrossRef] - Gola, A.; Arya, R.K.; Dugh, A.R. Review of Forecasting Models for Coronavirus (COVID-19) Pandemic in India during Country-wise Lockdowns. medRxiv
**2020**. [Google Scholar] [CrossRef] - Van Wees, J.D.; van der Kuip, M.; Osinga, S.; Keijser, B.; van Westerloo, D.; Hanegraaf, M.; Pluymaekers, M.; Leeuwenburgh, O.; Brunner, L.; van Furth, M.T. SIR model for assessing the impact of the advent of Omicron and mitigating measures on infection pressure and hospitalization needs. medRxiv
**2021**. [Google Scholar] [CrossRef] - Ngonghala, C.N.; Iboi, E.; Eikenberry, S.; Scotch, M.; MacIntyre, C.R.; Bonds, M.H.; Gumel, A.B. Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus. Math. Biosci.
**2020**, 325, 108364. [Google Scholar] [CrossRef] [PubMed] - Wood, S.N.; Wit, E.C. Was R <1 before the English lockdowns? On modelling mechanistic detail, causality and inference about COVID-19. PLoS ONE
**2021**, 16, e0257455. [Google Scholar] [CrossRef] - Schlickeiser, R.; Kröger, M. Forecast of Omicron Wave Time Evolution. COVID
**2022**, 2, 17. [Google Scholar] [CrossRef] - Kamiya, T.; Alvarez-Iglesias, A.; Ferguson, J.; Murphy, S.; Sofonea, M.T.; Fitz-Simon, N. Estimating time-dependent infectious contact: A multi-strain epidemiological model of SARS-CoV-2 on the island of Ireland. medRxiv
**2022**. [Google Scholar] [CrossRef] - Roda, W.C.; Varughese, M.B.; Han, D.; Li, M.Y. Why is it difficult to accurately predict the COVID-19 epidemic? Infect. Dis. Model.
**2020**, 5, 271–281. [Google Scholar] [CrossRef] [PubMed] - Ferguson, N.M.; Laydon, D.; Nedjati-Gilani, G.; Imai, N.; Ainslie, K.; Baguelin, M.; Bhatia, S.; Boonyasiri, A.; Cucunubá, Z.; Cuomo-Dannenburg, G. Impact of Non-pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand. Bull. Math. Biol.
**2020**, 82, 52. [Google Scholar] [CrossRef] [Green Version] - Fu, X.; Ying, Q.; Zeng, T.; Long, T.; Wang, Y. Simulating and forecasting the cumulative confirmed cases of SARSCoV-2 in China by Boltzmann function-based regression analyses. J. Infect. Lett. Ed.
**2020**, 80, 602–605. [Google Scholar] - Derevich, I.V.; Panova, A.A. Estimation of COVID-19 Infection Growth Rate Based on the Imbedding Method. J. Eng. Phys.
**2021**, 94, 18–29. [Google Scholar] [CrossRef] - Nakano, T.; Ikeda, Y. Novel Indicator to Ascertain the Status and Trend of COVID-19 Spread: Modeling Study. J. Med. Internet Res.
**2020**, 22, e20144. [Google Scholar] [CrossRef] - Akiyama, Y. The K Indicator Epidemic Model Follows the Gompertz Curve. Available online: http://www.bi.cs.titech.ac.jp/COVID-19/The_K_indicator_epidemic_model_follows_the_Gompertz_curve.html (accessed on 9 February 2022).
- Ohnishi, A.; Namekawa, Y.; Fukui, T. Universality in COVID-19 spread in view of the Gompertz function. Prog. Theor. Exp. Phys.
**2020**, 2020, 123J01. [Google Scholar] [CrossRef] - Levitt, M.; Scaiewicz, A.; Zonta, F. Predicting the trajectory of any COVID-19 epidemic from the best straight line. medRxiv
**2020**. [Google Scholar] [CrossRef] - Nishiura, H.; Oshitani, H.; Kobayashi, T.; Saito, T.; Sunagawa, T.; Matsui, T.; Wakita, T.; MHLW COVID-19 Response Team; Suzuki, M. Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19). medRxiv
**2020**. [Google Scholar] [CrossRef] [Green Version] - Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Inf. Dis.
**2020**, 20, 533–534. Available online: https://github.com/CSSEGISandData/COVID-19 (accessed on 20 February 2022). [CrossRef] - Shimizu, K.; Iyoda, T.; Sanpei, A.; Nakazato, H.; Okada, M.; Ueda, S.; Kato-Murayama, M.; Murayama, K.; Shirouzu, M.; Harada, N.; et al. Identification of TCR repertoires in functionally competent cytotoxic T cells cross-reactive to SARS-CoV-2. Commun. Biol.
**2021**, 4, 1365. [Google Scholar] [CrossRef] - Ministry of Health, Lavour and Welfare (MHLW) of Japan. Situation Report for COVID-19. Available online: https://www.mhlw.go.jp/stf/covid-19/kokunainohasseijoukyou_00006.html (accessed on 11 February 2022).
- Rambaut, A.; Holmes, E.C.; O’Toole, Á.; Hill, V.; McCrone, J.T.; Ruis, C.; du Plessis, L.; Pybus, O.G. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol.
**2020**, 7, 1403–1407. [Google Scholar] [CrossRef] - PANGO Lineages: Latest Epidemiological Lineages of SARS-CoV-2. Available online: https://cov-lineages.org/index.html (accessed on 11 February 2022).
- Liu, Y.; Rocklöv, J. The reproductive number of the delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J. Travel Med.
**2021**, 28, taab124. [Google Scholar] [CrossRef] - Burki, T.K. Omicron variant and booster COVID-19 vaccines. Lancet Respir. Med.
**2022**, 10, e17. [Google Scholar] [CrossRef] - Mullen, J.L.; Tsueng, G.; Latif, A.A.; Alkuzweny, M.; Cano, M.; Haag, E.; Zhou, J.; Zeller, M.; Hufbauer, E.; Matteson, N.; et al. The Center for Viral Systems Biology. 2020. Available online: https://outbreak.info/ (accessed on 11 February 2022).

**Figure 1.**A suggested formula of the broken-link model. (

**a**) Cartoon of the suppression of secondary infection in a transmission tree ($k=1/2$ case). When the transmission link from the primary infected individual A to the secondary candidate C is unconnected at time ${t}_{1}$, subsequent transmissions starting from C are not generated as denoted by the shaded area. (

**b**) Compartments of the broken-link model. The temporary removed compartment $S\prime $ is introduced due to the suppression of the secondary and higher-order transmissions. Contrary to the SIR model, the coupling between susceptible $S$ and infected $I$ becomes time dependent in the broken-link model.

**Figure 2.**The epicurve of the $\delta $ surge of COVID-19 spread in Japan from June to September 2021. (

**a**) The logarithmic plot of the number of daily confirmed cases (one week average) and the fit result (solid curve). The fit was performed with three partial waves and a baseline denoted by dashed lines. (

**b**) The observed data and fit result of the K-value.

**Figure 3.**The $o$ surge in Japan from January to February 2022. (

**a**) The logarithmic plot of daily confirmed cases (one week average) and fit result. The fit was performed with a single partial wave. (

**b**) The observed data and fit result for the K-value.

**Figure 4.**The logarithmic plot of daily confirmed cases (one week average) and the fit results for the $\delta $ and $o$ surges in South Africa, the United States of America, France and Denmark from November 2021 to February 2022. (

**a**) South Africa; (

**b**) United States; (

**c**) France; (

**d**) Denmark.

**Figure 5.**The predicted $k$ dependence of the relative values of the number of daily confirmed cases at peak positions in the logarithmic scale. The relative value is normalized at $k=0.92$, which was obtained in the 1st epidemic surge in April 2020 in Japan [19]. The value is proportional to $-\left(\mathrm{ln}k\right)\mathrm{exp}\left(-a/\mathrm{ln}k\right)$ in the model. The case with $a=0.5$ is shown.

**Table 1.**The parameters and functions for the K-value and phenomenological constant attenuation model.

Parameters/Functions | Descriptions |
---|---|

$t$ | day |

$R\left(t\right)$ | cumulative number of confirmed cases |

$K\left(t\right)=1-R\left(t-7\right)/R\left(t\right)$ | K-value (indicator) |

$a\left(t\right)=\mathrm{exp}\left[-\left(1-k\right)\right]a\left(t-1\right)$ | geometric progression |

$k$ | constant attenuation factor |

**Table 2.**The parameters and functions for the broken-link model. For the basic reproduction number ${R}_{0}$, the constant parameter $a$ is determined from the fit to the actual data. The analytic expressions of ${R}_{0}$, ${N}_{\infty}$ and $\gamma $ are obtained by solving Equations (3) and (4).

Parameters/Functions | Descriptions |
---|---|

$t$ | time |

$S\left(t\right)$ | number of susceptible people |

$I\left(t\right)$ | number of infected people |

$R\left(t\right)$ | cumulative number of confirmed cases |

$k$ | probability of connected transmission links |

${R}_{0}=-a/\mathrm{ln}k$ | basic reproduction number |

${N}_{\infty}=R\left(0\right)\mathrm{exp}\left({R}_{0}\right)$ | cumulative number of infected people in each infection wave generated by ${R}_{0}$ |

$\gamma =-\mathrm{ln}k$ | removal rate from transmission trees |

**Table 3.**The parameters of the Gompertz curves in the $\delta $ surge in Japan. The ${N}_{\infty}$, ${R}_{0}$ and $k$ are the cumulative number of infected people, basic reproduction number and connected probability of transmission links, respectively. The “shift” stands for the onset of a partial wave from the reference date (25 June 2021). The statistical errors evaluated by the jackknife method are represented in the parentheses.

Partial Wave | ${\mathit{N}}_{\mathit{\infty}}$ | ${\mathit{R}}_{0}$ | $\mathit{k}$ | Shift (Days) |
---|---|---|---|---|

1st | 75 (12) k | 6.49 (20) | 0.918 (4) | 7.2 (3) |

2nd | 340 (23) k | 6.98 (16) | 0.907 (3) | 24.5 (3) |

3rd | 375 (2) k | 4.40 (15) | 0.892 (1) | 47.7 (3) |

**Table 4.**The parameters of the Gompertz curve for the $o$ surge in Japan. The definition of the parameters is the same as in Table 3, but the reference date is 1 January 2022.

Partial Wave | ${\mathit{N}}_{\mathit{\infty}}$ | ${\mathit{R}}_{0}$ | $\mathit{k}$ | Shift (Days) |
---|---|---|---|---|

1st | 4332 (6) k | 10.4 (1) | 0.944 (1) | −4.3 (1) |

**Table 5.**The parameters of the Gompertz curves for other countries from November 2021 to February 2022. The definition of the parameters is the same as in Table 3, but the reference dates are 24 November 2021, 30 November 2021, 1 November 2021 and 1 November 2021 for South Africa, United States, France and Denmark, respectively.

Region | Partial Wave | ${\mathit{N}}_{\mathit{\infty}}$ | ${\mathit{R}}_{0}$ | $\mathit{k}$ | Shift (Days) |
---|---|---|---|---|---|

South Africa | 1st | 592 (1) k | 8.98 (11) | 0.905 (1) | −3.7 (2) |

United States | 1st | 22,411 (269) k | 9.68 (6) | 0.922 (1) | 13.6 (4) |

France | 1st | 2233 (235) k | 7.18 (22) | 0.949 (2) | 4.3 (6) |

2nd | 13,330 (16) k | 9.92 (1) | 0.935 (1) | 42.4 (1) | |

Denmark | 1st | 84 (1) k | 6.16 (64) | 0.924 (1) | −3.0 (6) |

2nd | 1094 (124) k | 9.93 (28) | 0.956 (2) | 19.4 (1.0) | |

3rd | 1401 (6) k | 8.00 (25) | 0.937 (1) | 63.3 (5) |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ikeda, Y.; Sasaki, K.; Nakano, T.
A New Compartment Model of COVID-19 Transmission: The Broken-Link Model. *Int. J. Environ. Res. Public Health* **2022**, *19*, 6864.
https://doi.org/10.3390/ijerph19116864

**AMA Style**

Ikeda Y, Sasaki K, Nakano T.
A New Compartment Model of COVID-19 Transmission: The Broken-Link Model. *International Journal of Environmental Research and Public Health*. 2022; 19(11):6864.
https://doi.org/10.3390/ijerph19116864

**Chicago/Turabian Style**

Ikeda, Yoichi, Kenji Sasaki, and Takashi Nakano.
2022. "A New Compartment Model of COVID-19 Transmission: The Broken-Link Model" *International Journal of Environmental Research and Public Health* 19, no. 11: 6864.
https://doi.org/10.3390/ijerph19116864