The Use of Static Posturography Cut-Off Scores to Identify the Risk of Falling in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants and Setting
2.3. Outcome Measurements
- Sway path—total path length measured on the XY axes in mm;
- Anterior-posterior sway path—statokinesiogram path length measured on the Y-axis direction in mm;
- Medial-lateral sway path—statokinesiogram path length measured on the X-axis in mm;
- Mean Amplitude—mean CoP displacement (radius) in mm;
- Anterior-posterior mean amplitude—mean CoP displacement from point 0 in the Y-axis direction in mm;
- Medial-lateral mean amplitude—mean CoP displacement from point 0 in the X-axis direction in mm;
- Maxima anteroposterior sway CoP—maximal CoP displacement from point 0 in the Y-axis direction in mm;
- Maximal lateral sway CoP—maximal CoP displacement from point 0 in the X-axis direction in mm.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Global Report on Falls Prevention in Older Age; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Malasana, G.; Brignole, M.; Daccarett, M.; Sherwood, R.; Hamdan, M.H. The prevalence and cost of the faint and fall problem in the state of Utah. Pacing Clin. Electrophysiol. 2011, 34, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Aranda-Gallardo, M.; Morales-Asencio, J.M.; de Luna-Rodriguez, M.E.; Vazquez-Blanco, M.J.; Morilla-Herrera, J.C.; Rivas-Ruiz, F.; Toribio-Montero, J.C.; Canca-Sanchez, J.C. Characteristics, consequences and prevention of falls in institutionalised older adults in the province of Malaga (Spain): A prospective, cohort, multicentre study. BMJ Open 2018, 8, e020039. [Google Scholar] [CrossRef] [PubMed]
- Gill, T.M.; Murphy, T.E.; Gahbauer, E.A.; Allore, H.G. Association of injurious falls with disability outcomes and nursing home admissions in community-living older persons. Am. J. Epidemiol. 2013, 178, 418–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillespie, L.D.; Robertson, M.C.; Gillespie, W.J.; Sherrington, C.; Gate, S.; Clemson, L.M.; Lamb, S.E. Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2012, 9, CD007146. [Google Scholar]
- Park, S.H. Tools for assessing fall risk in the elderly: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2018, 30, 1–16. [Google Scholar] [CrossRef]
- Cella, A.; De Luca, A.; Squeri, V.; Parodi, S.; Vallone, F.; Giorgeschi, A.; Senesi, B.; Zigoura, E.; Guerrero, K.L.Q.; Siri, G.; et al. Development and validation of a robotic multifactorial fall-risk predictive model: A one-year prospective study in community-dwelling older adults. PLoS ONE 2020, 15, e0234904. [Google Scholar] [CrossRef]
- Johansson, J.; Nordström, A.; Gustafson, Y.; Westling, G.; Nordström, P. Increased postural sway during quiet stance as a risk factor for prospective falls in community-dwelling elderly individuals. Age Ageing 2017, 46, 964–970. [Google Scholar] [CrossRef] [Green Version]
- Rachwał, M.; Drzał-Grabiec, J.; Walicka-Cuprys, K.; Truszczyńska, A. Quantitative analysis of static equilibrium in women after mastectomy. Int. J. Disabil. Hum. Dev. 2015, 14, 81–87. [Google Scholar] [CrossRef]
- Tavares, J.T.; Biasotto-Gonzalez, D.A.; Boa Sorte Silva, N.C.; Suzuki, F.S.; Lucareli, P.G.; Politti, F. Age-Related Changes in Postural Control in Physically Inactive Older Women. J. Geriatr. Phys. Ther. 2019, 42, E81–E86. [Google Scholar] [CrossRef]
- Prosperini, L.; Fortuna, D.; Giannì, C.; Leonardi, L.; Pozzilli, C. The diagnostic accuracy of static posturography in predicting accidental falls in people with multiple sclerosis. Neurorehabilit. Neural Repair 2013, 27, 45–52. [Google Scholar] [CrossRef]
- Bigelow, K.E.; Berme, N. Development of a protocol for improving the clinical utility of posturography as a fall-risk screening tool. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2011, 66, 228–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Era, P.; Sainio, P.; Koskinen, S.; Haavisto, P.; Vaara, M.; Aromaa, A. Postural balance in a random sample of 7979 subjects aged 30 years and over. Gerontology 2006, 52, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Piirtola, M.; Era, P. Force platform measurements as predictors of falls among older people: A review. Gerontology 2006, 52, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Pizzigalli, L.; Micheletti Cremasco, M.; Mulasso, A.; Rainoldi, A. The contribution of postural balance analysis in older adult fallers: A narrative review. J. Bodyw. Mov. Ther. 2016, 20, 409–417. [Google Scholar] [CrossRef]
- Buatois, S.; Gueguen, R.; Gauchard, G.C.; Benetos, A.; Perrin, P.P. Posturography and risk of recurrent falls in healthy non-institutionalized persons aged over 65. Gerontology 2006, 52, 345–352. [Google Scholar] [CrossRef]
- Puszczalowska-Lizis, E.; Bujas, P.; Jandzis, S.; Omorczyk, J.; Zak, M. Inter-gender differences of balance indicators in persons 60–90 years of age. Clin. Interv. Aging 2018, 13, 903–912. [Google Scholar] [CrossRef] [Green Version]
- Howcroft, J.; Lemaire, E.D.; Kofman, J.; McIlroy, W.E. Elderly fall risk prediction using static posturography. PLoS ONE 2017, 12, e0172398. [Google Scholar] [CrossRef]
- Quijoux, F.; Vienne-Jumeau, A.; Bertin-Hugault, F.; Lefèvre, M.; Zawieja, P.; Vidal, P.P.; Ricard, D. Center of pressure characteristics from quiet standing measures to predict the risk of falling in older adults: A protocol for a systematic review and meta-analysis. Syst. Rev. 2019, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Soto-Varela, A.; Gayoso-Diz, P.; Faraldo-García, A.; Rossi-Izquierdo, M.; Vaamonde-Sánchez-Andrade, I.; Del-Río-Valeiras, M.; Lirola-Delgado, A.; Santos-Pérez, S. Optimising costs in reducing rate of falls in older people with the improvement of balance by means of vestibular rehabilitation (ReFOVeRe study): A randomized controlled trial comparing computerised dynamic posturography vs mobile vibrotactile posturography system. BMC Geriatr. 2019, 19, 1. [Google Scholar]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J. Strobe: Annals of internal medicine academia and clinic the strengthening the reporting of observational studies in Epidemiology (STROBE) Statement: Guidelines for reporting. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the Probability for Falls in Community-Dwelling Older Adults Using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar]
- World Health Organization. Global Database on Body Mass Index (BMI); WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Panel on Prevention of Falls in Older Persons; American Geriatrics Society and British Geriatrics Society. Summary of the Updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls in older persons. J. Am. Geriatr. Soc. 2011, 59, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Wiszomirska, I.; Kaczmarczyk, K.; Zdrodowska, A.; Błażkiewicz, M.; Ilnicka, L.; Marciniak, T. Evaluation of static and dynamic postural stability in young, elderly and with vision loss women. Postepy Rehabil. 2013, 3, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, N.S.; Traux, P. Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. J. Consult. Clin. Psychol. 1991, 59, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Indrayan, A. Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatrics 2011, 48, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Pohar, M.; Blas, M.; Turk, S. Comparison of logistic regression and linear discriminant analysis: A simulation study. Metodoloski Zv. 2004, 1, 143–161. [Google Scholar] [CrossRef]
- Merlo, A.; Zemp, D.; Zanda, E.; Rocchi, S.; Meroni, F.; Tettamanti, M.; Recchia, A.; Lucca, U.; Quadri, P. Postural stability and history of falls in cognitively able older adults: The Canton Ticino study. Gait Posture 2012, 36, 662–666. [Google Scholar] [CrossRef]
- Quijoux, F.; Vienne-Jumeau, A.; Bertin-Hugault, F.; Zawieja, P.; Lefèvre, M.; Vidal, P.P.; Ricard, D. Center of pressure displacement characteristics differentiate fall risk in older people: A systematic review with meta-analysis. Ageing Res. Rev. 2020, 62, 101117. [Google Scholar] [CrossRef]
- Johansson, J.; Jarocka, E.; Westling, G.; Nordström, A.; Nordströ, P. Predicting incident falls: Relationship between postural sway and limits of stability in older adults. Hum. Mov. Sci. 2019, 66, 117–123. [Google Scholar] [CrossRef]
- Sherrington, C.; Fairhall, N.; Kwok, W.; Wallbank, G.; Tiedemann, A.; Michaleff, Z.A.; Ng, C.A.C.M.; Bauman, A. Evidence on physical activity and falls prevention for people aged 65+ years: Systematic review to inform the who guidelines on physical activity and sedentary behaviour. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 144. [Google Scholar] [CrossRef]
- Sedaghati, P.; Goudarzian, M.; Ahmadabadi, S.; Tabatabai-Asl, S.M. The impact of a multicomponent-functional training with postural correction on functional balance in the elderly with a history of falling. J. Exp. Orthop. 2022, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Wayne, P.M.; Gow, B.J.; Costa, M.D.; Peng, C.-K.; Lipsitz, L.A.; Hausdorff, J.M.; Davis, R.B.; Walsh, J.N.; Lough, M.; Novak, V.; et al. Complexity-based measures inform effects of Tai Chi training on standing postural control: Cross-sectional and randomized trial studies. PLoS ONE 2014, 9, e114731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaedtke, A.; Morat, T. TRX Suspension Training: A New Functional Training Approach for Older Adults—Development, Training Control and Feasibility. Int. J. Exerc. Sci. 2015, 8, 224–233. [Google Scholar] [PubMed]
Total | High Risk of Falling | Without Risk of Falling | |
---|---|---|---|
Total | 267 | 136 | 131 |
Female | 142 | 74 | 68 |
Male | 125 | 62 | 63 |
Age | 73.99 (7.51) | 74.83 (8.53) | 73.12 (7.31) |
Body Mass Index | 27.49 (5.29) | 27.32 (6.01) | 27.64 (4.43) |
Timed Up and Go | 18.01 (10.40) | 25.24 (10.01) | 10.51 (2.40) |
Measures | Total | Female | Male | ||||||
---|---|---|---|---|---|---|---|---|---|
High Risk of Falling Me (Q1–Q3) | Without Risk of Falling Me (Q1–Q3) | p-Value | High Risk of Falling Me (Q1–Q3) | Without Risk of Falling Me (Q1–Q3) | p-Value | High Risk of Falling Me (Q1–Q3) | Without Risk of Falling Me (Q1–Q3) | p-Value | |
Sway Path O | 504.50 (380.50–729.50) | 265.00 (199.00–345.00) | <0.001 | 551.50 (377.00–774.00) | 242.50 (187.50–313.00) | <0.001 | 474.50 (389.00–688.00) | 279.00 (228.00–381.00) | <0.001 |
Anterior-Posterior Sway Path O | 394.00 (305.50–593.00) | 197 (140–272) | <0.001 | 401.00 (306.00–605.00) | 174.00 (131.00–243.00) | <0.001 | 378.50 (295.00–581.00) | 224.00 (161.00–312.00) | <0.001 |
Medial-Lateral Sway Path O | 210.00 (157.00–317.00) | 126.00 (102.00–155.00) | <0.001 | 210.00 (160.00–334.00) | 122.00 (100.00–157.00) | <0.001 | 207.50 (152.00–313.00) | 126.00 (106.00–155.00) | <0.001 |
Mean Amplitude O | 5.35 (4.10–7.60) | 3.90 (2.60–5.20) | <0.001 | 5.55 (4.30–7.70) | 3.65 (2.15–4.55) | <0.001 | 5.05 (3.80–7.50) | 4.30 (2.90–5.60) | 0.005 |
Anterior-Posterior Mean Amplitude | 4.00 (3.00–5.20) | 2.80 (1.80–3.70) | <0.001 | 4.00 (3.20–4.90) | 2.75 (1.50–3.45) | <0.001 | 4.10 (2.80–5.70) | 2.80 (1.90–4.30) | <0.001 |
Medial-Lateral Mean Amplitude | 2.70 (1.65–4.30) | 1.60 (0.90–2.50) | <0.001 | 2.80 (1.90–4.40) | 1.25 (0.80–2.15) | <0.001 | 2.55 (1.60–4.10) | 2.1 (1.3–2.8) | 0.023 |
Maxima anteroposterior sway CoP O | 16.20 (11.50–22.05) | 9.70 (6.80–13.10) | <0.001 | 16.70 (12.10–21.90) | 9.55 (6.50–11.95) | <0.001 | 15.45 (10.40–24.00) | 10.40 (7.30–16.30) | <0.001 |
Maximal lateral sway CoP O | 10.65 (5.80–18.75) | 6.00 (3.30–8.60) | <0.001 | 11.25 (6.10–19.60) | 5.00 (2.60–7.70) | <0.001 | 9.15 (5.60–18.30) | 7.00 (4.90–9.00) | 0.011 |
Sway Path C | 547.00 (404.50–728.00) | 306.00 (235.00–419.00) | <0.001 | 541.00 (400.00–717.00) | 278.50 (205.00–379.00) | <0.001 | 550.00 (419.00–734.00) | 342.00 (264.00–512.00) | <0.001 |
Anterior-Posterior Sway Path C | 436.00 (297.50–644.00) | 246.00 (172.00–346.00) | <0.001 | 433.00 305.00–638.00) | 218.00 (159.00–279.00) | <0.001 | 439.00 (290.00–669.00) | 288.00 (211.00–451.00) | <0.001 |
Medial-Lateral Sway Path C | 204.50 (158.00–296.00) | 128.00 (106.00–164.00) | <0.001 | 205.50 (161.00–296.00) | 120.50 (97.00–153.00) | <0.001 | 200.50 (156.00–304.00) | 135 (107–167) | <0.001 |
Mean Amplitude C | 4.75 (3.40–6.65) | 3.60 (2.50–4.70) | <0.001 | 4.40 (3.30–6.50) | 2.90 (1.90–4.00) | <0.001 | 5.00 (3.40–70) | 4.10 (2.90–6.30) | 0.060 |
Anterior-Posterior Mean Amplitude C | 3.75 (2.65–5.20) | 2.80 (2.10–3.90) | <0.001 | 3.70 (2.70–4.90) | 2.40 (1.65–3.30) | 0.425 | 4.15 (2.40–5.50) | 3.40 (2.50–5.20) | 0.425 |
Medial-Lateral Mean Amplitude C | 2.00 (1.40–3.10) | 1.60 (0.70–2.80) | 0.001 | 1.95 (1.40–3.00) | 0.95 (0.60–2.05) | <0.001 | 2.00 (1.50–3.20) | 2.40 (1.30–3.20) | 0.923 |
Maxima anteroposterior sway CoP C | 15.55 (10.55–22.85) | 10.40 (6.60–15.80) | <0.001 | 15.80 (9.70–22.70) | 8.85 (5.70–12.60) | <0.001 | 15.55 (10.60–24.20) | 12.50 (9.30–19.40) | 0.056 |
Maximal lateral sway CoP C | 7.60 (4.90–12.55) | 5.50 (3.10–8.70) | <0.001 | 7.15 (4.80–12.60) | 4.00 (2.65–6.70) | <0.001 | 7.85 (5.40–12.00) | 7.50 (4.80–9.40) | 0.130 |
Method | Measure | Cut-Off Score | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
Clinical | Sway Path O | 350.63 | 80.52 | 84.56 | 76.34 |
Anterior-Posterior Sway Path O | 272.64 | 77.90 | 80.15 | 75.57 | |
Medial-Lateral Sway Path O | 159.63 | 74.91 | 73.53 | 76.34 | |
Mean Amplitude O | 4.55 | 65.54 | 64.71 | 66.41 | |
Anterior-Posterior Mean Amplitude | 3.42 | 67.79 | 66.18 | 69.47 | |
Medial-Lateral Mean Amplitude | 2.53 | 65.17 | 53.68 | 77.10 | |
Maxima anteroposterior sway CoP O | 13.25 | 70.79 | 65.44 | 76.34 | |
Maximal lateral sway CoP O | 9.39 | 67.79 | 56.62 | 79.39 | |
Sway Path C | 436.11 | 73.41 | 69.85 | 77.10 | |
Anterior-Posterior Sway Path C | 364.36 | 70.79 | 63.97 | 77.86 | |
Medial-Lateral Sway Path C | 170.38 | 71.16 | 63.97 | 78.63 | |
Mean Amplitude C | 4.18 | 61.42 | 58.82 | 64.12 | |
Anterior-Posterior Mean Amplitude C | 3.68 | 62.17 | 52.94 | 71.76 | |
Medial-Lateral Mean Amplitude C | 2.39 | 54.31 | 43.38 | 65.65 | |
Maxima anteroposterior sway CoP C | 14.86 | 62.17 | 53.68 | 70.99 | |
Maximal lateral sway CoP C | 8.03 | 57.68 | 48.53 | 67.18 | |
ROC | Sway Path O (AUC = 0.897) | 368.50 | 79.40 | 80.15 | 78.63 |
Anterior-Posterior Sway Path O (AUC = 0.885) | 272.50 | 77.90 | 80.15 | 75.57 | |
Medial-Lateral Sway Path O (AUC = 0.853) | 149.50 | 76.40 | 80.88 | 71.76 | |
Mean Amplitude O (AUC = 0.726) | 3.75 | 64.42 | 81.62 | 46.56 | |
Anterior-Posterior Mean Amplitude (AUC = 0.735) | 2.75 | 64.42 | 80.15 | 48.09 | |
Medial-Lateral Mean Amplitude (AUC = 0.711) | 1.55 | 64.42 | 80.88 | 47.33 | |
Maxima anteroposterior sway CoP O (AUC = 0.766) | 10.15 | 65.92 | 80.15 | 51.15 | |
Maximal lateral sway CoP O (AUC = 0.723) | 5.45 | 61.05 | 80.15 | 41.22 | |
Sway Path C (AUC = 0.793) | 359.50 | 71.91 | 80.15 | 63.36 | |
Anterior-Posterior Sway Path C (AUC = 0.763) | 265.00 | 68.54 | 80.15 | 56.49 | |
Medial-Lateral Sway Path C (AUC = 0.787) | 139.50 | 70.79 | 80.15 | 61.07 | |
Mean Amplitude C (AUC = 0.677) | 2.95 | 61.80 | 82.35 | 40.46 | |
Anterior-Posterior Mean Amplitude C (AUC = 0.637) | 2.35 | 58.43 | 81.62 | 34.35 | |
Medial-Lateral Mean Amplitude C (AUC = 0.613) | 1.25 | 60.67 | 80.88 | 39.69 | |
Maxima anteroposterior sway CoP C (AUC = 0.675) | 9.45 | 61.42 | 80.15 | 41.98 | |
Maximal lateral sway CoP C (AUC = 0.668) | 4.55 | 61.42 | 80.15 | 41.98 | |
Discriminant Function | Formula | 3.03 | 78.65 | 66.91 | 90.84 |
Method | Measure | Cut-Off Score | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
Clinical | Sway Path O | 349.73 | 85.21 | 86.49 | 83.82 |
Anterior-Posterior Sway Path O | 264.39 | 81.69 | 82.43 | 80.88 | |
Medial-Lateral Sway Path O | 174.33 | 76.06 | 68.92 | 83.82 | |
Mean Amplitude O | 4.19 | 71.83 | 78.38 | 64.71 | |
Anterior-Posterior Mean Amplitude | 3.13 | 69.01 | 75.68 | 61.76 | |
Medial-Lateral Mean Amplitude | 2.49 | 67.61 | 56.76 | 79.41 | |
Maxima anteroposterior sway CoP O | 12.56 | 73.94 | 70.27 | 77.94 | |
Maximal lateral sway CoP O | 8.95 | 73.24 | 64.86 | 82.35 | |
Sway Path C | 396.14 | 76.06 | 75.68 | 76.47 | |
Anterior-Posterior Sway Path C | 320.26 | 77.46 | 74.32 | 80.88 | |
Medial-Lateral Sway Path C | 173.14 | 71.13 | 62.16 | 80.88 | |
Mean Amplitude C | 3.56 | 64.79 | 68.92 | 60.29 | |
Anterior-Posterior Mean Amplitude C | 3.25 | 66.90 | 59.46 | 75.00 | |
Medial-Lateral Mean Amplitude C | 1.93 | 59.86 | 50.00 | 70.59 | |
Maxima anteroposterior sway CoP C | 13.10 | 68.31 | 60.81 | 76.47 | |
Maximal lateral sway CoP C | 7.37 | 62.68 | 50.00 | 76.47 | |
ROC | Sway Path O (AUC = 0.928) | 364.00 | 82.39 | 81.08 | 83.82 |
Anterior-Posterior Sway Path O (AUC = 0.927) | 272.50 | 81.69 | 81.08 | 82.35 | |
Medial-Lateral Sway Path O (AUC = 0.862) | 151.00 | 76.76 | 81.08 | 72.06 | |
Mean Amplitude O (AUC = 0.798) | 3.95 | 70.42 | 82.43 | 57.35 | |
Anterior-Posterior Mean Amplitude (AUC = 0.777) | 2.85 | 68.31 | 83.78 | 51.47 | |
Medial-Lateral Mean Amplitude (AUC = 0.785) | 1.65 | 74.65 | 82.43 | 66.18 | |
Maxima anteroposterior sway CoP O (AUC = 0.817) | 11.20 | 73.24 | 81.08 | 64.71 | |
Maximal lateral sway CoP O (AUC = 0.788) | 5.30 | 67.61 | 81.08 | 52.94 | |
Sway Path C (AUC = 0.841) | 349.00 | 77.46 | 81.08 | 73.53 | |
Anterior-Posterior Sway Path C (AUC = 0.837) | 268.00 | 76.06 | 81.08 | 70.59 | |
Medial-Lateral Sway Path C (AUC = 0.81) | 139.50 | 73.94 | 81.08 | 66.18 | |
Mean Amplitude C (AUC = 0.761) | 2.95 | 69.72 | 85.14 | 52.94 | |
Anterior-Posterior Mean Amplitude C (AUC = 0.737) | 2.35 | 64.79 | 82.43 | 45.59 | |
Medial-Lateral Mean Amplitude C (AUC = 0.728) | 1.05 | 70.42 | 86.49 | 52.94 | |
Maxima anteroposterior sway CoP C (AUC = 0.754) | 9.00 | 66.90 | 81.08 | 51.47 | |
Maximal lateral sway CoP C (AUC = 0.756) | 4.35 | 69.01 | 81.08 | 55.88 | |
Discriminant Function | Formula | 4.00 | 83.80 | 75.68 | 92.65 |
Method | Measure | Cut-Off Score | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
Clinical | Sway Path O | 358.06 | 76.00 | 80.65 | 71.43 |
Anterior-Posterior Sway Path O | 286.78 | 73.60 | 75.81 | 71.43 | |
Medial-Lateral Sway Path O | 151.77 | 75.20 | 77.42 | 73.02 | |
Mean Amplitude O | 5.13 | 56.80 | 48.39 | 65.08 | |
Anterior-Posterior Mean Amplitude | 3.74 | 62.40 | 54.84 | 69.84 | |
Medial-Lateral Mean Amplitude | 2.58 | 60.00 | 50.00 | 69.84 | |
Maxima anteroposterior sway CoP O | 13.97 | 60.80 | 56.45 | 65.08 | |
Maximal lateral sway CoP O | 9.83 | 62.40 | 46.77 | 77.78 | |
Sway Path C | 485.44 | 67.20 | 62.90 | 71.43 | |
Anterior-Posterior Sway Path C | 415.76 | 63.20 | 53.23 | 73.02 | |
Medial-Lateral Sway Path C | 168.43 | 68.80 | 61.29 | 76.19 | |
ROC | Sway Path O (AUC = 0.855) | 365.00 | 76.00 | 80.65 | 71.43 |
Anterior-Posterior Sway Path O (AUC = 0.835) | 268.50 | 75.20 | 82.26 | 68.25 | |
Medial-Lateral Sway Path O (AUC = 0.842) | 148.00 | 76.00 | 80.65 | 71.43 | |
Mean Amplitude O (AUC = 0.646) | 3.25 | 58.40 | 83.87 | 33.33 | |
Anterior-Posterior Mean Amplitude (AUC = 0.697) | 2.55 | 63.20 | 82.26 | 44.44 | |
Medial-Lateral Mean Amplitude (AUC = 0.617) | 1.45 | 53.60 | 80.65 | 26.98 | |
Maxima anteroposterior sway CoP O (AUC = 0.714) | 9.80 | 63.20 | 80.65 | 46.03 | |
Maximal lateral sway CoP O (AUC = 0.631) | 5.45 | 53.60 | 80.65 | 26.98 | |
Sway Path C (AUC = 0.744) | 353.00 | 66.40 | 80.65 | 52.38 | |
Anterior-Posterior Sway Path C (AUC = 0.69) | 244.00 | 57.60 | 80.65 | 34.92 | |
Medial-Lateral Sway Path C (AUC = 0.76) | 128.50 | 62.40 | 82.26 | 42.86 | |
Discriminant Function | Formula | 2.80 | 77.60 | 61.29 | 93.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniowska-Szurlej, A.; Ćwirlej-Sozańska, A.; Wilmowska-Pietruszyńska, A.; Sozański, B. The Use of Static Posturography Cut-Off Scores to Identify the Risk of Falling in Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 6480. https://doi.org/10.3390/ijerph19116480
Wiśniowska-Szurlej A, Ćwirlej-Sozańska A, Wilmowska-Pietruszyńska A, Sozański B. The Use of Static Posturography Cut-Off Scores to Identify the Risk of Falling in Older Adults. International Journal of Environmental Research and Public Health. 2022; 19(11):6480. https://doi.org/10.3390/ijerph19116480
Chicago/Turabian StyleWiśniowska-Szurlej, Agnieszka, Agnieszka Ćwirlej-Sozańska, Anna Wilmowska-Pietruszyńska, and Bernard Sozański. 2022. "The Use of Static Posturography Cut-Off Scores to Identify the Risk of Falling in Older Adults" International Journal of Environmental Research and Public Health 19, no. 11: 6480. https://doi.org/10.3390/ijerph19116480
APA StyleWiśniowska-Szurlej, A., Ćwirlej-Sozańska, A., Wilmowska-Pietruszyńska, A., & Sozański, B. (2022). The Use of Static Posturography Cut-Off Scores to Identify the Risk of Falling in Older Adults. International Journal of Environmental Research and Public Health, 19(11), 6480. https://doi.org/10.3390/ijerph19116480