Pseudocochlodinium profundisulcus Resting Cysts Detected in the Ballast Tank Sediment of Ships Arriving in the Ports of China and North America and the Implications in the Species’ Geographic Distribution and Possible Invasion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Sediment Collection
2.2. Culture of Pseudocochlodinium Profundisulcus Establishment from Ballast Sediment of Vessel A Collected from Jiangyin Port, China, Light and Scanning Microscopy
2.3. Identification of Pseudocochlodinium Profundisulcus Cyst from North America
2.4. DNA Extraction, PCR Amplification, Sequencing, and Phylogenetic Analyses
3. Results
3.1. Morphology of Resting Cyst and Vegetative Cell of Pseudocochlodinium Profundisulcus
3.2. Molecular Phylogeny
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hallegraeff, G.M.; Bolch, C.J. Transport of diatom and dinoflagellate resting spores in ships’ ballast water: Implications for plankton biogeography and aquaculture. J. Plankton. Res. 1992, 14, 1067–1084. [Google Scholar] [CrossRef]
- Hamer, J.P.; Lucas, I.A.N.; McCollin, T.A. Harmful dinoflagellate resting cysts in ships’ ballast tank sediments: Potential for introduction into English and Welsh waters. Phycologia 2001, 40, 246–255. [Google Scholar] [CrossRef]
- Casas-Monroy, O.; Roy, S.; Rochon, A. Dinoflagellate cysts in ballast sediments: Differences between Canada’s east coast, west coast and the Great Lakes. Aquat. Conserv. 2013, 23, 254–276. [Google Scholar] [CrossRef]
- Garrett, M.J.; Puchulutegui, C.; Selwood, A.I.; Wolny, J.L. Identification of the harmful dinoflagellate Vulcanodinium rugosum recovered from a ballast tank of a globally traveled ship in Port Tampa Bay, Florida, USA. Harmful Algae 2014, 39, 202–209. [Google Scholar] [CrossRef]
- Carlton, J.T. Transoceanic and interoceanic dispersal of coastal marine organisms: The biology of ballast water. Oceanogr. Mar. Biol. 1985, 23, 313–371. [Google Scholar]
- Rey, A.; Basurko, O.C.; Rodriguez-Ezpeleta, N. The challenges and promises of genetic approaches for ballast water management. J. Sea Res. 2018, 133, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xie, D.; Bowler, P.A.; Zeng, Z.; Xiong, W.; Liu, C. Non-indigenous species in marine and coastal habitats of the South China Sea. Sci. Total Environ. 2021, 759, 143465. [Google Scholar] [CrossRef]
- Lv, B.; Cui, Y.; Tian, W.; Feng, D. Composition and influencing factors of bacterial communities in ballast tank sediments: Implications for ballast water and sediment management. Mar. Environ. Res. 2017, 132, 14–22. [Google Scholar] [CrossRef]
- Maglić, L.; Frančić, V.; Zec, D.; David, M. Ballast water sediment management in ports. Mar. Pollut. Bull. 2017, 147, 237–244. [Google Scholar] [CrossRef]
- Shang, L.; Hu, Z.; Deng, Y.; Liu, Y.; Zhai, X.; Chai, Z.; Liu, X.; Zhan, Z.; Dobbs, F.C.; Tang, Y. Metagenomic sequencing identifies highly diverse assemblages of dinoflagellate cysts in sediments from ships’ ballast tanks. Microorganisms 2019, 7, 250. [Google Scholar] [CrossRef] [Green Version]
- Hamer, J.P. Ballast Tank Sediments. In Invasive Aquatic Species of Europe. Distribution, Impacts and Management; Leppäkoski, E., Gollasch, S., Olenin, S., Eds.; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Isabel Figueroa, R.; Estrada, M.; Garces, E. Life histories of microalgal species causing harmful blooms: Haploids, diploids and the relevance of benthic stages. Harmful Algae 2018, 73, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Z.; Hu, Z.; Deng, Y. Characteristical life history (resting cyst) provides a mechanism for recurrence and geographic expansion of harmful algal blooms of dinoflagellat: A review. Stud. Mar. Sin. 2016, 51, 132–154. (In Chinese) [Google Scholar] [CrossRef]
- Ribeiro, S.; Berge, T.; Lundholm, N.; Andersen, T.J.; Abrantes, F.; Ellegaard, M. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat. Commun. 2011, 1, 311. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Harris, A.S.D.; Jones, K.J.; Edmonds, R.L. Long-term survival of marine planktonic diatoms and dinoflagellates in stored sediment samples. J. Plankton. Res. 1999, 21, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.M.; Fukuyo, Y.; Matsuoka, K. Cyst Methodologies. In Manual on Harmful Marine Microalgae; Hallegraeff, G.M., Anderson, D.M., Cembella, A.D., Enevoldsen, H.O., Eds.; IOC Manuals and Guides No. 33; UNESCO: Paris, France, 1995; pp. 229–2499. [Google Scholar]
- Doblin, M.A.; Coyne, K.J.; Rinta-Kanto, J.M.; Wilhelm, S.W.; Dobbs, F.C. Dynamics and short-term survival of toxic cyanobacteria species in ballast water from NOBOB vessels transiting the Great Lakes—Implications for HAB invasions. Harmful Algae 2007, 6, 519–530. [Google Scholar] [CrossRef]
- Casas-Monroy, O.; Roy, S.; Rochon, A. Ballast sediment-mediated transport of non-indigenous species of dinoflagellates on the East Coast of Canada. Aquat. Invasions 2011, 6, 231–248. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, N.; Gu, H.; Chai, Z.; Takahashi, K.; Li, Z.; Deng, Y.; Iwataki, M.; Matsuoka, K.; Tang, Y.Z. Morpho-molecular description of a new HAB species, Pseudocochlodinium profundisulcus gen. et sp. nov., and its LSU rRNA gene based genetic diversity and geographical distribution. Harmful Algae 2021, 108, 102098. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Zhang, Y.; Yang, L.; Wang, H.; Xie, X.; Rong, Z.; Lv, S.; Qi, Y. The outbreak of Cochlodinium geminatum bloom in Zhuhai, Guangdong. J. Trop. Oceanogr. 2010, 29, 57–61. (In Chinese) [Google Scholar] [CrossRef]
- Ke, Z.; Huang, L.; Tan, Y.; Song, X. A dinoflagellate Cochlodinium geminatum bloom in the Zhujiang (Pearl) River estuary in autumn 2009. Chin. J. Oceanol. Limn. 2012, 30, 371–378. [Google Scholar] [CrossRef]
- Pang, Y.; Nie, R.; Lu, S. Preliminary environmental analysis of the evolution of Cochlodinium geminatum bloom in the Pearl River Estuary. Ecol. Env. Sci. 2015, 24, 286–293. (In Chinese) [Google Scholar] [CrossRef]
- Dong, Y.; Cui, L.; Cao, R.; Cen, J.; Zou, J.; Zhou, X.; Lu, S. Ecological characteristics and teratogenic retinal determination of Cochlodinium geminatum blooms in Pearl River Estuary, South China. Ecotoxicol. Environ. Safe 2020, 191, 110226. [Google Scholar] [CrossRef]
- Bulletin of Marine Environmental Status of Guangdong province. 2011. Available online: http://gdee.gd.gov.cn/hjzkgb/content/post_2469372.html (accessed on 8 November 2021). (In Chinese)
- Bulletin of Marine Environmental Status of Guangdong province. 2012. Available online: http://gdee.gd.gov.cn/hjzkgb/content/post_2466238.html (accessed on 8 November 2021). (In Chinese)
- Wu, N.; Jiang, T.; Jiang, T.; Lv, S.; Huan, Q. Acute toxicity of Cochlodinium geminatum bloom waters from Pearl River Estuary on larvae of brine shrimp, fish and shrimp. J. Fish. China 2013, 37, 1328–1333. (In Chinese) [Google Scholar] [CrossRef]
- Yan, J.; Liu, J.; Cai, Y.; Duan, S.; Tang, Y.; Xu, N. Allelopathic effects and mechanisms of Cochlodinium geminatum isolated from the Pearl River Estuary. J. Appl. Phycol. 2019, 31, 2957–2967. [Google Scholar] [CrossRef] [Green Version]
- Lan, D.; Gu, H. Dinoflagellate Cysts along the Coast of China; Science Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Iwataki, M.; Kawami, H.; Takano, Y.; Law, S.P.; Lu, S.G.; Fukuyo, Y.; Matsuoka, K. Morphology and phylogenetic position of an unarmored dinoflagellate forming brownish resting cyst. In Proceedings of the 13th International Conference on Harmful Algae, Hong Kong, China, 3–7 November 2008; p. 56. [Google Scholar]
- Hallegraeff, G.M.; Bolch, C.J.S.; Huisman, J.M.; de Salas, M.F. Planktonic dinoflagellates. In Algae of Australia Phytoplankton of Temperate Coastal Waters; Hallegraeff, G.M., Bolch, C.J.S., Hill, D.R., Jameson, I., LeRoi, J.M., McMinn, A., Murray, S., de Salas, M.F., Saunders, K., Eds.; CSIRO Publishing/ABRS: Melbourne, Australia, 2010; pp. 145–212. [Google Scholar]
- Johengen, T.H.; Reid, D.; Fahnenstiel, G.; MacIsaac, H.; Dobbs, F.; Doblin, M.; Ruiz, G.; Jenkins, P. Assessment of Transoceanic NOBOB Vessels and Low-Salinity Ballast Water as Vectors for Nonindigenous Species Introductions to the Great Lakes; University of Michigan and NOAA-Great Lakes Environmental Research Laboratory: Ann Arbor, MI, USA, 2005. [Google Scholar]
- Bolch, C.J.S. The use of sodium polytungstate for the separation and concentration of living dinoflagellate cysts from marine sediments. Phycologia 1997, 36, 472–478. [Google Scholar] [CrossRef]
- Guillard, R.R.L. Culture of phytoplankton for feedingmarine invertebrates. In Culture of Marine Invertebrate Animals; Smith, W.L., Chanley, M.H., Eds.; Plenum Press: New York, NY, USA, 1975; pp. 29–60. [Google Scholar] [CrossRef]
- Scholin, C.A.; Herzog, M.; Sogin, M.; Anderson, D.M. Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J. Phycol. 1994, 30, 999–1011. [Google Scholar] [CrossRef]
- Daugbjerg, N.; Hansen, G.; Larsen, J.; Moestrup, Ø. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 2000, 39, 302–317. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2017, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Silvestro, D.; Michalak, I. raxmlGUI: A graphical front-end for RAxML. Org. Divers. Evol. 2012, 12, 335–337. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.Z.; Gu, H.; Wang, Z.; Liu, D.; Wang, Y.; Lu, D.; Hu, Z.; Deng, Y.; Shang, L.; Qi, Y. Exploration of resting cysts (stages) and their relevance for possibly HABs-causing species in China. Harmful Algae 2021, 107, 102050. [Google Scholar] [CrossRef] [PubMed]
- Smayda, T.J. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In Toxic Marine Phytoplankton; Graneli, E., Sundstr¨om, B., Edler, L., Anderson, D.M., Eds.; Elsevier: New York, NY, USA, 1990; pp. 29–40. [Google Scholar]
- Anderson, D. HABs in a changing world: A perspective on harmful algal blooms, their impacts, and research and management in a dynamic era of climatic and environmental change. In Proceedings of the 15th International Conference On Harmful Algae, Changwon Gyeongnam, Korea, 29 October–2 November 2012; pp. 3–17. [Google Scholar]
- Gobler, C.J. Climate change and harmful algal blooms. Harmful Algae 2020, 91, 101731. [Google Scholar] [CrossRef]
- Heisler, J.; Glibert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Annu. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef] [Green Version]
- Glibert, P.M.; Berdalet, E.; Burford, M.A.; Pitcher, G.C.; Zhou, M. Global Ecology and Oceanography of Harmful Algal Blooms, 1st ed.; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Hallegraeff, G.M.; Bolch, C.J. Transport of toxic dinoflagellate cysts via ships’ ballast water. Mar. Pollut. Bull. 1991, 22, 27–30. [Google Scholar] [CrossRef]
- Ruiz, G.M.; Carlton, J.T.; Grosholz, E.D.; Hines, A.H. Global invasions of marine and estuarine habitats by non-indigenous species: Mechanisms, extent, and consequences. Am. Zool. 1997, 37, 621–632. [Google Scholar] [CrossRef]
- McCarthy, H.P.; Crowder, L.B. An overlooked scale of global transport: Phytoplankton species richness in ships’ ballast water. Biol. Invasions 2000, 2, 321–322. [Google Scholar] [CrossRef]
- Bolch, C.J.S.; de Salas, M.F. A review of the molecular evidence for ballast water introduction of the toxic dinoflagellates Gymnodinium catenatum and the Alexandrium “tamarensis complex” to Australasia. Harmful Algae 2007, 6, 465–485. [Google Scholar] [CrossRef]
- Smayda, T.J. Reflections on the ballast water dispersal—Harmful algal bloom paradigm. Harmful Algae 2007, 6, 601–622. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Smayda, T.J. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 1997, 42, 1137–1153. [Google Scholar] [CrossRef]
- Bescot, N.L.; Mahé, F.; Audic, S.; Dimier, C.; Garet, M.J.; Poulain, J.; Wincker, P.; Vargas, C.D.; Siano, R.J.E.M. Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environ. Microbiol. 2016, 18, 609–626. [Google Scholar] [CrossRef]
- Hu, Z.; Shang, L.; Deng, Y.; Tang, Y.Z. Retrospect and prospect: Studies on geographical expansion of resting cysts of non-indigenous harmful algal bloom (HAB)-forming dinoflagellates via ships’ ballast tanks. Mar. Sci. 2020, 44, 103–115. (In Chinese) [Google Scholar]
- IMO. International Convention for the Control and Management of Ships’ Ballast Water and Sediments; IMO: London, UK, 2004. [Google Scholar]
- Qi, Y.; Ou, L.; Li, Y.; Lu, S. Taxonomy differentiation of harmful algal bloom causative species in genus Cochlodinium in Chinese coastal waters. In Proceedings of the Fifteen Academic Conference and Celebration of 30-year Anniversary for Chinese Society of Phycology, Jinan, China, 15–18 November 2009. (In Chinese). [Google Scholar]
- Qiu, D.; Huang, L.; Liu, S.; Zhang, H.; Lin, S. Apical groove type and molecular phylogeny suggests reclassification of Cochlodinium geminatum as Polykrikos geminatum. PLoS ONE 2013, 8, e71346. [Google Scholar] [CrossRef]
- Kofoid, C.A.; Swezy, O. The free living unarmored Dinoflagellata. In Memoirs of the University of California (Berkeley); The University of California (Berkeley): Berkeley, CA, USA, 1921; pp. 1–564. [Google Scholar]
- Shen, P.-P.; Li, Y.-N.; Qi, Y.-Z.; Zhang, L.-P.; Tan, Y.-H.; Huang, L.-M. Morphology and bloom dynamics of Cochlodinium geminatum (Schutt) Schutt in the Pearl River Estuary, South China Sea. Harmful Algae 2012, 13, 10–19. [Google Scholar] [CrossRef]
- Alpermann, T.J.; Beszteri, B.; John, U.; Tillmann, U.; Cembella, A.D. Implications of life-history transitions on the population genetic structure of the toxigenic marine dinoflagellate Alexandrium tamarense. Mol. Ecol. 2009, 18, 2122–2133. [Google Scholar] [CrossRef]
- Bolch, C.J.S.; Blackburn, S.I.; Hallegraeff, G.M.; Vaillancourt, R.E. Genetic variation among strains of the toxic dinoflagellate Gymnodinium catenatum (dinophyceae). J. Phycol. 1999, 35, 356–367. [Google Scholar] [CrossRef]
- Anderson, D.M.; Kulis, D.M.; Doucette, G.J.; Gallagher, J.C.; Balech, E. Biogeography of toxic dinoflagellates in the genus Alexandrium from the northeastern United States and Canada. Mar. Biol. 1994, 120, 467–478. [Google Scholar] [CrossRef]
- Genovesi-Giunti, B.; Laabir, M.; Vaquer, A. The benthic resting cyst: A key actor in harmful dinoflagellate blooms—A review. Vie et Milieu 2006, 56, 327–337. [Google Scholar]
- Anglès, S.; Garcés, E.; Reñé, A.; Sampedro, N. Life-cycle alternations in Alexandrium minutum natural populations from the NW Mediterranean Sea. Harmful Algae 2012, 16, 1–11. [Google Scholar] [CrossRef]
- Barrett, R.D.H.; Schluter, D. Adaptation from standing genetic variation. Trends. Ecol. Evol. 2008, 23, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Rynearson, T.A.; Newton, J.A.; Armbrust, E.V. Spring bloom development, genetic variation, and population succession in the planktonic diatom Ditylum bright. Limnol. Oceanogr. 2006, 51, 1249–1261. [Google Scholar] [CrossRef]
- Park, B.S.; Kim, J.H.; Kim, J.-H.; Baek, S.H.; Han, M.-S. Intraspecific bloom succession in the harmful dinoflagellate Cochlodinium polykrikoides (Dinophyceae) extended the blooming period in Korean coastal waters in 2009. Harmful Algae 2018, 71, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Erdner, D.L.; Richlen, M.; McCauley, L.A.R.; Anderson, D.M. Diversity and dynamics of a widespread bloom of the toxic dinoflagellate Alexandrium fundyense. PLoS ONE 2011, 6, e22965. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.P.; Hendry, A.P.; Reznick, D.N.; Fox, C.W. Evolution on ecological time-scales. Funct. Ecol. 2007, 21, 387–393. [Google Scholar] [CrossRef]
- Pelletier, F.; Garant, D.; Hendry, A.P. Eco-evolutionary dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1483–1489. [Google Scholar] [CrossRef] [Green Version]
Start Point | End Point | Ballast Water Operation | Remarks | ||||
---|---|---|---|---|---|---|---|
Date/Time | Location | Volume (m3) | Date/Time | Location | Volume (m3) | ||
31 May 2016/06:45 | Rio Grande (Brazil) | 1.20 | 31 May 2016/07:30 | Rio Grande (Brazil) | 700 | Load | |
4 June 2016/20:50 | Rio Grande (Brazil) | 700 | 4 June 2016/22:20 | Rio Grande (Brazil) | 1.20 | Discharge | |
2 August 2016/19:21 | Savannah (USA) | 1.20 | 2 August 2016/20:09 | Savannah (USA) | 635 | Load | |
10 August 2016/07:00 | Port Arthur (USA) | 635 | 10 August 2016/08:10 | Port Arthur (USA) | 0.7 | Discharge | |
16 September 2016/09:00 | Sao Sebastiao (Brazil) | 0.7 | 16 September 2016/09:50 | Sao Sebastiao (Brazil) | 634 | Load | |
19 September 2016/07:50 | Paranagua (Brazil) | 634 | 19 September 2016/08:55 | Paranagua (Brazil) | 0.9 | Discharge | |
13 November 2016/09:05 | 36°36.4′ N/122°32.1′ E | 0.9 | 13 November 2016/09:57 | 36°43.2′ N/122°42.4′ E | 635 | Load | |
3 December 2016/18:57 | 12°23.6′ N/129°14.0′ E | 635 | 3 December 2016/19:46 | 12°15.5′ N/129°19.8′ E | 2.1 | Discharge | Empty |
4 December 2016/08:01 | 10°26.0′ N/130°46.9′ E | 2.1 | 4 December 2016/08:46 | 10°18.9′ N/130°51.7′ E | 672.8 | Load | Refill |
16 January 2017/13:10 | Gladstone (USA) | 672.8 | 16 January 2017/14:00 | Gladstone (USA) | 0.6 | Discharge | |
20 February 2017/13:10 | Yokohama (Japan) | 0.6 | 20 February 2017/13:48 | Yokohama (Japan) | 573.2 | Load | |
23 February 2017/15:05 | 24°35.2′ N/140°40.1′ E | 573.2 | 23 February 2017/16:15 | 24°20.9′ N/140°40.0′ E | 1.20 | Discharge | Empty |
20 February 2017/16:18 | 24°20.4′ N/140°40.0′ E | 1.20 | 20 February 2017/16:58 | 24°12.9′ N/140°40.2′ E | 607.8 | Load | Refill |
23 March 2017/14:05 | Newcastle (Australia) | 607.8 | 23 March 2017/15:30 | Newcastle (Australia) | 0.9 | Discharge | |
20 August 2017/13:00 | Yokohama (Japan) | 0.9 | 20 August 2017/13:43 | Yokohama (Japan) | 635 | Load | |
29 August 2017/14:05 | 20°06.6′ N/130°46.5′ E | 635 | 29 August 2017/15:30 | 19°51.2′ N/130°55.9′ E | 0.9 | Discharge | BWX 1 |
29 August 2017/17:00 | 19°34.8′ N/131°06.9′ E | 0.9 | 29 August 2017/17:42 | 19°26.5′ N/131°12.4′ E | 636 | Load | BWX |
18 September 2017/18:55 | Portland (USA) | 636 | 18 September 2017/20:15 | Portland (USA) | 0.7 | Discharge | |
28 October 2017/17:30 | Huangdao (China) | 0.7 | 28 October 2017/17:50 | Huangdao (China) | 293 | Load |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, L.; Zhai, X.; Tian, W.; Liu, Y.; Han, Y.; Deng, Y.; Hu, Z.; Tang, Y.Z. Pseudocochlodinium profundisulcus Resting Cysts Detected in the Ballast Tank Sediment of Ships Arriving in the Ports of China and North America and the Implications in the Species’ Geographic Distribution and Possible Invasion. Int. J. Environ. Res. Public Health 2022, 19, 299. https://doi.org/10.3390/ijerph19010299
Shang L, Zhai X, Tian W, Liu Y, Han Y, Deng Y, Hu Z, Tang YZ. Pseudocochlodinium profundisulcus Resting Cysts Detected in the Ballast Tank Sediment of Ships Arriving in the Ports of China and North America and the Implications in the Species’ Geographic Distribution and Possible Invasion. International Journal of Environmental Research and Public Health. 2022; 19(1):299. https://doi.org/10.3390/ijerph19010299
Chicago/Turabian StyleShang, Lixia, Xinyu Zhai, Wen Tian, Yuyang Liu, Yangchun Han, Yunyan Deng, Zhangxi Hu, and Ying Zhong Tang. 2022. "Pseudocochlodinium profundisulcus Resting Cysts Detected in the Ballast Tank Sediment of Ships Arriving in the Ports of China and North America and the Implications in the Species’ Geographic Distribution and Possible Invasion" International Journal of Environmental Research and Public Health 19, no. 1: 299. https://doi.org/10.3390/ijerph19010299