Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daniel, D.M.; Stone, M.L.; Dobson, B.E.; Fithian, D.C.; Rossman, D.J.; Kaufman, K.R. Fate of the ACL-injured patient. A prospective outcome study. Am. J. Sports Med. 1994, 22, 632–644. [Google Scholar] [CrossRef]
- Muneta, T.; Sekiya, I.; Yagishita, K.; Ogiuchi, T.; Yamamoto, H.; Shinomiya, K. Two-bundle reconstruction of the anterior cruciate ligament using semitendinosus tendon with endobuttons: Operative technique and preliminary results. Arthroscopy 1999, 15, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Arendt, E.; Dick, R. Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am. J. Sports Med. 1995, 23, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Boden, B.P.; Dean, G.S.; Feagin, J.A., Jr.; Garrett, W.E., Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef]
- Agel, J.; Rockwood, T.; Klossner, D. Collegiate ACL Injury Rates Across 15 Sports: National Collegiate Athletic Association Injury Surveillance System Data Update (2004–2005 Through 2012–2013). Clin. J. Sport Med. 2016, 26, 518–523. [Google Scholar] [CrossRef]
- Montalvo, A.M.; Schneider, D.K.; Yut, L.; Webster, K.E.; Beynnon, B.; Kocher, M.S.; Myer, G.D. “What’s my risk of sustaining an ACL injury while playing sports?” A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1003–1012. [Google Scholar] [CrossRef]
- Mandelbaum, B.R.; Silvers, H.J.; Watanabe, D.S.; Knarr, J.F.; Thomas, S.D.; Griffin, L.Y.; Kirkendall, D.T.; Garrett, W., Jr. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am. J. Sports Med. 2005, 33, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Pflum, M.A.; Shelburne, K.B.; Torry, M.R.; Decker, M.J.; Pandy, M.G. Model prediction of anterior cruciate ligament force during drop-landings. Med. Sci. Sports Exerc. 2004, 36, 1949–1958. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.; Hellquist, E.; Ahlqvist, K.; Gedeborg, R.; Michaëlsson, K.; Byberg, L. Prevention of soccer-related knee injuries in teenaged girls. Arch. Intern. Med. 2010, 170, 43–49. [Google Scholar] [CrossRef]
- Knapik, J.J.; Bullock, S.H.; Toney, E.; Wells, J.D.; Hoedebecke, E.; Jones, B.H. Influence of an injury reduction program on injury and fitness outcomes among soldiers. Inj. Prev. 2004, 10, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Dingenen, B.; Malfait, B.; Nijs, S.; Peers, K.H.; Vereecken, S.; Verschueren, S.M.; Staes, F.F. Can two-dimensional video analysis during single-leg drop vertical jumps help identify non-contact knee injury risk? A one-year prospective study. Clin. Biomech. 2015, 30, 781–787. [Google Scholar] [CrossRef]
- Krosshaug, T.; Steffen, K.; Kristianslund, E.; Nilstad, A.; Mok, K.M.; Myklebust, G.; Andersen, T.E.; Holme, I.; Engebretsen, L.; Bahr, R. The Vertical Drop Jump Is a Poor Screening Test for ACL Injuries in Female Elite Soccer and Handball Players: A Prospective Cohort Study of 710 Athletes. Am. J. Sports Med. 2016, 44, 874–883. [Google Scholar] [CrossRef]
- Koga, H.; Bahr, R.; Myklebust, G.; Engebretsen, L.; Grund, T.; Krosshaug, T. Estimating anterior tibial translation from model-based image-matching of a noncontact anterior cruciate ligament injury in professional football: A case report. Clin. J. Sport Med. 2011, 21, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Nakamae, A.; Shima, Y.; Iwasa, J.; Myklebust, G.; Engebretsen, L.; Bahr, R.; Krosshaug, T. Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 2010, 38, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- Krosshaug, T.; Nakamae, A.; Boden, B.P.; Engebretsen, L.; Smith, G.; Slauterbeck, J.R.; Hewett, T.E.; Bahr, R. Mechanisms of anterior cruciate ligament injury in basketball: Video analysis of 39 cases. Am. J. Sports Med. 2007, 35, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Torg, J.S.; Boden, B.P. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: Lateral trunk and knee abduction motion are combined components of the injury mechanism. Br. J. Sports Med. 2009, 43, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Khayambashi, K.; Ghoddosi, N.; Straub, R.K.; Powers, C.M. Hip Muscle Strength Predicts Noncontact Anterior Cruciate Ligament Injury in Male and Female Athletes: A Prospective Study. Am. J. Sports Med. 2015, 44, 355–361. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; McLean, S.G.; Van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef]
- Zazulak, B.T.; Hewett, T.E.; Reeves, N.P.; Goldberg, B.; Cholewicki, J. Deficits in neuromuscular control of the trunk predict knee injury risk: A prospective biomechanical-epidemiologic study. Am. J. Sports Med. 2007, 35, 1123–1130. [Google Scholar] [CrossRef]
- Hewett, T.E.; Paterno, M.V.; Myer, G.D. Strategies for enhancing proprioception and neuromuscular control of the knee. Clin. Orthop. Relat. Res. 2002, 402, 76–94. [Google Scholar] [CrossRef]
- Li, G.; Rudy, T.W.; Sakane, M.; Kanamori, A.; Ma, C.B.; Woo, S.L. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J. Biomech. 1999, 32, 395–400. [Google Scholar] [CrossRef]
- Renström, P.; Arms, S.W.; Stanwyck, T.S.; Johnson, R.J.; Pope, M.H. Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am. J. Sports Med. 1986, 14, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Ford, K.R.; Xu, Y.Y.; Khoury, J.; Myer, G.D. Effectiveness of Neuromuscular Training Based on the Neuromuscular Risk Profile. Am. J. Sports Med. 2017, 45, 2142–2147. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, B.M.; Gallagher-Ford, L.; Fineout-Overholt, E. Implementing the evidence-based practice competencies in health-care. In A Practical Guide for Improving Quality, Safety, & Outcomes; Sigma Theta Tau International: Indianapolis, IN, USA, 2016. [Google Scholar]
- Boden, B.P.; Torg, J.S.; Knowles, S.B.; Hewett, T.E. Video analysis of anterior cruciate ligament injury: Abnormalities in hip and ankle kinematics. Am. J. Sports Med. 2009, 37, 252–259. [Google Scholar] [CrossRef]
- Koga, H.; Nakamae, A.; Shima, Y.; Bahr, R.; Krosshaug, T. Hip and Ankle Kinematics in Noncontact Anterior Cruciate Ligament Injury Situations: Video Analysis Using Model-Based Image Matching. Am. J. Sports Med. 2018, 46, 333–340. [Google Scholar] [CrossRef]
- Montgomery, C.; Blackburn, J.; Withers, D.; Tierney, G.; Moran, C.; Simms, C. Mechanisms of ACL injury in professional rugby union: A systematic video analysis of 36 cases. Br. J. Sports Med. 2018, 52, 994–1001. [Google Scholar] [CrossRef]
- Sheehan, F.T.; Sipprell, W.H., 3rd; Boden, B.P. Dynamic sagittal plane trunk control during anterior cruciate ligament injury. Am. J. Sports Med. 2012, 40, 1068–1074. [Google Scholar] [CrossRef]
- Walden, M.; Krosshaug, T.; Bjørneboe, J.; Andersen, T.E.; Faul, O.; Hägglund, M. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: A systematic video analysis of 39 cases. Br. J. Sports Med. 2015, 49, 1452–1460. [Google Scholar] [CrossRef]
- Olsen, O.E.; Myklebust, G.; Engebretsen, L.; Bahr, R. Injury mechanisms for anterior cruciate ligament injuries in team handball: A systematic video analysis. Am. J. Sports Med. 2004, 32, 1002–1012. [Google Scholar] [CrossRef]
- Leppänen, M.; Pasanen, K.; Krosshaug, T.; Kannus, P.; Vasankari, T.; Kujala, U.M.; Bahr, R.; Perttunen, J.; Parkkari, J. Sagittal Plane Hip, Knee, and Ankle Biomechanics and the Risk of Anterior Cruciate Ligament Injury: A Prospective Study. Orthop. J. Sports Med. 2017, 5, 2325967117745487. [Google Scholar] [CrossRef]
- Leppänen, M.; Pasanen, K.; Kujala, U.M.; Vasankari, T.; Kannus, P.; Äyrämö, S.; Krosshaug, T.; Bahr, R.; Avela, J.; Perttunen, J.; et al. Stiff Landings Are Associated with Increased ACL Injury Risk in Young Female Basketball and Floorball Players. Am. J. Sports Med. 2017, 45, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Numata, H.; Nakase, J.; Kitaoka, K.; Shima, Y.; Oshima, T.; Takata, Y.; Shimozaki, K.; Tsuchiya, H. Two-dimensional motion analysis of dynamic knee valgus identifies female high school athletes at risk of non-contact anterior cruciate ligament injury. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 442–447. [Google Scholar] [CrossRef]
- DuPrey, K.M.; Liu, K.; Cronholm, P.F.; Reisman, A.S.; Collina, S.J.; Webner, D.; Kaminski, T.W. Baseline Time to Stabilization Identifies Anterior Cruciate Ligament Rupture Risk in Collegiate Athletes. Am. J. Sports Med. 2016, 44, 1487–1491. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.T.; Mandelbaum, B.R.; Schub, D.; Rodeo, S.A.; Matava, M.J.; Silvers-Granelli, H.J.; Cole, B.J.; ElAttrache, N.S.; McAdams, T.R.; Brophy, R.H. Video Analysis of Anterior Cruciate Ligament Tears in Professional American Football Athletes. Am. J. Sports Med. 2018, 46, 862–868. [Google Scholar] [CrossRef]
- Marotta, N.; Demeco, A.; de Scorpio, G.; Indino, A.; Iona, T.; Ammendolia, A. Late Activation of the Vastus Medialis in Determining the Risk of Anterior Cruciate Ligament Injury in Soccer Players. J. Sport Rehabil. 2020, 29, 952–955. [Google Scholar] [CrossRef]
- De Loës, M.; Dahlstedt, L.J.; Thomée, R. A 7-year study on risks and costs of knee injuries in male and female youth participants in 12 sports. Scand. J. Med. Sci. Sports. 2000, 10, 90–97. [Google Scholar] [CrossRef]
- Mather, R.C., 3rd; Koenig, L.; Kocher, M.S.; Dall, T.M.; Gallo, P.; Scott, D.J.; Bach, B.R., Jr.; Spindler, K.P.; MOON Knee Group. Societal and economic impact of anterior cruciate ligament tears. J. Bone Joint Surg. Am. 2013, 95, 1751–1759. [Google Scholar] [CrossRef]
- Noyes, F.R.; Barber Westin, S.D. Anterior cruciate ligament injury prevention training in female athletes: A systematic review of injury reduction and results of athletic performance tests. Sports Health 2012, 4, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Padua, D.A.; DiStefano, L.J.; Hewett, T.E.; Garrett, W.E.; Marshall, S.W.; Golden, G.M.; Shultz, S.J.; Sigward, S.M. National Athletic Trainers’ Association Position Statement: Prevention of Anterior Cruciate Ligament Injury. J. Athl. Train. 2018, 53, 5–19. [Google Scholar] [CrossRef]
- Powers, C.M. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: A theoretical perspective. J. Orthop. Sports Phys. Ther. 2003, 33, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Powers, C.M. The influence of abnormal hip mechanics on knee injury: A biomechanical perspective. J. Orthop. Sports Phys. Ther. 2010, 40, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Arendt, E.A.; Bershadsky, B.; Agel, J. Periodicity of noncontact anterior cruciate ligament injuries during the menstrual cycle. J. Gend. Specif. Med. 2002, 5, 19–26. [Google Scholar] [PubMed]
- Slauterbeck, J.R.; Hardy, D.M. Sex hormones and knee ligament injuries in female athletes. Am. J. Med. Sci. 2001, 322, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Wojtys, E.M.; Ashton-Miller, J.A.; Huston, L.J. A gender-related difference in the contribution of the knee musculature to sagittal-plane shear stiffness in subjects with similar knee laxity. J. Bone Joint Surg. Am. 2002, 84, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E. Neuromuscular and hormonal factors associated with knee injuries in female athletes. Strategies for intervention. Sports Med. 2000, 29, 313–327. [Google Scholar] [CrossRef]
- Lloyd, D.G. Rationale for training programs to reduce anterior cruciate ligament injuries in Australian football. J. Orthop. Sports Phys. Ther. 2001, 31, 645–654, discussion 661. [Google Scholar] [CrossRef] [PubMed]
- McLean, S.G.; Lipfert, S.W.; van den Bogert, A.J. Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Med. Sci. Sports Exerc. 2004, 36, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, J.; Breighner, R.; Chandrashekar, N.; Hardy, D.M.; Chaudhari, A.M.; Shultz, S.J.; Slauterbeck, J.R.; Beynnon, B.D. Hip extension, knee flexion paradox: A new mechanism for non-contact ACL injury. J. Biomech. 2011, 44, 577–585. [Google Scholar] [CrossRef]
- Jayaraman, V.M.; Sevensma, E.T.; Kitagawa, M.; Haut, R.C. Effects of Anterior-Posterior Constraint on Injury Patterns in the Human Knee During Tibial-Femoral Joint Loading from Axial Forces through the Tibia. Stapp. Car Crash J. 2001, 45, 449–468. [Google Scholar] [PubMed]
- Hewett, T.E.; Myer, G.D. The mechanistic connection between the trunk, hip, knee, and anterior cruciate ligament injury. Exerc. Sport Sci. Rev. 2011, 39, 161–166. [Google Scholar] [CrossRef]
- Dix, J.; Marsh, S.; Dingenen, B.; Malliaras, P. The relationship between hip muscle strength and dynamic knee valgus in asymptomatic females: A systematic review. Phys. Ther. Sport. 2019, 37, 197–209. [Google Scholar] [CrossRef]
- Beynnon, B.D.; Fleming, B.C. Anterior cruciate ligament strain in-vivo: A review of previous work. J. Biomech. 1998, 31, 519–525. [Google Scholar] [CrossRef]
- Beynnon, B.D.; Fleming, B.C.; Johnson, R.J.; Nichols, C.E.; Renström, P.A.; Pope, M.H. Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am. J. Sports Med. 1995, 23, 24–34. [Google Scholar] [CrossRef]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.; Slauterbeck, J.L. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Huxel Bliven, K.C.; Anderson, B.E. Core stability training for injury prevention. Sports Health 2013, 5, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Granata, K.P.; Orishimo, K.F.; Sanford, A.H. Trunk muscle coactivation in preparation for sudden load. J. Electromyogr. Kinesiol. 2001, 11, 247–254. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
Primary Author | Study Quality | Female/Male | Sport | Time Span (Years) | Method | Analysis | Main Variable of Interest |
---|---|---|---|---|---|---|---|
Video Analysis Studies | |||||||
Koga 2010 [14] | VI | 10/0 | Basketball, Handball | case series | 2D analysis | knee valgus & flexion, peak vertical ground-reaction force | |
Krosshaug 2007 [15] | VI | 1/1 | Basketball, Handball | cohort | 3D analysis | knee valgus & flexion, peak vertical ground-reaction force, medial knee displacement | |
Hewett 2005 [18] | IV | 205/0 | Basketball, Soccer | 1.5 | cohort | 3D analysis | knee valgus, ground reaction force, knee loading |
Boden 2009 [25] | IV | 33/23 | Basketball, Soccer, Handball, Football, Gymnastics/Cheer | matched cohort | 2D analysis | hip & knee motion | |
Koga 2018 [26] | VI | 10/0 | Basketball, Handball | case series | 2D analysis | hip & ankle motion, COM | |
Montgomery 2018 [27] | IV | 0/73 | Rugby | matched cohort | 2D analysis | ground contact angle, knee & ankle motion | |
Sheehan 2012 [28] | IV | 26/14 | Basketball, Soccer, Handball, Football | matched cohort | 2D analysis | COM, limb angle, trunk angle | |
Walden 2015 [29] | VI | 0/39 | Soccer | case series | 2D analysis | hip, knee, & ankle flexion | |
Olsen 2004 [30] | VI | 52/0 | Handball | case series | 2D analysis | knee valgus & flexion | |
Pre-Screen Studies | |||||||
Dingenen 2015 [11] | IV | 50/0 | Soccer, Handball, Volleyball | 1 | cohort | 2D analysis | hip flexion, knee valgus, lateral trunk motion |
Krosshaug 2016 [12] | IV | 710/0 | Soccer, Handball | 7 | cohort | 3D analysis | knee valgus, & flexion, vertical ground reaction force, medial knee displacement |
Hewett 2009 [16] | IV | 16/7 | Basketball | matched cohort | 2D analysis | trunk angle, knee valgus | |
Khayambashi 2015 [17] | IV | 138/363 | Football, Soccer, Volleyball, Basketball, Handball | 1 | cohort | Dynamometer | hip strength |
Zazulak 2007 [19] | IV | 140/137 | 3 | cohort | Electromagnetic sensor | trunk displacement | |
Leppänen 2017 [31] | IV | 171/0 | Basketball, Floorball | 3 | cohort | 3D analysis | hip, knee, & ankle motion |
Leppänen 2017 [32] | IV | 171/0 | Basketball, Floorball | 3 | cohort | 3D analysis | knee valgus & flexion, vertical ground-reaction force, medial knee displacement |
Numata 2018 [33] | IV | 291/0 | Basketball, Handball | 3 | matched cohort | 2D analysis | knee valgus |
Duprey 2016 [34] | IV | 112/166 | Football, Volleyball, Field Hockey, Lacrosse, Basketball, Soccer | 3.1 | cohort | Force platform | TTS score |
Hip Flexion_IC (Degrees) | Peak Hip Flexion Moment (N·m) | Hip Abduction (Degrees) | |||||||
---|---|---|---|---|---|---|---|---|---|
Injured | Control | p-Value | Injured | Control | p-Value | Injured | Control | p-Value | |
Hewett 2005 [18] | NS | NS | 147.9 ± 33.5 | 106.8 ± 45.3 | <0.01 | NS | NS | ||
Boden 2009 [25] | 50.1 ± 13.2 | 25.8 ± 14.7 | 0.0003 | NS | NS | 29.9 ± 11.0 | 25.7 ± 12.7 | ||
Koga 2018 [26] | 51 | NS | NS | 21 | NS | ||||
Montgomery 2018 [27] | 26.5 ± 15.99 * | 43.3 ± 24.8 * | 0.26 | NS | NS | NS | NS | ||
Sheehan 2012 [28] | 48 ± 12 | 31 ± 22 | NS | NS | NS | NS | |||
Walden 2015 [29] | 15 | NS | NS | NS | NS | NS | |||
Leppänen 2017 [31] | 45.4 ± 10.7 | 43.5 ± 9.2 | 0.43 | 134.7 ± 42.4 | 122.9 ± 40.0 | 0.24 | NS | NS |
Knee Flexion IC (Degrees) | Peak Knee Flexion (Degrees) | Knee Abduction IC (Degrees) | Peak Knee Abduction Moment (N·m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Injured | Control | p-Value | Injured | Control | p-Value | Injured | Control | p-Value | Injured | Control | p-Value | |
Krosshaug 2016 [12] | −2.2 ± 4.7 | −1.7 ± 4.1 | 0.51 | 92.2 ± 13.8 | 90.8 ± 14.9 | 0.62 | −2.2 ± 4.7 | −1.7 ± 4.1 | 0.51 | 21.2 ± 12.2 | 20.9 ± 11.0 | 0.91 |
Hewett 2005 [18] | 71.9 ± 12 | 82.4 ± 8.0 | <0.05 | −45.3 ± 28.5 | −18.4 ± 15.6 | <0.001 | ||||||
Boden 2009 [25] | 21.8 ± 7.0 | 18.3 ± 7.5 | 0.2504 | 17.6 | 39.3 | 0.0001 | 5.5 ± 6.0 | 5.6 ± 6.7 | 0.96 | NS | NS | |
Montgomery 2018 [27] | 13.6 ± 3.63 ** | 23.6 ± 17.3 ** | <0.001 ** | NS | NS | NS | NS | NS | NS | |||
Olsen 2004 [30] | 15.8 ± 5.8 | NS | NS | NS | 13.15 | NS | 12.6 | NS | ||||
Leppänen 2017 [32] | 30.2 ± 11.7 | 27.6 ± 9.0 | 0.29 | 81.5 ± 10.0 | 84.6 ± 10.3 | 0.25 | 0.9 ± 5.8 | −1.8 ± 6.7 | 0.12 | 37.1 ± 24.9 | 31.2 ± 22.0 | 0.32 |
Numata 2018 [33] | NS | NS | NS | NS | 2.1 ± 2.4 * | 0.4 ± 2.2 * | 0.006 | 8.3 ± 4.3 | 5.1 ± 4.1 | 0.007 |
Ankle PF_IC (Degrees) | |||
---|---|---|---|
Injured | Control | p-Value | |
Boden 2009 [25] | 10.7 ± 9.6 | 22.9 ± 10.1 | 0.0059 |
Koga 2018 [26] | −2.5 ± 18.6 | NS | |
Montgomery 2018 [27] | −2.5 ± 13.6 * | 0 * | 0.033 * |
Leppänen 2017 [31] | 7.4 ± 8.4 | 9.8 ± 9.6 | 0.26 |
Female Lateral Trunk Angle (Degrees) | Male Lateral Trunk Angle (Degrees) | Female Forward Trunk Lean (Degrees) | |||||||
---|---|---|---|---|---|---|---|---|---|
Injured | Control | p-Value | Injured | Control | p-Value | Injured | Control | p-Value | |
Hewett 2009 [16] | 11.1 ± 2 | 4.2 ± 9.6 | 0.29 | −5.5 ± 9.5 | NS | 0.04 | 1.6 ± 9.3 | 14.0 ± 7.3 | <0.01 |
Sheehan 2012 [28] | 4 ± 14 | 15 ± 13 | 6 ± 17 | 18 ± 14 | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larwa, J.; Stoy, C.; Chafetz, R.S.; Boniello, M.; Franklin, C. Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes. Int. J. Environ. Res. Public Health 2021, 18, 3826. https://doi.org/10.3390/ijerph18073826
Larwa J, Stoy C, Chafetz RS, Boniello M, Franklin C. Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes. International Journal of Environmental Research and Public Health. 2021; 18(7):3826. https://doi.org/10.3390/ijerph18073826
Chicago/Turabian StyleLarwa, Joseph, Conrad Stoy, Ross S. Chafetz, Michael Boniello, and Corinna Franklin. 2021. "Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes" International Journal of Environmental Research and Public Health 18, no. 7: 3826. https://doi.org/10.3390/ijerph18073826
APA StyleLarwa, J., Stoy, C., Chafetz, R. S., Boniello, M., & Franklin, C. (2021). Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes. International Journal of Environmental Research and Public Health, 18(7), 3826. https://doi.org/10.3390/ijerph18073826