Prevalence and Predictors of Per- and Polyfluoroalkyl Substances (PFAS) Serum Levels among Members of a Suburban US Volunteer Fire Department
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collaboration
2.2. Inclusion Criteria and Enrollment Procedures
2.3. Data Collection: The Survey
2.4. Specimen Collection and Laboratory Analysis
2.5. Study Population—National Health and Nutrition Examination Survey (NHANES)
2.6. Statistical Analysis
2.6.1. Demographics and Firefighting Characteristics
- Age: defined as years between date of birth and survey date; categorized into approximately equal quartiles of 18–34, 35–49, 50–59, and 60 or more for bivariate analysis
- Sex: categorized into male/female
- Race/ethnicity: categorized into non-Hispanic white/other because the majority of CAPS participants were non-Hispanic white
- Education attainment: defined for the highest level of education achieved as high school graduate; some college/Associates degree; or 4-year college degree or more
- Occupation: categorized as construction/manufacturing, government/clerical, service provider, and other occupation.
- Firefighting characteristics for CAPS participants included:
- -
- Ever employed (for pay) as a firefighter: categorized as current, former, or never having been a paid firefighter
- -
- Years of firefighting service: estimated as the difference between the first year of fire department membership (volunteer or career, whichever was earlier) and either the last year of active department membership or the survey date), and categorized into approximately equal quartiles for bivariate analysis (0 to 5, 6 to 19, 20 to 34, and 35 or more years)
- -
- Firefighting calls: Calculated as the cumulative number of firefighting calls responded to over the total years serving as a firefighter and standardized to one year; categorized into approximately equal quartiles of 0 to 4, 5 to 9, 10 to 19, and 20 or more calls per year.
2.6.2. Comparison of PFAS Levels between CAPS and NHANES Participants
2.6.3. Association between Firefighting Experience and PFAS Levels (CAPS Participants Only)
2.6.4. Sensitivity Analysis
3. Results
3.1. Participant Characteristics
3.2. Comparison of the Distribution of Detected PFAS Compounds
3.3. Comparison of Mean Serum PFAS Concentrations
3.4. Association between Firefighting Experience and PFAS Levels (CAPS Participants Only)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; De Voogt, P.; Jensen, A.A.; Kannan, K.; A. Mabury, S.; Van Leeuwen, S.P.J. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- Poothong, S.; Papadopoulou, E.; Padilla-Sánchez, J.A.; Thomsen, C.; Haug, L.S. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood. Environ. Int. 2020, 134, 105244. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, G.; Meissner, E.; Milchert, E. Special applications of fluorinated organic compounds. J. Hazard. Mater. 2006, 136, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Post, G.B.; Louis, J.B.; Lippincott, R.L.; Procopio, N.A. Occurrence of perfluorinated compounds in raw water from New Jersey public drinking water systems. Environ. Sci. Technol. 2013, 47, 13266–13275. [Google Scholar] [CrossRef]
- Daly, E.R.; Chan, B.P.; Talbot, E.A.; Nassif, J.; Bean, C.; Cavallo, S.J.; Metcalf, E.; Simone, K.; Woolf, A.D. Per- and polyfluoroalkyl substance (PFAS) exposure assessment in a community exposed to contaminated drinking water, New Hampshire, 2015. Int. J. Hyg. Environ. Health 2018, 221, 569–577. [Google Scholar] [CrossRef]
- Graber, J.M.; Alexander, C.; Laumbach, R.J.; Black, K.; Strickland, P.O.; Georgopoulos, P.G.; Marshall, E.G.; Shendell, D.G.; Alderson, D.; Mi, Z.; et al. Per and polyfluoroalkyl substances (PFAS) blood levels after contamination of a community water supply and comparison with 2013–2014 NHANES. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 172–182. [Google Scholar] [CrossRef]
- Li, Y.; Fletcher, T.; Mucs, D.; Scott, K.; Lindh, C.H.; Tallving, P.; Jakobsson, K. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup. Environ. Med. 2018, 75, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Kwok, K.Y.; Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Murphy, M.B.; Horii, Y.; Petrick, G.; Kallerborn, R.; Kannan, K.; Murano, K.; et al. Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: Implications for sources. Sci. Total. Environ. 2013, 447, 46–55. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Z.; Mi, W.; Möller, A.; Wolschke, H.; Ebinghaus, R. Neutral poly/per-fluoroalkyl substances in air from the atlantic to the southern ocean and in Antarctic snow. Environ. Sci. Technol. 2015, 49, 7770–7775. [Google Scholar] [CrossRef]
- Temkin, A.M.; Hocevar, B.A.; Andrews, D.Q.; Naidenko, O.V.; Kamendulis, L.M. Application of the key characteristics of carcinogens to per and polyfluoroalkyl substances. Int. J. Environ. Res. Public Health 2020, 17, 1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency on Cancer Research. List of Classifications by Cancer Sites with Sufficient or Limited Evidence in Humans, Volumes 1 to 114* Last updates November. 2015. Available online: http://monographs.iarc.fr/ENG/Classification/Table4.pdf (accessed on 19 March 2016).
- Peaslee, G.F.; Wilkinson, J.T.; McGuinness, S.R.; Tighe, M.; Caterisano, N.; Lee, S.; Gonzales, A.; Roddy, M.; Mills, S.; Mitchell, K. Another pathway for firefighter exposure to per- and polyfluoroalkyl substances: Firefighter textiles. Environ. Sci. Technol. Lett. 2020, 7, 594–599. [Google Scholar] [CrossRef]
- Lindstrom, A.B.; Strynar, M.J.; Libelo, E.L. Polyfluorinated compounds: Past, present, and future. Environ. Sci. Technol. 2011, 45, 7954–7961. [Google Scholar] [CrossRef] [PubMed]
- Rotander, A.; Toms, L.-M.L.; Aylward, L.; Kay, M.; Mueller, J.F. Elevated levels of PFOS and PFHxS in firefighters exposed to aqueous film forming foam (AFFF). Environ. Int. 2015, 82, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Laitinen, J.A.; Koponen, J.; Koikkalainen, J.; Kiviranta, H. Firefighters’ exposure to perfluoroalkyl acids and 2-butoxyethanol present in firefighting foams. Toxicol. Lett. 2014, 231, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Evarts, B.; Stein, G.P. US Fire Department Profile 2018; Research; National Fire Protection Association (NFPA): Quincy, MA, USA, 2020. [Google Scholar]
- Hurley, S.; Goldberg, D.; Wang, M.; Park, J.-S.; Petreas, M.; Bernstein, L.; Anton-Culver, H.; Nelson, D.O.; Reynolds, P. Time trends in per- and polyfluoroalkyl substances (PFASs) in California women: Declining serum levels, 2011–2015. Environ. Sci. Technol. 2017, 52, 277–287. [Google Scholar] [CrossRef] [PubMed]
- New Jersey Department of Community Affairs; Division of Fire Safety. Total Number of NJ Fire Department/Firefighters. Available online: https://www.nj.gov/dca/divisions/dfs/pdf/county_summary.pdf (accessed on 3 September 2020).
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H.; Riker, C.D.; Lu, S.-E.; Fan, Z. Biomonitoring of emerging contaminants, perfluoroalkyl and polyfluoroalkyl substances (PFAS), in New Jersey adults in 2016–2018. Int. J. Hyg. Environ. Health 2020, 223, 34–44. [Google Scholar] [CrossRef]
- Yu, C.H.; Patel, B.; Palencia, M.; Fan, Z. A sensitive and accurate method for the determination of perfluoroalkyl and polyfluoroalkyl substances in human serum using a high performance liquid chromatography-online solid phase extraction-tandem mass spectrometry. J. Chromatogr. A 2017, 1480, 1–10. [Google Scholar] [CrossRef] [PubMed]
- USDHHS; Centers for Disease Control and Prevention. About the National Health and Nutrition Examination Survey (NHANES). Available online: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm (accessed on 2 June 2018).
- Dobraca, D.; Israel, L.; McNeel, S.; Voss, R.; Wang, M.; Gajek, R.; Park, J.-S.; Harwani, S.; Barley, F.; She, J.; et al. Biomonitoring in California firefighters: Metals and perfluorinated chemicals. J. Occup. Environ. Med. Am. Coll. Occup. Environ. Med. 2015, 57, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.D.; Collette, T.W.; Price, P.C.; Genicola, F.A.; Jenks, J.W.; Thruston, A.D.; Ellington, J.J. Identification of drinking water contaminants in the course of a childhood cancer investigation in Toms River, New Jersey. J. Expo. Sci. Environ. Epidemiol. 1999, 9, 200–216. [Google Scholar] [CrossRef] [Green Version]
- Goodrow, S.M.; Ruppel, B.; Lippincott, R.L.; Post, G.B.; Procopio, N.A. Investigation of levels of perfluoroalkyl substances in surface water, sediment and fish tissue in New Jersey, USA. Sci. Total. Environ. 2020, 729, 138839. [Google Scholar] [CrossRef] [PubMed]
- Tittlemier, S.A.; Pepper, K.; Seymour, C.; Moisey, J.; Bronson, R.; Cao, A.X.-L.; Dabeka, R.W. Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. J. Agric. Food Chem. 2007, 55, 3203–3210. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.B. Contribution of diet and other factors to the observed levels of selected perfluoroalkyl acids in serum among US children aged 3–11 years. Environ. Res. 2018, 161, 268–275. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.-S.; et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef]
- Evarts, B.; Stein, G.P. US Fire Department Profile—2018 Supporting Tables; National Fire Protection Association (NFPA): Quincy, MA, USA, 2018. [Google Scholar]
- Fire Fighter Cancer Cohort Study. Available online: https://www.ffccs.org/ (accessed on 24 October 2020).
Demographics | n (%) | Firefighting Characteristics | n (%) |
---|---|---|---|
Age (years) | Years firefighting experience 1 | ||
18 to 34 | 43 (31.8) | 0 to 5 | 36 (26.3) |
35 to 49 | 29 (21.5) | 6 to 19 | 31 (22.6) |
50 to 59 | 27 (20.0) | 20 to 34 | 36 (26.3) |
≥60 | 36 (26.7) | ≥35 | 34 (24.8) |
Gender (male) | 128 (94.8) | Ever work as a career firefighter 2 | |
Non-Hispanic white | 123 (89.8) | Current | 9 (6.7) |
Education | Former | 15 (11.1) | |
High school graduate | 38 (28.1) | Never | 111 (82.2) |
Some college or Associates degree | 63 (46.7) | Average yearly firefighting calls responded to 3 | |
≥4-year college degree | 34 (25.2) | 0 to 4 | 42 (35.0) |
Usual occupation | 5 to 9 | 25 (20.8) | |
Construction/manufacturing | 45 (33.3) | 10 to 19 | 20 (16.7) |
Government/clerical | 28 (20.7) | ≥20 | 33 (27.5) |
Service provider | 15 (11.1) | ||
Other | 47 (34.8) |
PFAS Prevalence 1 | PFAS Serum Levels (ng/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CAPS (n = 116) | NHANES | CAPS (n = 116) | NHANES | ||||||||
2015–2016 (n = 274) | 2017–2018 (n = 272) | 2015–2016 (n = 274) | 2017–2018 (n = 272) | ||||||||
gm 2 | (95% CI) 3 | Gm 2 | (95% CI) 3 | % diff 3 | Gm 2 | (95% CI) 3 | % diff 3 | ||||
Perfluorononanoic acid (PFNA) | 100 | 98.2 | 92.1 | 0.97 | (0.89, 1.05) | 0.63 | (0.56, 0.70) | 35.1% | 0.46 | (0.42, 0.49) | 52.6% |
Perfluorohexanesulfonic acid (PFHxS) | 100 | 98.4 | 99.4 | 1.83 | (1.61, 2.09) | 1.80 | (1.55, 2.09) | 1.6% | 1.70 | (1.46, 1.97) | 7.1% |
Perfluorooctanoic acid 4 (PFOA) | 100 | 100 | 100 | 2.07 | (1.89, 2.26) | 1.94 | (1.76, 2.14) | 6.3% | 1.74 | (1.58, 1.92) | 15.9% |
Perfluorooctanesulfonic acid 4 (PFOS) | 100 | 100 | 100 | 4.25 | (3.76, 4.80) | 6.76 | (6.13, 7.47) | −59.1% | 6.08 | (5.44, 6.79) | −43.1% |
2-(N-Methyl-perfluo-rooctane sulfonamido) acetic acid (MeFOSAA) | 11.2 | 38.9 | 60.6 | 0.08 | (0.07, 0.09) | 0.13 | (0.11, 0.14) | −62.5% | 0.15 | (0.12, 0.17) | −87.5% |
Perfluorodecanoic acid (PFDA) | 99.1 | 69.6 | 89.3 | 0.31 | (0.29, 0.33) | 0.15 | (0.13, 0.17) | 51.6% | 0.19 | (0.18, 0.21) | 38.7% |
Perfluoroundecanoic acid (PFUnDA) | 46.6 | 40.8 | 65.5 | 0.11 | (0.10, 0.12) | 0.10 | (0.09, 0.11) | 9.1% | 0.12 | (0.11, 0.13) | −9.1% |
Perfluorododecanoic acid (PFDoA) | 80.1 | 2.4 | -- | 0.14 | (0.13, 0.15) | 0.07 | (0.07, 0.07) | 50.0% | Not reported |
Characteristics | PFAS Compound (n = 135) | |||||
---|---|---|---|---|---|---|
PFNA | PFDA | PFDoA | ||||
Correlation 1 | p-Value 2 | Correlation 1 | p-Value 2 | Correlation 1 | p-Value 2 | |
Age (years) | 0.22 | 0.011 | 0.42 | <0.001 | 0.21 | 0.015 |
Firefighting experience (years) | 0.22 | 0.011 | 0.44 | <0.001 | 0.30 | 0.001 |
Firefighting calls (yearly n = 120) | 0.21 | 0.023 | 0.38 | <0.001 | 0.31 | 0.001 |
Geometric mean | (95% CI) | Geometric mean | (95% CI) | Geometric mean | (95% CI) | |
Occupation | ||||||
Construction/manufacturing | 0.97 | (0.84, 1.10) | 0.31 | (0.28, 0.35) | 0.16 | (0.14, 0.18) |
Government/clerical | 1.08 | (0.92, 1.24) | 0.33 | (0.28, 0.38) | 0.15 | (0.12, 0.19) |
Service provider | 0.85 | (0.69, 1.00) | 0.32 | (0.27, 0.37) | 0.17 | (0.12, 0.21) |
Other occupation | 1.17 | (0.90, 1.44) | 0.33 | (0.30, 0.35) | 0.16 | (0.14, 0.18) |
p-value | 0.174 | 0.685 | 0.671 | |||
Education | ||||||
High school graduate | 0.96 | (0.61, 1.30) | 0.27 | (0.25, 0.30) | 0.14 | (0.12, 0.15) |
Some college/assoc. degree | 1.08 | (0.96, 1.21) | 0.35 | (0.31, 0.38) | 0.17 | (0.15, 0.19) |
≥4-year college degree | 1.08 | (0.99, 1.17) | 0.34 | (0.30, 0.37) | 0.16 | (0.15, 0.19) |
p-value | 0.001 | 0.003 | 0.297 | |||
Ever a career firefighter | ||||||
Yes, currently | 1.06 | (0.73, 1.38) | 0.28 | (0.24, 0.32) | 0.12 | (0.08, 0.15) |
Yes, formerly | 1.10 | (0.96, 1.25) | 0.35 | (0.31, 0.40) | 0.15 | (0.12, 0.17) |
Never | 1.04 | (0.90, 1.18) | 0.32 | (0.30, 0.34) | 0.16 | (0.15, 0.18) |
p-value | 0.285 | 0.111 | 0.139 |
PFNA | PFDA | PFDoA | |||||||
---|---|---|---|---|---|---|---|---|---|
eβ 1 | 95% CI | p-Value | eβ 1 | 95% CI | p-Value | eβ 1 | 95% CI | p-Value | |
Firefighting years (per 10 years) 2 | 1.02 | (0.93, 1.11) | 0.729 | 1.08 | (1.01, 1.15) | 0.021 | 1.19 | (1.09, 1.30) | <0.0001 |
Career firefighter (ref = Current) | |||||||||
Former | 0.91 | (0.62, 1.34) | 0.642 | 0.98 | (0.74, 1.28) | 0.857 | 0.98 | (0.67, 1.45) | 0.930 |
Never | 0.93 | (0.69, 1.26) | 0.650 | 1.10 | (0.89, 1.37) | 0.377 | 1.42 | (1.04, 1.93) | 0.026 |
Age (continuous) | 1.01 | (1.00, 1.01) | 0.191 | 1.00 | (1.00, 1.01) | 0.359 | 0.99 | (0.99, 1.00) | 0.120 |
Education (ref = High school graduate) | |||||||||
Some college/assoc. | 1.21 | (1.02, 1.45) | 0.033 | 1.22 | (1.08, 1.39) | 0.002 | 1.19 | (1.00, 1.43) | 0.055 |
>4-year college degree | 1.29 | (1.05, 1.58) | 0.017 | 1.23 | (1.06, 1.43) | 0.006 | 1.15 | (0.93, 1.42) | 0.190 |
Occupation (ref = Service provider) | |||||||||
Construction/manufacturing | 1.02 | (0.79, 1.32) | 0.883 | 0.85 | (0.70, 1.02) | 0.077 | 0.85 | (0.66, 1.11) | 0.235 |
Government/clerical | 1.11 | (0.84, 1.47) | 0.460 | 0.86 | (0.71, 1.06) | 0.156 | 0.74 | (0.56, 0.99) | 0.041 |
Other | 1.21 | (0.94, 1.56) | 0.135 | 0.99 | (0.83, 1.19) | 0.918 | 0.97 | (0.75, 1.25) | 0.827 |
Characteristic | PFAS Compound | ||||||||
---|---|---|---|---|---|---|---|---|---|
PFNA | PFDA | PFDoA | |||||||
eβ | 95% CI | p-Value | eβ | 95% CI | p-Value | eβ | 95% CI | p-Value | |
Firefighting years (per 10 years) | 1.00 | (0.91, 1.11) | 0.954 | 1.06 | (0.98, 1.15) | 0.151 | 1.17 | (1.04, 1.31) | 0.008 |
Firefighting calls/year | 1.00 | (0.99, 1.01) | 0.701 | 1.00 | (1.00, 1.01) | 0.403 | 1.00 | (1.00, 1.01) | 0.287 |
Age (continuous) | 1.00 | (1.00, 1.01) | 0.375 | 1.00 | (1.00, 1.01) | 0.481 | 0.99 | (0.98, 1.00) | 0.219 |
Education (ref = High school graduate) | |||||||||
Some college/assoc. | 1.20 | (0.98, 1.47) | 0.074 | 1.23 | (1.04, 1.45) | 0.013 | 1.16 | (0.93, 1.45) | 0.193 |
>4-year college degree | 1.28 | (1.02, 1.61) | 0.035 | 1.23 | (1.03, 1.48) | 0.026 | 1.12 | (0.87, 1.44) | 0.374 |
Occupation (ref = Service provider) | |||||||||
Construction/manufacturing | 1.08 | (0.80, 1.45) | 0.614 | 0.89 | (0.70, 1.12) | 0.314 | 1.01 | (0.72, 1.40) | 0.969 |
Government/clerical | 1.19 | (0.86, 1.65) | 0.289 | 0.92 | (0.71, 1.19) | 0.513 | 0.92 | (0.64, 1.32) | 0.651 |
Other | 1.22 | (0.91, 1.66) | 0.185 | 1.03 | (0.80, 1.31) | 0.836 | 1.11 | (0.79, 1.55) | 0.545 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graber, J.M.; Black, T.M.; Shah, N.N.; Caban-Martinez, A.J.; Lu, S.-e.; Brancard, T.; Yu, C.H.; Turyk, M.E.; Black, K.; Steinberg, M.B.; et al. Prevalence and Predictors of Per- and Polyfluoroalkyl Substances (PFAS) Serum Levels among Members of a Suburban US Volunteer Fire Department. Int. J. Environ. Res. Public Health 2021, 18, 3730. https://doi.org/10.3390/ijerph18073730
Graber JM, Black TM, Shah NN, Caban-Martinez AJ, Lu S-e, Brancard T, Yu CH, Turyk ME, Black K, Steinberg MB, et al. Prevalence and Predictors of Per- and Polyfluoroalkyl Substances (PFAS) Serum Levels among Members of a Suburban US Volunteer Fire Department. International Journal of Environmental Research and Public Health. 2021; 18(7):3730. https://doi.org/10.3390/ijerph18073730
Chicago/Turabian StyleGraber, Judith M., Taylor M. Black, Nimit N. Shah, Alberto J. Caban-Martinez, Shou-en Lu, Troy Brancard, Chang Ho Yu, Mary E. Turyk, Kathleen Black, Michael B. Steinberg, and et al. 2021. "Prevalence and Predictors of Per- and Polyfluoroalkyl Substances (PFAS) Serum Levels among Members of a Suburban US Volunteer Fire Department" International Journal of Environmental Research and Public Health 18, no. 7: 3730. https://doi.org/10.3390/ijerph18073730
APA StyleGraber, J. M., Black, T. M., Shah, N. N., Caban-Martinez, A. J., Lu, S. -e., Brancard, T., Yu, C. H., Turyk, M. E., Black, K., Steinberg, M. B., Fan, Z., & Burgess, J. L. (2021). Prevalence and Predictors of Per- and Polyfluoroalkyl Substances (PFAS) Serum Levels among Members of a Suburban US Volunteer Fire Department. International Journal of Environmental Research and Public Health, 18(7), 3730. https://doi.org/10.3390/ijerph18073730