The Combined Effect of Neuromuscular Electrical Stimulation and Insulin Therapy on Glycated Hemoglobin Concentrations, Lipid Profiles and Hemodynamic Parameters in Patients with Type-2-Diabetes and Hemiplegia Related to Ischemic Stroke: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting and Participants
2.3. Interventions
2.4. Measures
3. Outcomes
3.1. Primary Outcomes
3.2. Secondary Outcomes
4. Statistical Analysis
5. Results
5.1. Primary Outcome
5.2. Secondary Outcome
6. Discussion
6.1. Statement and Principal Findings
6.2. Strengths and Limitations.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sarria-Santamera, A.; Orazumbekova, B.; Maulenkul, T.; Gaipov, A.; Atageldiyeva, K. The Identification of Diabetes Mellitus Subtypes Applying Cluster Analysis Techniques: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 9523. [Google Scholar] [CrossRef]
- Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; Stampfer, M.; et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A Collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef] [Green Version]
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef]
- Bommer, C.; Heesemann, E.; Sagalova, V.; Manne-Goehler, J.; Atun, R.; Bärnighausen, T.; Vollmer, S. The global economic burden of diabetes in adults aged 20–79 years: A cost-of-illness study. Lancet Diabetes Endocrinol. 2017, 5, 423–430. [Google Scholar] [CrossRef]
- Assoc, A.D. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2009, 32, S62–S67. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020; Centers for Disease Control and Prevention, U.S. Dept. of Health and Human Services: Atlanta, GA, USA, 2020.
- Alberti, G.; Zimmet, P.; Shaw, J.; Bloomgarden, Z.; Kaufman, F.; Silink, M.; Consensus Workshop Group. Type 2 diabetes in the young: The evolving epidemic: The international diabetes federation consensus workshop. Diabetes Care 2004, 27, 1798–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, P.S.; Brown, B.; Qureshi, A. Age at diagnosis of diabetes in a secondary care population: 1992–2005. Br. J. Diabetes Vasc. Dis. 2008, 8, 92–95. [Google Scholar] [CrossRef]
- Piko, P.; Werissa, N.A.; Fiatal, S.; Sandor, J.; Adany, R. Impact of Genetic Factors on the Age of Onset for Type 2 Diabetes Mellitus in Addition to the Conventional Risk Factors. J. Pers. Med. 2021, 11, 6. [Google Scholar] [CrossRef]
- Nwaneri, C.; Cooper, H.; Bowen-Jones, D. Mortality in type 2 diabetes mellitus: Magnitude of the evidence from a systematic review and meta-analysis. Br. J. Diabetes Vasc. Dis. 2013, 13, 192–207. [Google Scholar] [CrossRef]
- Group IDFDA Update of mortality attributable to diabetes for the IDF Diabetes Atlas: Estimates for the year 2013. Diabetes Res. Clin. Pract. 2015, 109, 461–465. [CrossRef]
- Rawshani, A.; Rawshani, A.; Franzén, S.; Sattar, N.; Eliasson, B.; Svensson, A.M.; Gudbjörnsdottir, S. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2018, 379, 633–644. [Google Scholar] [CrossRef]
- Hardin, D.S.; Rohwer, R.D.; Curtis, B.H.; Zagar, A.; Chen, L.; Boye, K.S.; Lipkovich, I.A. Understanding heterogeneity in response to antidiabetes treatment: A post hoc analysis using SIDES, a subgroup identification algorithm. J. Diabetes Sci. Technol. 2013, 7, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-J.; Chua, S.; Chung, S.-Y.; Hang, C.-I.; Tsai, T.-H. Diabetes Mellitus: An Independent Risk Factor of In-Hospital Mortality in Patients with Infective Endocarditis in a New Era of Clinical Practice. Int. J. Environ. Res. Public Health 2019, 16, 2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGavock, J.; Sellers, E.; Dean, H. Physical activity for the prevention and management of youth-onset type 2 diabetes mellitus: Focus on cardiovascular complications. Diabetes Vasc. Dis. Res. 2007, 4, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Wareham, N.J. Epidemiological studies of physical activity and diabetes risk, and implication for diabetes prevention. Appl. Physiol. Nutr. Metab. 2007, 32, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Gulve, E. Exercise and glycemic control in diabetes: Benefits, challenges, and adjustments to pharmacotherapy. Phys. Ther. 2008, 88, 1297–1321. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chuang, L.; Wu, Y. Clinical measures of physical fitness predict insulin resistance in people a risk for diabetes. Phys. Ther. 2008, 88, 1355–1364. [Google Scholar] [CrossRef]
- Strasser, B.; Siebert, U.; Schobersberger, W. Resistance training in the treatment of the metabolic syndrome. Sports Med. 2001, 40, 397–415. [Google Scholar] [CrossRef]
- Wall, B.T.; Dirks, M.L.; Verdijk, L.B.; Snijders, T.; Hansen, D.; Vranckx, P.; Burd, N.A.; Dendale, P.; van Loon, L.J. Neuromuscular electrical stimulation increases muscle protein synthesis in elderly type 2 diabetic men. Am. J. Physiol. Endocrino Metab. 2012, 303, E614–E623. [Google Scholar] [CrossRef]
- Joubert, M.; Metayer, L.; Prevost, G.; Morera, J.; Rod, A.; Cailleux, A.; Parienti, J.J.; Reznik, Y. Neuromuscular electrostimulation and insulin sensitivity in patients with type 2 diabetes: The ELECTRODIAB pilot study. Acta Diabetol. 2015, 52, 285–291. [Google Scholar] [CrossRef]
- Jabbour, G.; Belliveau, L.; Probizanski, D.; Newhouse, I.; McAuliffe, J.; Jakobi, J.; Johnson, M. Effect of Low Frequency Neuromuscular Electrical Stimulation on Glucose Profile of Persons with Type 2 Diabetes: A Pilot Study. Diabetes Metab. J. 2015, 39, 264–267. [Google Scholar] [CrossRef] [Green Version]
- Sinacore, D.R.; Delitto, A.; King, D.S.; Rose, S.J. Type II fiber activation with electrical stimulation: A preliminary report. Phys. Ther. 1990, 70, 416–422. [Google Scholar] [CrossRef]
- Crowe, L.; Caulfield, B. Aerobic neuromuscular electrical stimulation—An emerging technology to improve hemoglobin A1c in type 2 diabetes mellitus: Results of pilot study. BMJ Open 2012, 2, e000219. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Iwakura, T.; Matsuoka, N.; Iwamoto, M.; Takenaka, M.; Akamatsu, Y.; Moritani, T. Impact of prolonged neuromuscular electrical stimulation on metabolic profile and cognition-related blood parameters in type 2 diabetes: A randomized controlled cross-over trial. Diabetes Res. Clin. Pract. 2018, 142, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Kucio, C.; Stastny, P.; Leszczynska-Bolewska, B.; Engelmann, M.; Kucio, E.; Uhlir, P.; Stania, M.; Polak, A. Exercise-Based Cardiac Rehabilitation with and without Neuromuscular Electrical Stimulation and its Effect on Exercise Tolerance and Life Quality of Persons with Chronic Heart Failure. J. Hum. Kinet. 2018, 65, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Quittan, M.; Wiesinger, G.F.; Sturm, B.; Puig, S.; Mayr, S.; Sochor, A.; Paternostro, T.; Resch, K.L.; Pacher, R.; Fialka-Moser, V. Improvement of thigh muscles by neuromuscular electrical stimulation in patients with refractory heart failure: A single-blind, randomized, controlled trial. Am. J. Phys. Med. Rehabil. 2001, 80, 206–214. [Google Scholar] [CrossRef]
- Harris, S.; LeMaitre, J.P.; Mackenzie, G.; Fox, K.A.A.; Denvir, M.A. A randomised study of home-based electrical stimulation of the legs and conventional bicycle exercise training for patients with chronic heart failure. Eur. Heart J. 2003, 24, 871–878. [Google Scholar] [CrossRef] [Green Version]
- Nuhr, M.J.; Pette, D.; Berger, R.; Quittan, M.; Crevenna, R.; Huelsman, M.; Wiesinger, G.F.; Moser, P.; Fialka-Moser, V.; Pacher, R. Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure. Eur. Heart J. 2004, 25, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karavidas, A.I.; Raisakis, K.G.; Parissis, J.T.; Tsekoura, D.K.; Adamopoulos, S.; Korres, D.A.; Farmakis, D.; Zacharoulis, A.; Fotiadis, I.; Matsakas, E.; et al. Functional electrical stimulation improves endothelial function and reduces peripheral immune responses in patients with chronic heart failure. Eur. J. Cardiovasc. Prev. Rehabil. 2006, 13, 592–597. [Google Scholar] [CrossRef]
- Dobsák, P.; Nováková, M.; Fiser, B.; Siegelová, J.; Balcárková, P.; Spinarová, L.; Vítovec, J.; Minami, N.; Nagasaka, M.; Kohzuki, M.; et al. Electrical stimulation of skeletal muscles. An alternative to aerobic exercise training in patients with chronic heart failure? Int. Heart J. 2006, 47, 441–453. [Google Scholar] [CrossRef] [Green Version]
- Karavidas, A.; Parissis, J.; Arapi, S.; Farmakis, D.; Korres, D.; Nikolaou, M.; Fotiadis, J.; Potamitis, N.; Driva, X.; Paraskevaidis, I.; et al. Effects of functional electrical stimulation on quality of life and emotional stress in patients with chronic heart failure secondary to ischaemic or idiopathic dilated cardiomyopathy: A randomised, placebo-controlled trial. Eur. J. Heart Fail. 2008, 10, 709–713. [Google Scholar] [CrossRef] [Green Version]
- Parissis, J.; Karavidas, A.; Farmakis, D.; Papoutsidakis, N.; Matzaraki, V.; Arapi, S.; Potamitis, N.; Nikolaou, M.; Paraskevaidis, I.; Ikonomidis, I.; et al. Efficacy and safety of functional electrical stimulation of lower limb muscles in elderly patients with chronic heart failure: A pilot study. Eur. J. Prev. Cardiol. 2015, 22, 831–836. [Google Scholar] [CrossRef]
- Soska, V.; Dobsak, P.; Pohanka, M.; Spinarova, L.; Vitovec, J.; Krejci, J.; Hude, P.; Homolka, P.; Novakova, M.; Eicher, J.C.; et al. Exercise training combined with electromyostimulation in the rehabilitation of patients with chronic heart failure: A randomized trial. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2014, 158, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadoglou, N.P.; Mandila, C.; Karavidas, A.; Farmakis, D.; Matzaraki, V.; Varounis, C.; Arapi, S.; Perpinia, A.; Parissis, J. Effect of functional electrical stimulation on cardiovascular outcomes in patients with chronic heart failure. Eur. J. Prev. Cardiol. 2017, 24, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Forestieri, P.; Bolzan, D.W.; Santos, V.B.; Moreira, R.S.L.; de Almeida, D.R.; Trimer, R.; de Souza Brito, F.; Borghi-Silva, A.; de Camargo Carvalho, A.C.; Arena, R.; et al. Neuromuscular electrical stimulation improves exercise tolerance in patients with advanced heart failure on continuous intravenous inotropic support use-randomized controlled trial. Clin. Rehabil. 2018, 32, 66–74. [Google Scholar] [CrossRef]
- Poltavskaya, M.G.; Sviridenko, V.P.; Kozlovskaya, I.B.; Brand, A.V.; Andreev, D.A.; Patchenskaya, I.V.; Koryak, Y.A.; Tomilovskaya, E.S.; Saenko, I.V.; Giverts, I.Y.; et al. Comparison of the efficacy of neuromuscular electrostimulation and interval exercise training in early rehabilitation of patients hospitalized with decompensation of chronic heart failure. Hum. Physiol. 2018, 44, 663–672. [Google Scholar] [CrossRef]
- Kucio, C.; Niesporek, J.; Kucio, E.; Narloch, D.; Węgrzyn, B. Evaluation of the effects of neuromuscular electrical stimulation of the lower limbs combined with pulmonary rehabilitation on exercise tolerance in patients with chronic obstructive pulmonary disease. J. Hum. Kinet. 2016, 54, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorgey, A.; Mather, K.; Cupp, H.; Gater, D.R. Effects of resistance training on adiposity and metabolism after spinal cord injury. Med. Sci. Sports Exerc. 2012, 44, 165–174. [Google Scholar] [CrossRef] [PubMed]
Concomitant Conditions | No. of Persons | Pharmacological Treatment | No. of Persons |
---|---|---|---|
Overweight | 7 | Beta adrenolytic drugs | 13 |
Obesity | 5 | Angiotensin converting enzyme inhibitors | 13 |
Generalized atherosclerosis | 13 | Calcium channel blockers | 9 |
Arterial hypertension | 15 | Diuretics | 11 |
Coronary disease | 8 | Nootropics | 2 |
Secondary cardiomyopathy | 3 | AT1 receptor blockers | 12 |
Trivial mitral and tricuspid regurgitation | 3 | Antithrombotic drugs | 14 |
Post-infarction condition | 2 | Antihyperlipidemic agents | 3 |
Variable | NMES Group (n = 15) Mean ± SD |
---|---|
Gender: women/men | 4/11 |
Age [years] | 69.2 ± 7.76 |
BMI [kg/m2] | 28.2 ± 2.98 |
Median duration of diabetes [years] | 15.8 ± 4.57 |
Variable | NMES Group (n = 15) | Level of Significance (p) | |
---|---|---|---|
Baseline | Post-Intervention | ||
Mean ± SD | |||
HbA1C [%] | 7.6 ± 1.28 | 7.2 ± 1.46 | p = 0.0033 |
Total cholesterol [mg%] | 192.7 ± 53.02 | 180.6 ± 53.91 | p = 0.0327 |
LDL [mg%] | 110.1 ± 44.70 | 98.5 ± 40.33 | p = 0.0011 |
HDL [mg%] | 52.1 ± 12.67 | 50.6 ± 9.98 | p = 0.5188 |
TG [mg%] | 148.6 ± 62.79 | 142.3 ± 77.15 | p = 0.8202 |
Body mass [kg] | 83.8 ± 11.6 | 83.6 ± 12.3 | p = 0.9716 |
BMI [kg/m2] | 27.7 ± 4.4 | 27.5 ± 4.6 | p = 0.8416 |
Variable | NMES Group (n = 15) | Level of Significance (p) | |
---|---|---|---|
Pre-Treatment | Post-Treatment | ||
Mean (SD) | |||
BPs [mmHg] | 148.3 ± 18.58 | 137.2 ± 22.70 | p = 0.0231 |
BPd [mmHg] | 80.5 ± 7.20 | 73.4 ± 11.90 | p = 0.0231 |
MAP [mmHg] | 106.1 ± 17.69 | 101.6 ± 15.49 | p = 0.0995 |
LVEF [%] | 60.6 ± 6.99 | 61.1 ± 7.73 | p = 0.5541 |
LVESD [mm] | 28.5 ± 4.34 | 29.2 ± 5.28 | p = 0.0579 |
LVEDD [mm] | 48.5 ± 4.56 | 50.5 ± 3.98 | p = 0.0555 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubinowicz-Zasada, M.; Kucio, E.; Polak, A.; Stastny, P.; Wierzbicki, K.; Król, P.; Kucio, C. The Combined Effect of Neuromuscular Electrical Stimulation and Insulin Therapy on Glycated Hemoglobin Concentrations, Lipid Profiles and Hemodynamic Parameters in Patients with Type-2-Diabetes and Hemiplegia Related to Ischemic Stroke: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 3433. https://doi.org/10.3390/ijerph18073433
Rubinowicz-Zasada M, Kucio E, Polak A, Stastny P, Wierzbicki K, Król P, Kucio C. The Combined Effect of Neuromuscular Electrical Stimulation and Insulin Therapy on Glycated Hemoglobin Concentrations, Lipid Profiles and Hemodynamic Parameters in Patients with Type-2-Diabetes and Hemiplegia Related to Ischemic Stroke: A Pilot Study. International Journal of Environmental Research and Public Health. 2021; 18(7):3433. https://doi.org/10.3390/ijerph18073433
Chicago/Turabian StyleRubinowicz-Zasada, Maja, Ewa Kucio, Anna Polak, Petr Stastny, Krzysztof Wierzbicki, Piotr Król, and Cezary Kucio. 2021. "The Combined Effect of Neuromuscular Electrical Stimulation and Insulin Therapy on Glycated Hemoglobin Concentrations, Lipid Profiles and Hemodynamic Parameters in Patients with Type-2-Diabetes and Hemiplegia Related to Ischemic Stroke: A Pilot Study" International Journal of Environmental Research and Public Health 18, no. 7: 3433. https://doi.org/10.3390/ijerph18073433
APA StyleRubinowicz-Zasada, M., Kucio, E., Polak, A., Stastny, P., Wierzbicki, K., Król, P., & Kucio, C. (2021). The Combined Effect of Neuromuscular Electrical Stimulation and Insulin Therapy on Glycated Hemoglobin Concentrations, Lipid Profiles and Hemodynamic Parameters in Patients with Type-2-Diabetes and Hemiplegia Related to Ischemic Stroke: A Pilot Study. International Journal of Environmental Research and Public Health, 18(7), 3433. https://doi.org/10.3390/ijerph18073433