Comparing Methods to Impute Missing Daily Ground-Level PM10 Concentrations between 2010–2017 in South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Monitoring Sites
2.3. Quality Check and Data Management
2.4. Temporal Parameters
2.5. Spatial Parameters
2.6. Random Forest Model
- Randomly resample the data with replacement to create training and validation sets of same sample size as the original dataset.
- Repeatedly construct regression trees on the training sets and predict on the validation sets.
- At each trees node, the best predictors from the random subsets of predictors were subsequently used to partition the nodes of respective trees.
- The final estimate of PM10 is the average of individual trees of PM10 predictions in a process called bagging.
2.7. Model Validation
2.8. Error Metrics
3. Results
3.1. National Model
3.2. Provincial Model
3.3. Site-Specific Models
3.4. Models Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Amegah, A.K.; Agyei-Mensah, S. Urban air pollution in Sub-Saharan Africa: Time for action. Environ. Pollut. 2017, 220, 738–743. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Ipinmoroti, M.O.; Chirenje, T. Environmental pollution in Africa. Environ. Dev. Sustain. 2018, 20, 41–73. [Google Scholar] [CrossRef]
- Pope, C.A., III. Epidemiological basis for particulate air pollution health standards. Aerosol Sci. Technol. 2000, 32, 4–14. [Google Scholar] [CrossRef]
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Khumalo, T.J. 2017 State of Air Report and National Air Quality Indicator; Department of Environmental Affairs: Pretoria, South Africa, 2017. [Google Scholar]
- Department of Environmental Affairs. 2nd South Africa Environment Outlook; Department of Environmental Affairs: Pretoria, South Africa, 2016. [Google Scholar]
- Scott, G.M. Development of a Methodology for the Delineation of Air Quality Management Areas in South Africa. Ph.D. Thesis, University of KwaZulu-Natal, Westville, South Africa, 2010. [Google Scholar]
- Garland, R.M.; Naidoo, M.; Sibiya, B.A.; Oosthuizen, R. Air quality indicators from the Environmental Performance Index: Potential use and limitations in South Africa. Clean Air J. 2017, 27, 33–41. [Google Scholar] [CrossRef]
- Feig, G.; Garland, R.M.; Naidoo, S.; Maluleke, A.; Van der Merwe, M. Assessment of changes in concentrations of selected criteria pollutants in the Vaal and Highveld priority areas. Clean Air J. 2019, 29. [Google Scholar] [CrossRef]
- Feig, G.T.; Naidoo, S.; Ncgukana, N. Assessment of ambient air pollution in the Waterberg Priority Area 2012–2015. Clean Air J. 2016, 26, 21–28. [Google Scholar] [CrossRef]
- Venter, A.D.; Vakkari, V.; Beukes, J.P.; Van Zyl, P.G.; Laakso, H.; Mabaso, D.; Tiitta, P.; Josipovic, M.; Kulmala, M.; Pienaar, J.J.; et al. An air quality assessment in the industrialised western Bushveld Igneous Complex, South Africa. S. Afr. J. Sci. 2012, 108, 1–10. [Google Scholar] [CrossRef]
- Olaniyan, T.; Jeebhay, M.; Röösli, M.; Naidoo, R.N.; Künzli, N.; de Hoogh, K.; Saucy, A.; Badpa, M.; Baatjies, R.; Parker, B.; et al. The association between ambient NO2 and PM2.5 with the respiratory health of school children residing in informal settlements: A prospective cohort study. Environ. Res. 2020, 186, 109606. [Google Scholar] [CrossRef]
- Junger, W.; De Leon, A.P. Imputation of missing data in time series for air pollutants. Atmos. Environ. 2015, 102, 96–104. [Google Scholar] [CrossRef]
- Gómez-Carracedo, M.P.; Andrade, J.M.; López-Mahía, P.; Muniategui, S.; Prada, D. A practical comparison of single and multiple imputation methods to handle complex missing data in air quality datasets. Chemometr. Intell. Lab. Syst. 2014, 134, 23–33. [Google Scholar] [CrossRef]
- De Hoogh, K.; Héritier, H.; Stafoggia, M.; Künzli, N.; Kloog, I. Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland. Environ. Pollut. 2018, 233, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Madhipatla, K.K.; Guttikunda, S.; Kloog, I.; Prabhakaran, D.; Schwartz, J.D.; Geo Health Hub India Team. Ensemble averaging based assessment of spatiotemporal variations in ambient PM2.5 concentrations over Delhi, India, during 2010–2016. Atmos. Environ. 2020, 224, 117309. [Google Scholar] [CrossRef]
- The Law Library of Congress. Regulation of Air Pollution; Global Legal Research Center: Washington, DC, USA, 2018. [Google Scholar]
- Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; De Hoogh, K.; De’Donato, F.; Gariazzo, C.; Lyapustin, A.; Michelozzi, P.; Renzi, M.; et al. Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environ. Int. 2019, 124, 170–179. [Google Scholar] [CrossRef]
- Stafoggia, M.; Johansson, C.; Glantz, P.; Renzi, M.; Shtein, A.; Hoogh, K.D.; Kloog, I.; Davoli, M.; Michelozzi, P.; Bellander, T. A Random Forest Approach to Estimate Daily Particulate Matter, Nitrogen Dioxide, and Ozone at Fine Spatial Resolution in Sweden. Atmosphere 2020, 11, 239. [Google Scholar] [CrossRef]
- Goldberg, D.L.; Gupta, P.; Wang, K.; Jena, C.; Zhang, Y.; Lu, Z.; Streets, D.G. Using gap-filled MAIAC AOD and WRF-Chem to estimate daily PM2.5 concentrations at 1 km resolution in the Eastern United States. Atmos. Environ. 2019, 199, 443–452. [Google Scholar] [CrossRef]
- Wong, D.W.; Yuan, L.; Perlin, S.A. Comparison of spatial interpolation methods for the estimation of air quality data. J. Expo. Sci. Environ. Epidemiol. 2004, 14, 404–415. [Google Scholar] [CrossRef]
- Li, H.Z.; Gu, P.; Ye, Q.; Zimmerman, N.; Robinson, E.S.; Subramanian, R.; Apte, J.S.; Robinson, A.L.; Presto, A.A. Spatially dense air pollutant sampling: Implications of spatial variability on the representativeness of stationary air pollutant monitors. Atmos. Environ. X 2019, 2, 100012. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; Volume 26. [Google Scholar]
- Wright, M.N. Random Forests: The First-Choice Method for Every Data Analysis? Leibniz Institute for Prevention Research & Epidemiology: Bremen, Germany, 2019; [delivered 28 September 2019]. [Google Scholar]
- Freeman, E.A.; Moisen, G.G.; Coulston, J.W.; Wilson, B.T. Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance. Can. J. For. Res. 2016, 46, 323–339. [Google Scholar] [CrossRef]
- Meyer, H.; Reudenbach, C.; Hengl, T.; Katurji, M.; Nauss, T. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ. Model. Softw. 2018, 101, 1–9. [Google Scholar] [CrossRef]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; Dons, E.; de Nazelle, A.; et al. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project. Environ. Sci. Technol. 2012, 46, 11195–11205. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Beelen, R.; Basagana, X.; Becker, T.; Cesaroni, G.; de Hoogh, K.; Dedele, A.; Declercq, C.; Dimakopoulou, K.; Eeftens, M.; et al. Evaluation of land use regression models for NO2 and particulate matter in 20 European study areas: The ESCAPE project. Environ. Sci. Technol. 2013, 47, 4357–4364. [Google Scholar] [CrossRef]
Variable | Description | Source | Resolution |
---|---|---|---|
Population density | Mean population within 1 × 1 km2 grid cell | SEDAC | ~1 km |
Landcover | South Africa National Land Cover 2018 densities (summary of meters within the grid cells by land cover categories of Natural, Built-up, Residential, Agricultural, Industrial) | South Africa Department of Environmental Affairs. | 20 m |
Light at night | 1 × 1 km2 Intersected aggregate | VIIRS-DNB | 750 m |
Impervious Surface | 1 × 1 km2 Intersected aggregate after removing no data, clouds, shadows data | NOAA | 30 m |
Elevation | 1 × 1 km2 intersected aggregate of mean elevation | SRTM Digital Elevation Database | 90 m |
Roads | Summary of road length distance to nearest road type: major roads and other roads | OpenStreetMap | Lines |
Climate zones | Cold interior, Temperate interior, Hot interior, Temperate coastal, Sub-tropical coastal, Arid interior | South Africa Bureau of Standards 2005 | 6 Zones |
Meteorological variables (daily modelled planetary boundary layer height, temperature, precipitation, wind speed, wind direction, relative humidity, vertical velocity | Daily global ECMWF re-analysis estimates | ERA5-reanalysis | 10 × 10 km |
Modeled Tropospheric estimates of NO2, PM10, O3 | Daily Chemical transport model estimate | Chemical transport model Copernicus Atmosphere Monitoring Service (CAMS) | 10 × 10 km |
Model Building | Spatial LOLO CV | Temporal LTO CV | Data Availability | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 (Range) | RMSE (Range) | MAE (Range) | R2 (Range) | RMSE (Range) | MAE (Range) | R2 (Range) | RMSE (Range) | MAE (Range) | No of Unique Sites | Years | |
National | 0.77–0.79 | 12.1–16.76 | 8.69–11.38 | 0.11–0.35 | 17.72–29.47 | 13.62–23.65 | 0.77–0.79 | 12.31–16.43 | 8.85–11.39 | 20–44 | 2010–2017 |
Provincial * | |||||||||||
Mpumalanga | 0.73–0.81 | 14.03–19.35 | 9.63–12.13 | 0.39–0.69 | 22.06–36.21 | 13.5–29.59 | 0.73–0.78 | 13.55–19.21 | 9.85–12.01 | 5–17 * | 2010–2017 |
Gauteng | 0.49–0.79 | 10.34–23.36 | 9.24–16.75 | 0.26–0.52 | 19.72–34.25 | 15.69–29.42 | 0.52–0.79 | 15.11–23.43 | 9.94–16.87 | 6–18 * | 2010–2017 |
Western Cape | 0.29–0.71 | 6.74–8.73 | 5.11–6.72 | 0.35–0.54 | 7.38–11.22 | 5.76–8.86 | 0.44–0.66 | 6.66–23.29 | 5.18–17.92 | 1–11 * | 2010–2017 |
KwaZulu-Natal | 0.55–0.79 | 7.36–9.53 | 5.29–8.11 | 0.29–0.57 | 8.54–19.95 | 6.95–16.82 | 0.47–0.78 | 7.37–10.71 | 5.46–8 | 3–6 * | 2010–2017 |
Site-specific ** | |||||||||||
Beliville | 0.42–0.47 | 5.81–9.16 | 4.51–7.26 | NA | NA | NA | 0.45–0.49 | 5.67–9.02 | 4.45–7.03 | NA | 2012, 2013, 2015–2017 |
Bodibeng | 0.54–0.63 | 16.89–19.42 | 13.61–15.07 | NA | NA | NA | 0.57–0.67 | 16.36–18.91 | 13.32–14.87 | NA | 2012–2013 |
Brackenham | 0.41–0.49 | 8.06–8.95 | 6.31–7.10 | NA | NA | NA | 0.46–0.49 | 7.81–8.95 | 6.25–7.15 | NA | 2011, 2015–2017 |
Booysens | 0.45–0.67 | 22.13–22.82 | 17.99–20.77 | NA | NA | NA | 0.5–0.71 | 22.10–25.74 | 17.87–20.53 | NA | 2012,2014 |
Camden | 0.38–0.62 | 10.64–23.27 | 8.69–17.85 | NA | NA | NA | 0.39–0.65 | 10.29–22.43 | 9.61–17.15 | NA | 2013, 2015, 2017 |
CBD | 0.38–0.59 | 6.35–9.55 | 4.93–7.45 | NA | NA | NA | 0.41–0.64 | 6.28–9.23 | 4.98–7.21 | NA | 2011–2013, 2015–2017 |
City Hall | 0.45 | 10.29 | 7.69 | NA | NA | NA | 0.48 | 9.78 | 7.43 | NA | 2010 |
Elandsfontein | 0.39–0.52 | 11.72–12.49 | 9.38–9.68 | NA | NA | NA | 0.45–0.57 | 11.17–11.79 | 8.99–9.38 | NA | 2016–2017 |
Ermelo | 0.48–0.76 | 9.20–18.96 | 7.69–15.31 | NA | NA | NA | 0.51–0.77 | 9.12–19.98 | 7.54–13.89 | NA | 2010–2016 |
Etwatwa | 0.63 | 24.03 | 18.74 | NA | NA | NA | 0.69 | 23.78 | 18.56 | NA | 2012 |
Ferndale | 0.68–0.74 | 3.63–5.42 | 2.84–3.92 | NA | NA | NA | 0.65–0.77 | 3.49–5.38 | 2.76–3.88 | NA | 2010–2012 |
Foreshore | 0.32–0.49 | 5.29–9.76 | 4.1–7.22 | NA | NA | NA | 0.33–0.49 | 5.27–9.58 | 4.13–7.08 | NA | 2011–2013,2015–2017 |
Gangles | 0.48–0.74 | 11.86–13.4 | 9.22–10.11 | NA | NA | NA | 0.51–0.75 | 11.23–11.88 | 8.96–9.71 | NA | 2010, 2011, 2013,2014 |
Germiston | 0.42 | 19.65 | 14.96 | NA | NA | NA | 0.44 | 19.07 | 14.79 | NA | 2011 |
George | 0.55–0.56 | 7.09–8.41 | 5.49–6.56 | NA | NA | NA | 0.58 | 6.95–8.12 | 5.39–6.34 | NA | 2010, 2013 |
Goodwood | 0.46–0.57 | 6.77–8.78 | 5.26–8.24 | NA | NA | NA | 0.49–0.59 | 6.60–8.49 | 5.29–7.80 | NA | 2011–2012, 2014–2016 |
Grootvlei | 0.41–0.44 | 10.76–11.32 | 8.70–8.87 | NA | NA | NA | 0.42–0.49 | 10.65–11.12 | 8.63–8.82 | NA | 2011, 2013 |
Hendrina | 0.39–0.71 | 11.12–17.02 | 8.32–13.62 | NA | NA | NA | 0.43–0.74 | 11.18–16.56 | 8.36–12.96 | NA | 2010–2012,2015–2016 |
Middleburg | 0.67–0.81 | 7.81–19.25 | 6.08–14.73 | NA | NA | NA | 0.70–0.82 | 7.49–18.63 | 5.92–14.25 | NA | 2010–2016 |
Olievenhoutbosch | 0.57 | 34.23 | 27.01 | NA | NA | NA | 0.59 | 34.16 | 26.98 | NA | 2012 |
Orange Farm | 0.45–0.69 | 10.78–19.81 | 8.57–15.56 | NA | NA | NA | 0.49–0.71 | 10.23–19.49 | 8.28–15.62 | NA | 2010,2017 |
Rosslyn | 0.55–0.61 | 5.91–11.49 | 4.77–9.30 | NA | NA | NA | 0.52–0.67 | 5.86–11.05 | 4.47.8.93 | NA | 2012–2014 |
Secunda | 0.63–0.77 | 7.73–25.21 | 5.86–19.96 | NA | NA | NA | 0.67–0.77 | 7.47–24.64 | 5.75–19.7 | NA | 2010–2013 |
Witbank | 0.72–0.83 | 9.21–22.33 | 7.63–17.27 | NA | NA | NA | 0.73–0.83 | 8.79–21.87 | 7.34–16.75 | NA | 2010,2013–2016 |
Komati | 0.45–0.83 | 8.52–28.02 | 6.61–21.51 | NA | NA | NA | 0.46–0.84 | 8.29–27.11 | 6.5–20.91 | NA | 2011–2012,2014–2017 |
Leandra | 0.29–0.36 | 6.63–14 | 4.86–10.38 | NA | NA | NA | 0.35–0.4 | 6.35–13.64 | 4.81–10.31 | NA | 2011–2012 |
Newtown | 0.43 | 22.07 | 17.52 | NA | NA | NA | 0.47 | 21.68 | 17.27 | NA | 2012 |
Phola | 0.54–0.65 | 22.44–28.89 | 17.83–22.55 | NA | NA | NA | 0.57–0.65 | 22.02–28.88 | 17.48–22.72 | NA | 2013–2014,2016–2017 |
Stellenbosch | 0.35–0.56 | 6.34–7.31 | 4.85–5.67 | NA | NA | NA | 0.37–0.61 | 6.26–7.14 | 4.83–5.62 | NA | 2012–2013 |
Tableview | 0.36–0.4 | 5.63–7.04 | 4.43–5.81 | NA | NA | NA | 0.38–0.43 | 5.54–7 | 4.31–5.6 | NA | 2011–2013 |
Tembisa | 0.71 | 17.78 | 14.09 | NA | NA | NA | 0.73 | 17.35 | 13.89 | NA | 2011 |
Thokoza | 0.56 | 41.30 | 29.22 | NA | NA | NA | 0.57 | 40.25 | 28.76 | NA | 2011 |
Wallacedene | 0.47–0.51 | 5.53–11.26 | 4.28–8.9 | NA | NA | NA | 0.47–0.54 | 5.52–10.82 | 4.29–8.69 | NA | 2012, 2015–2017 |
Wattville | 0.52 | 39.10 | 29.09 | NA | NA | NA | 0.57 | 37.16 | 28.57 | NA | 2012 |
Club | 0.59–0.67 | 11.01–14.87 | 8.76–11.86 | NA | NA | NA | 0.62–0.69 | 10.7–14.88 | 8.55–11.99 | NA | 2012–2014, 2016–2017 |
Ekandustria | 0.46–0.59 | 11.14–16.83 | 8.88–13.09 | NA | NA | NA | 0.50–0.64 | 10.58–16.43 | 8.5–12.83 | NA | 2013–2014 |
Embalenhle | 0.56–0.73 | 16.48–22.18 | 11.34–14.69 | NA | NA | NA | 0.59–0.73 | 13.31–22.18 | 11.03–17.86 | NA | 2012,2014,2016–2017 |
Verkykkop | 0.44–0.49 | 6.63–9.71 | 5.53–7.88 | NA | NA | NA | 0.47–0.48 | 6.56–9.49 | 5.33–7.72 | NA | 2013,2016–2017 |
Randwater | 0.32–0.73 | 12.99–15.99 | 9.82–15.83 | NA | NA | NA | 0.36–0.75 | 12.08–15.63 | 9.57–12.19 | NA | 2013–2017 |
Esikhaweni | 0.43–0.58 | 9.07.9.45 | 7.36–7.4 | NA | NA | NA | 0.44–0.60 | 8.95–9.35 | 7.17 | NA | 2016–2017 |
Chicken Farm | 0.44 | 13.14 | 10.44 | NA | NA | NA | 0.48 | 12.71 | 10.21 | NA | 2017 |
Kwazamokuhle | 0.65 | 18.10 | 14.44 | NA | NA | NA | 0.67 | 17.10 | 13.84 | NA | 2017 |
Kriel Village | 0.62 | 17.27 | 13.55 | NA | NA | NA | 0.66 | 16.89 | 13.41 | NA | 2017 |
Bosjesspruit | 0.51 | 13.05 | 10.44 | NA | NA | NA | 0.55 | 12.58 | 10.27 | NA | 2017 |
Province | Mean | SD | Percentiles | |||||
---|---|---|---|---|---|---|---|---|
µg/m3 | µg/m3 | 5 | 25 | 50 | 75 | 95 | ||
Mpumalanga | Observed | 35.70–50.90 | 17.70–29.10 | 9.30–15.30 | 21.40–30.30 | 32.90–46.20 | 47.70–71.20 | 68.20–102.80 |
National | 34.60–48.60 | 6.30–11.10 | 23.70–34.20 | 29.20–41.10 | 34.30–47.80 | 39.50–56.80 | 45.70–66.50 | |
Provincial | 34.20–46.30 | 10.40–17.40 | 17.10–24.70 | 24.90–33.60 | 32.20–44.30 | 42.30–60.40 | 53.00–75.80 | |
Site-specific | 35.70–52.00 | 11.40–19.50 | 18.60–26.10 | 26.80–37.10 | 34.30–49.80 | 43.30–66.90 | 55.50–85.40 | |
Gauteng | Observed | 53.40–58.30 | 28.40–31.30 | 16.20–20.30 | 31.10–35.20 | 47.50–52.10 | 71.10–77.10 | 107.60–115.00 |
National | 36.30–41.60 | 10.20–12.90 | 21.30–24.40 | 27.00–31.00 | 34.80–40.70 | 44.60–52.00 | 54.00–62.40 | |
Provincial | 52.90–59.40 | 16.90–17.90 | 30.80–35.50 | 40.30–45.40 | 50.20–56.50 | 66.10–73.30 | 81.20–90.00 | |
Site-specific | 53.00–58.40 | 17.40–19.70 | 29.30–33.50 | 37.90–43.10 | 49.70–54.80 | 65.60–72.30 | 84.70–93.20 | |
Western Cape | Observed | 19.50–26.70 | 8.10–11.60 | 8.50–12.70 | 13.40–18.70 | 18.50–25.20 | 24.30–33.30 | 35.00–48.10 |
National | 31.90–49.10 | 7.10–11.20 | 22.00–35.90 | 26.00–41.00 | 29.90–46.80 | 36.60–55.40 | 45.20–71.60 | |
Provincial | 20.00–28.00 | 39.00–5.50 | 13.50–20.40 | 16.70–24.10 | 20.00–28.00 | 22.70–31.80 | 26.90–37.10 | |
Site-specific | 19.50–26.70 | 4.80–6.60 | 11.80–17.90 | 15.90–21.80 | 18.80–26.20 | 22.40–30.70 | 28.00–38.40 | |
KwaZulu-Natal | Observed | 24.20–29.80 | 11.01–14.01 | 9.50–13.50 | 15.90–20.01 | 22.10–26.60 | 30.70–37.10 | 45.70–56.60 |
National | 31.60–43.80 | 8.20–12.90 | 21.10–28.40 | 24.50–33.40 | 29.00–40.40 | 37.60–53.00 | 47.60–66.00 | |
Provincial | 23.90–32.90 | 5.20–9.50 | 15.60–21.60 | 19.20–25.90 | 22.50–31.60 | 27.10–39.40 | 35.40–49.50 | |
Site-specific | 24.20–30.50 | 6.01–10.02 | 15.30–19.70 | 19.10–23.30 | 23.00–28.30 | 28.00–36.00 | 36.00–50.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arowosegbe, O.O.; Röösli, M.; Künzli, N.; Saucy, A.; Adebayo-Ojo, T.C.; Jeebhay, M.F.; Dalvie, M.A.; de Hoogh, K. Comparing Methods to Impute Missing Daily Ground-Level PM10 Concentrations between 2010–2017 in South Africa. Int. J. Environ. Res. Public Health 2021, 18, 3374. https://doi.org/10.3390/ijerph18073374
Arowosegbe OO, Röösli M, Künzli N, Saucy A, Adebayo-Ojo TC, Jeebhay MF, Dalvie MA, de Hoogh K. Comparing Methods to Impute Missing Daily Ground-Level PM10 Concentrations between 2010–2017 in South Africa. International Journal of Environmental Research and Public Health. 2021; 18(7):3374. https://doi.org/10.3390/ijerph18073374
Chicago/Turabian StyleArowosegbe, Oluwaseyi Olalekan, Martin Röösli, Nino Künzli, Apolline Saucy, Temitope Christina Adebayo-Ojo, Mohamed F. Jeebhay, Mohammed Aqiel Dalvie, and Kees de Hoogh. 2021. "Comparing Methods to Impute Missing Daily Ground-Level PM10 Concentrations between 2010–2017 in South Africa" International Journal of Environmental Research and Public Health 18, no. 7: 3374. https://doi.org/10.3390/ijerph18073374
APA StyleArowosegbe, O. O., Röösli, M., Künzli, N., Saucy, A., Adebayo-Ojo, T. C., Jeebhay, M. F., Dalvie, M. A., & de Hoogh, K. (2021). Comparing Methods to Impute Missing Daily Ground-Level PM10 Concentrations between 2010–2017 in South Africa. International Journal of Environmental Research and Public Health, 18(7), 3374. https://doi.org/10.3390/ijerph18073374