Which PHQ-9 Items Can Effectively Screen for Suicide? Machine Learning Approaches
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Experimental Results
3.1.1. General Characteristics
3.1.2. PHQ Cutoff Scores
3.1.3. PHQ Item Combination by ML Technique
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No. | Question |
---|---|
item 1 | Little interest or pleasure in doing things |
item 2 | Feeling down, depressed, or hopeless |
item 3 | Trouble falling/staying asleep or sleeping too much |
item 4 | Feeling tired or having little energy |
item 5 | Poor appetite or overeating |
item 6 | Feeling bad about yourself—or that you are a failure or have let yourself or your family down |
item 7 | Trouble concentrating on things, such as reading the newspaper or watching television |
item 8 | Moving or speaking so slowly that other people could have noticed? Or the opposite—being so fidgety or restless that you have been moving around a lot more than usual |
item 9 | Thoughts that you would be better off dead or of hurting yourself in someway |
item 10 | If you checked off any problems, how difficult have these problems made it for you to do your work, take care of things at home, or get along with other people? |
References
- Gairin, I.; House, A.; Owens, D. Attendance at the accident and emergency department in the year before suicide: Retrospective study. Br. J. Psychiatry 2003, 183, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Luoma, J.B.; Martin, C.E.; Pearson, J.L. Contact With Mental Health and Primary Care Providers Before Suicide: A Review of the Evidence. Am. J. Psychiatry 2002, 159, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.-J.; Lee, M.-B.; Chiang, H.-C.; Liao, S.-C. The recognition of diagnosable psychiatric disorders in suicide cases’ last medical contacts. Gen. Hosp. Psychiatry 2009, 31, 181–184. [Google Scholar] [CrossRef]
- Wintersteen, M.B. Standardized Screening for Suicidal Adolescents in Primary Care. Pediatrics 2010, 125, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Recklitis, C.J.; Lockwood, R.A.; Rothwell, M.A.; Diller, L.R. Suicidal Ideation and Attempts in Adult Survivors of Childhood Cancer. J. Clin. Oncol. 2006, 24, 3852–3857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, C.M.; Hendrie, H.C.; Nienaber, N.A.; Tierney, W.M. Suicidal Ideation Among Older Primary Care Patients. J. Am. Geriatr. Soc. 1996, 44, 1205–1209. [Google Scholar] [CrossRef]
- Kim, Y.A.; Bogner, H.R.; Brown, G.K.; Gallo, J.J. Chronic medical conditions and wishes to die among older primary care patients. Int. J. Psychiatry Med. 2006, 36, 183–198. [Google Scholar] [CrossRef] [Green Version]
- Gilbody, S.; Richards, D.; Brealey, S.; Hewitt, C. Screening for Depression in Medical Settings with the Patient Health Questionnaire (PHQ): A Diagnostic Meta-Analysis. J. Gen. Intern. Med. 2007, 22, 1596–1602. [Google Scholar] [CrossRef] [Green Version]
- Valuck, R.J.; Anderson, H.O.; Libby, A.M.; Brandt, E.; Bryan, C.; Allen, R.R.; Staton, E.W.; West, D.R.; Pace, W.D. Enhancing Electronic Health Record Measurement of Depression Severity and Suicide Ideation: A Distributed Ambulatory Research in Therapeutics Network (DARTNet) Study. J. Am. Board Fam. Med. 2012, 25, 582–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittkampf, K.A.; Naeije, L.; Schene, A.H.; Huyser, J.; van Weert, H.C. Diagnostic accuracy of the mood module of the Patient Health Questionnaire: A systematic review. Gen. Hosp. Psychiatry 2007, 29, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Arroll, B.; Goodyear-Smith, F.; Crengle, S.; Gunn, J.; Kerse, N.; Fishman, T.; Falloon, K.; Hatcher, S. Validation of PHQ-2 and PHQ-9 to Screen for Major Depression in the Primary Care Population. Ann. Fam. Med. 2010, 8, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Van Steenbergen-Weijenburg, K.M.; De Vroege, L.; Ploeger, R.R.; Brals, J.W.; Vloedbeld, M.G.; Veneman, T.F.; Roijen, L.H.-V.; Rutten, F.F.J.; Beekman, A.T.F.; Van Der Feltz-Cornelis, C.M. Validation of the PHQ-9 as a screening instrument for depression in diabetes patients in specialized outpatient clinics. BMC Health Serv. Res. 2010, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.M.; Chan, Y.-F.; Huang, H.; Vannoy, S.; Unützer, J. Characteristics, Management, and Depression Outcomes of Primary Care Patients Who Endorse Thoughts of Death or Suicide on the PHQ-9. J. Gen. Intern. Med. 2012, 28, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Denneson, L.M.; Corson, K.; Helmer, D.A.; Bair, M.J.; Dobscha, S.K. Mental health utilization of new-to-care Iraq and Afghanistan Veterans following suicidal ideation assessment. Psychiatry Res. 2014, 217, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Mackelprang, J.L.; Bombardier, C.H.; Fann, J.R.; Temkin, N.R.; Barber, J.K.; Dikmen, S.S. Rates and Predictors of Suicidal Ideation During the First Year After Traumatic Brain Injury. Am. J. Public Health 2014, 104, e100–e107. [Google Scholar] [CrossRef]
- Walker, J.; Hansen, C.H.; Butcher, I.; Sharma, N.; Wall, L.; Murray, G.; Sharpe, M. Thoughts of Death and Suicide Reported by Cancer Patients Who Endorsed the “Suicidal Thoughts” Item of the PHQ-9 During Routine Screening for Depression. J. Psychosom. Res. 2011, 52, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.; Waters, R.A.; Murray, G.; Swanson, H.; Hibberd, C.J.; Rush, R.W.; Storey, D.J.; Strong, V.A.; Fallon, M.T.; Wall, L.R.; et al. Better Off Dead: Suicidal Thoughts in Cancer Patients. J. Clin. Oncol. 2008, 26, 4725–4730. [Google Scholar] [CrossRef] [PubMed]
- Yawn, B.P.; Pace, W.; Wollan, P.C.; Bertram, S.; Kurland, M.; Graham, D.; Dietrich, A. Concordance of Edinburgh Postnatal Depression Scale (EPDS) and Patient Health Questionnaire (PHQ-9) to Assess Increased Risk of Depression among Postpartum Women. J. Am. Board Fam. Med. 2009, 22, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Simon, G.E.; Rutter, C.M.; Peterson, D.; Oliver, M.; Whiteside, U.; Operskalski, B.; Ludman, E.J. Does Response on the PHQ-9 Depression Questionnaire Predict Subsequent Suicide Attempt or Suicide Death? Psychiatr. Serv. 2013, 64, 1195–1202. [Google Scholar] [CrossRef] [Green Version]
- Louzon, S.A.; Bossarte, R.; McCarthy, J.F.; Katz, I.R. Does Suicidal Ideation as Measured by the PHQ-9 Predict Suicide Among VA Patients? Psychiatr. Serv. 2016, 67, 517–522. [Google Scholar] [CrossRef]
- Britton, P.C.; Ilgen, M.A.; Rudd, M.D.; Conner, K.R. Warning signs for suicide within a week of healthcare contact in Veteran decedents. Psychiatry Res. 2012, 200, 395–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, G.K.; Beck, A.T.; Steer, R.A.; Grisham, J.R. Risk factors for suicide in psychiatric outpatients: A 20-year prospective study. J. Consult. Clin. Psychol. 2000, 68, 371–377. [Google Scholar] [CrossRef]
- Razykov, I.; Hudson, M.; Baron, M.; Thombs, B.D.; Canadian Scleroderma Research Group. Utility of the Patient Health Questionnaire-9 to Assess Suicide Risk in Patients With Systemic Sclerosis. Arthritis Rheum. 2013, 65, 753–758. [Google Scholar] [CrossRef]
- Uebelacker, L.A.; German, N.M.; Gaudiano, B.A.; Miller, I.W. Patient health questionnaire depression scale as a suicide screening instrument in depressed primary care patients: A cross-sectional study. Prim. Care Companion CNS Disord. 2011, 13, 10m01027. [Google Scholar] [CrossRef] [Green Version]
- Lichtman, J.H.; Bigger Jr, J.T.; Blumenthal, J.A.; Frasure-Smith, N.; Kaufmann, P.G.; Lespérance, F.o.; Mark, D.B.; Sheps, D.S.; Taylor, C.B.; Froelicher, E.S. Depression and coronary heart disease: Recommendations for screening, referral, and treatment: A science advisory from the American Heart Association Prevention Committee of the Council on Cardiovascular Nursing, Council on Clinical Cardiology, Council on Epidemiology and Prevention, and Interdisciplinary Council on Quality of Care and Outcomes Research: Endorsed by the American Psychiatric Association. Circulation 2008, 118, 1768–1775. [Google Scholar] [PubMed] [Green Version]
- Razykov, I.; Ziegelstein, R.C.; Whooley, M.A.; Thombs, B.D. The PHQ-9 versus the PHQ-8—Is item 9 useful for assessing suicide risk in coronary artery disease patients? Data from the Heart and Soul Study. J. Psychosom. Res. 2012, 73, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Fazel, S.; O’Reilly, L. Machine Learning for Suicide Research–Can It Improve Risk Factor Identification? JAMA Psychiatry 2020, 77, 13–14. [Google Scholar] [CrossRef]
- Gradus, J.L.; King, M.W.; Galatzer-Levy, I.; Street, A.E. Gender Differences in Machine Learning Models of Trauma and Suicidal Ideation in Veterans of the Iraq and Afghanistan Wars. J. Trauma. Stress 2017, 30, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Linthicum, K.P.; Schafer, K.M.; Ribeiro, J.D. Machine learning in suicide science: Applications and ethics. Behav. Sci. Law 2019, 37, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Yun, K.; Hwang, J.-H.; Chae, J.-H. Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales. Front. Psychiatry 2017, 8, 192. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.G.; Ribeiro, J.D.; Franklin, J.C. Predicting Risk of Suicide Attempts Over Time Through Machine Learning. Clin. Psychol. Sci. 2017, 5, 457–469. [Google Scholar] [CrossRef]
- Barak-Corren, Y.; Castro, V.M.; Javitt, S.; Hoffnagle, A.G.; Dai, Y.; Perlis, R.H.; Nock, M.K.; Smoller, J.W.; Reis, B.Y. Predicting Suicidal Behavior From Longitudinal Electronic Health Records. Am. J. Psychiatry 2017, 174, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, R.C.; Warner, C.H.; Ivany, C.; Petukhova, M.V.; Rose, S.; Bromet, E.J.; Brown, M.; Cai, T.; Colpe, L.J.; Cox, K.L. Predicting suicides after psychiatric hospitalization in US Army soldiers: The Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). J. JAMA Psychiatry 2015, 72, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, H.-K.; Kim, S.; Kim, S.H. The relationship between circadian typology and lifetime experiences of hypomanic symptoms. Psychiatry Res. 2021, 298, 113788. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59, 22–33. [Google Scholar] [PubMed]
- Yoo, S.; Kim, Y.; Noh, J.; Oh, K.; Kim, C.; Namkoong, K.; Chae, J.; Lee, G.; Jeon, S.; Min, K. Validity of Korean version of the mini-international neuropsychiatric interview. Anxiety Mood 2006, 2, 50–55. [Google Scholar]
- Hand, D.J. Principles of data mining. Drug Safety 2007, 30, 621–622. [Google Scholar] [CrossRef]
- Stork, D.G.; Duda, R.O.; Hart, P.E.; Stork, D. Pattern Classification; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- McLachlan, G.J. Discriminant Analysis and Statistical Pattern Recognition, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1992. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Zeng, N.; Wang, N. Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. In Proceedings of the NESUG proceedings: Health care and life sciences, Baltimore, MD, USA, 14–17 November 2010; Volume 19, p. 67. [Google Scholar]
- Glas, A.S.; Lijmer, J.G.; Prins, M.H.; Bonsel, G.J.; Bossuyt, P.M.M. The diagnostic odds ratio: A single indicator of test performance. J. Clin. Epidemiol. 2003, 56, 1129–1135. [Google Scholar] [CrossRef]
- Corson, K.; Gerrity, M.S.; Dobscha, S.K. Screening for depression and suicidality in a VA primary care setting: 2 items are better than 1 item. Am. J. Manag. Care 2004, 10, 839–845. [Google Scholar]
- Na, P.J.; Yaramala, S.R.; Kim, J.A.; Kim, H.; Goes, F.S.; Zandi, P.P.; Voort, J.L.V.; Sutor, B.; Croarkin, P.; Bobo, W.V. The PHQ-9 Item 9 based screening for suicide risk: A validation study of the Patient Health Questionnaire (PHQ)−9 Item 9 with the Columbia Suicide Severity Rating Scale (C-SSRS). J. Affect. Disord. 2018, 232, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ribeiro, J.D.; Musacchio, K.M.; Franklin, J.C. Demographics as predictors of suicidal thoughts and behaviors: A meta-analysis. PLoS ONE 2017, 12, e0180793. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.D.; Huang, X.; Fox, K.R.; Franklin, J.C. Depression and hopelessness as risk factors for suicide ideation, attempts and death: Meta-analysis of longitudinal studies. Br. J. Psychiatry 2018, 212, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.; Franklin, J.; Fox, K.R.; Bentley, K.; Kleiman, E.M.; Chang, B.; Nock, M.K. Self-injurious thoughts and behaviors as risk factors for future suicide ideation, attempts, and death: A meta-analysis of longitudinal studies. J. Psychol. Med. 2016, 46, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.C.; Ribeiro, J.D.; Fox, K.R.; Bentley, K.H.; Kleiman, E.M.; Huang, X.; Musacchio, K.M.; Jaroszewski, A.C.; Chang, B.P.; Nock, M.K. Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychol. Bull. 2017, 143, 187–232. [Google Scholar] [CrossRef]
- Ryu, S.; Lee, H.; Lee, D.-K.; Park, K. Use of a Machine Learning Algorithm to Predict Individuals with Suicide Ideation in the General Population. Psychiatry Investig. 2018, 15, 1030–1036. [Google Scholar] [CrossRef]
- Kachur, S.P.; Potter, L.B.; Powell, K.E.; Rosenberg, M.L. Suicide: Epidemiology, Prevention, and Treatment. Adolesc. Med. 1995, 6, 171–182. [Google Scholar]
- Horowitz, L.M.; Ballard, E.D.; Pao, M. Suicide screening in schools, primary care and emergency departments. Curr. Opin. Pediatr. 2009, 21, 620–627. [Google Scholar] [CrossRef] [Green Version]
- Gaynes, B.N.; West, S.L.; Ford, C.A.; Frame, P.; Klein, J.; Lohr, K.N. Screening for Suicide Risk in Adults: A Summary of the Evidence for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2004, 140, 822–844. [Google Scholar] [CrossRef]
- Mann, J.J.; Apter, A.; Bertolote, J.; Beautrais, A.; Currier, D.; Haas, A.; Hegerl, U.; Lonnqvist, J.; Malone, K.; Marusic, A. Suicide prevention strategies: A systematic review. JAMA 2005, 294, 2064–2074. [Google Scholar] [CrossRef] [PubMed]
Variable | Dimension | Overall (n = 8761) | Groups Based on Suicidal Ideation | X2 or t | p | |
---|---|---|---|---|---|---|
No Suicidal Ideation (n = 8019, 91.5%) | With Suicidal Ideation (n = 742, 8.5%) | |||||
sex | male | 4354 (49.7%) | 4073 (50.8%) | 278 (37.5%) | 48.61 | <0.001 |
age | 18.25 ± 8.64 | 18.25 ± 9.01 | 18.25 ± 2.41 | 0.01 | 0.996 | |
each item’s score | item1 | 0.54 ± 0.64 | 0.47 ± 0.59 | 1.25 ± 0.78 | 26.35 | <0.001 |
item2 | 0.59 ± 0.67 | 0.54 ± 0.63 | 1.16 ± 0.80 | 24.90 | <0.001 | |
item3 | 0.79 ± 0.85 | 0.75 ± 0.82 | 1.26 ± 0.98 | 13.55 | <0.001 | |
item4 | 0.63 ± 0.78 | 0.59 ± 0.75 | 1.09 ± 0.97 | 16.77 | <0.001 | |
item5 | 0.13 ± 0.42 | 0.11 ± 0.37 | 0.43 ± 0.71 | 12.17 | <0.001 | |
item6 | 0.86 ±0.79 | 0.81 ± 0.76 | 1.43 ± 0.89 | 18.19 | <0.001 | |
item7 | 0.38 ± 0.66 | 0.32 ± 0.58 | 1.09 ± 0.93 | 22.26 | <0.001 | |
item8 | 0.15 ± 0.43 | 0.12 ± 0.38 | 0.48 ± 0.74 | 13.10 | <0.001 | |
item9 | 0.03 ± 0.28 | 0.01 ± 0.12 | 0.55 ± 0.72 | 20.13 | <0.001 | |
item10 | 0.25 ± 0.51 | 0.21 ± 0.45 | 0.73 ± 0.77 | 27.61 | <0.001 | |
subtotal score | PHQ-2 | 1.12 ± 1.16 | 1.00 ± 1.06 | 2.40 ± 1.41 | 26.42 | <0.001 |
PHQ-9 | 4.12 ± 3.62 | 3.70 ± 3.17 | 8.69 ± 4.86 | 27.44 | <0.001 | |
PHQ-8 | 4.06 ± 3.50 | 3.68 ± 3.14 | 8.14 ± 4.48 | 26.51 | <0.001 | |
PHQ-10 | 4.36 ± 3.90 | 3.89 ± 3.39 | 9.40 ± 5.27 | 27.98 | <0.001 | |
MINI suicidality | total | 0.69 ± 2.86 | 0.17 ± 0.82 | 6.39 ± 7.32 | 23.16 | <0.001 |
Variable | Cutoff | Accuracy | AUC | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|---|
PHQ-2 | >1 | 0.680 | 0.786 | 77.36 (74.17–80.32) | 67.16 (66.12–68.19) | 17.90 (17.18–18.64) | 96.97 (96.56–97.34) |
PHQ-8 | >4 | 0.682 | 0.803 | 78.30 (75.16–81.22) | 67.29 (66.25–68.31) | 18.13 (17.41–18.88) | 97.10 (96.69–97.47) |
PHQ-9 | >5 | 0.761 | 0.817 | 71.56 (68.17–74.79) | 76.54 (75.60–77.46) | 22.01 (21.00–23.07) | 96.68 (96.29–97.03) |
PHQ-10 | >5 | 0.744 | 0.824 | 75.20 (71.93–78.27) | 74.31 (73.34–75.26) | 21.31 (20.40–22.26) | 97.00 (96.62–97.35) |
Variable | ML Methods | Validation Accuracy | Test Accuracy | OOB Accuracy | AUC | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|---|---|---|
PHQ-2 | KNN | 0.918 | 0.907 | n/a | 0.700 | 4.97 (2.17–9.56) | 99.43 (98.92–99.74) | 47.06 (22.98–72.19) | 91.13 (89.69–92.43) |
Linear Discriminant | n/a | 0.916 | n/a | 0.803 | 30.46 (23.24–38.47) | 97.36 (96.45–98.09) | 52.27 (41.35–63.04) | 93.65 (92.37–94.78) | |
random forest | 0.924 | 0.920 | 0.070 | 0.625 | 10.81 (6.31–16.96) | 99.56 (99.1–99.82) | 69.57 (47.08–86.79) | 92.32 (90.96–93.54) | |
PHQ-8 | KNN | 0.921 | 0.920 | n/a | 0.738 | 16.18 (10.42–23.46) | 98.43 (97.69–98.98) | 46.81 (32.11–61.92) | 93.22 (91.91–94.37) |
Linear Discriminant | n/a | 0.918 | n/a | 0.848 | 34.53 (26.68–43.06) | 96.79 (95.8–97.6) | 48.48 (38.32–58.75) | 94.41 (93.19–95.48) | |
random forest | 0.913 | 0.920 | 0.131 | 0.768 | 9.56 (5.19–15.79) | 98.62 (97.92–99.13) | 37.14 (21.47–55.08) | 92.73 (91.39–93.93) | |
PHQ-9 | KNN | 0.931 | 0.932 | n/a | 0.736 | 31.29 (23.91–39.45) | 98.99 (98.36–99.42) | 74.19 (61.5–84.47) | 93.94 (92.68–95.04) |
Linear Discriminant | n/a | 0.936 | n/a | 0.816 | 41.61 (33.91–49.64) | 98.92 (98.27–99.37) | 79.76 (69.59–87.75) | 94.28 (93.05–95.36) | |
random forest | 0.951 | 0.943 | 0.409 | 0.841 | 51.97 (43.73–60.14) | 99.11 (98.51–99.51) | 84.95 (76.03–91.52) | 95.54 (94.42–96.48) | |
PHQ-10 | KNN | 0.926 | 0.927 | n/a | 0.750 | 27.82 (20.4–36.25) | 98.51 (97.76–99.07) | 62.71 (49.15–74.96) | 93.82 (92.51–94.97) |
Linear Discriminant | n/a | 0.941 | n/a | 0.846 | 43.18 (34.59–52.08) | 98.65 (97.92–99.17) | 74.03 (62.77–83.36) | 95.12 (93.92–96.14) | |
random forest | 0.936 | 0.944 | 0.424 | 0.843 | 44.03 (35.47–52.86) | 98.99 (98.33–99.43) | 79.73 (68.78–88.19) | 95.13 (93.93–96.15) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, H.-K.; Lee, K. Which PHQ-9 Items Can Effectively Screen for Suicide? Machine Learning Approaches. Int. J. Environ. Res. Public Health 2021, 18, 3339. https://doi.org/10.3390/ijerph18073339
Kim S, Lee H-K, Lee K. Which PHQ-9 Items Can Effectively Screen for Suicide? Machine Learning Approaches. International Journal of Environmental Research and Public Health. 2021; 18(7):3339. https://doi.org/10.3390/ijerph18073339
Chicago/Turabian StyleKim, Sunhae, Hye-Kyung Lee, and Kounseok Lee. 2021. "Which PHQ-9 Items Can Effectively Screen for Suicide? Machine Learning Approaches" International Journal of Environmental Research and Public Health 18, no. 7: 3339. https://doi.org/10.3390/ijerph18073339
APA StyleKim, S., Lee, H.-K., & Lee, K. (2021). Which PHQ-9 Items Can Effectively Screen for Suicide? Machine Learning Approaches. International Journal of Environmental Research and Public Health, 18(7), 3339. https://doi.org/10.3390/ijerph18073339