Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of Pandemic Network
2.2. Pandemic Space via Latent Space Modeling
- , the distance between two countries in the pandemic space;
- , the overall effect of distance on the link probability and the associated pandemic risk;
- (with constraint ), can be interpreted as the country-specific effect of the distance on the link probability.
2.3. Estimation of Parameters
- Draw from with truncation on the non-positive values.
- Draw from .
- Draw from .
- Draw r from Dirichlet distribution with concentration parameter .
- Draw from , for , and .
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| Eastern Med. | Eastern Mediterranean |
Appendix A. Handling Missing Values
Appendix B. Identifiability of Latent Position
Appendix C. Posterior Distribution
- The joint posterior density of is
- The posterior densities of and are
- The posterior density of iswhere and are the mean and variance respectively of the normal prior.
- The joint posterior density of iswhere , for , are the concentration parameters of the Dirichlet prior.
Appendix D. Table of Countries
| Country Name | Total Number of Cases | Continent | Rank in Continent | Country-Specific Risk Factor |
|---|---|---|---|---|
| United States of America | 3,805,524 | Americas | 1 | 0.0059 |
| Brazil | 2,118,646 | Americas | 2 | 0.0062 |
| India | 1,192,915 | Asia | 1 | 0.0064 |
| Russian Federation | 789,190 | Europe | 1 | 0.0060 |
| South Africa | 381,798 | Africa | 1 | 0.0061 |
| Peru | 357,681 | Americas | 3 | 0.0060 |
| Mexico | 349,396 | Americas | 4 | 0.0061 |
| Chile | 334,683 | Americas | 5 | 0.0060 |
| The United Kingdom | 296,912 | Europe | 2 | 0.0062 |
| Iran | 278,827 | Eastern Med. | 1 | 0.0060 |
| Spain | 278,528 | Europe | 3 | 0.0059 |
| Pakistan | 267,428 | Eastern Med. | 2 | 0.0063 |
| Saudi Arabia | 255,825 | Eastern Med. | 3 | 0.0058 |
| Italy | 244,752 | Europe | 4 | 0.0060 |
| Turkey | 221,500 | Europe | 5 | 0.0061 |
| Bangladesh | 210,510 | Asia | 2 | 0.0060 |
| Colombia | 204,005 | Americas | 6 | 0.0061 |
| Germany | 202,799 | Europe | 6 | 0.0061 |
| France | 166,511 | Europe | 7 | 0.0059 |
| Argentina | 130,774 | Americas | 7 | 0.0059 |
| Canada | 111,124 | Americas | 8 | 0.0062 |
| Qatar | 107,430 | Eastern Med. | 4 | 0.0063 |
| Iraq | 97,159 | Eastern Med. | 5 | 0.0061 |
| Indonesia | 89,869 | Asia | 3 | 0.0060 |
| Egypt | 89,078 | Eastern Med. | 6 | 0.0061 |
| Kazakhstan | 76,799 | Europe | 8 | 0.0063 |
| Ecuador | 76,217 | Americas | 9 | 0.0063 |
| Sweden | 74,766 | Europe | 9 | 0.0061 |
| Philippines | 70,764 | Asia | 4 | 0.0064 |
| Oman | 69,887 | Eastern Med. | 7 | 0.0059 |
| Belarus | 66,348 | Europe | 10 | 0.0065 |
| Belgium | 65,093 | Europe | 11 | 0.0062 |
| Ukraine | 60,995 | Europe | 12 | 0.0060 |
| Bolivia | 60,991 | Americas | 10 | 0.0061 |
| Kuwait | 60,434 | Eastern Med. | 8 | 0.0063 |
| United Arab Emirates | 57,498 | Eastern Med. | 9 | 0.0057 |
| Dominican Republic | 54,797 | Americas | 11 | 0.0060 |
| Panama | 54,426 | Americas | 12 | 0.0062 |
| Israel | 52,431 | Europe | 13 | 0.0061 |
| Netherlands | 52,073 | Europe | 14 | 0.0059 |
| Portugal | 48,898 | Europe | 15 | 0.0061 |
| Singapore | 48,434 | Asia | 5 | 0.0061 |
| Poland | 40,782 | Europe | 16 | 0.0060 |
| Guatemala | 40,229 | Americas | 13 | 0.0061 |
| Romania | 39,133 | Europe | 17 | 0.0062 |
| Nigeria | 37,801 | Africa | 2 | 0.0061 |
| Bahrain | 37,316 | Eastern Med. | 10 | 0.0061 |
| Afghanistan | 35,813 | Eastern Med. | 11 | 0.0061 |
| Armenia | 35,693 | Europe | 18 | 0.0062 |
| Honduras | 34,611 | Americas | 14 | 0.0061 |
| Switzerland | 33,655 | Europe | 19 | 0.0060 |
| Kyrgyzstan | 29,359 | Europe | 20 | 0.0059 |
| Ghana | 28,989 | Africa | 3 | 0.0062 |
| Azerbaijan | 28,242 | Europe | 21 | 0.0060 |
| Japan | 26,303 | Asia | 6 | 0.0057 |
| Ireland | 25,802 | Europe | 22 | 0.0060 |
| Algeria | 24,278 | Africa | 4 | 0.0064 |
| Serbia | 21,605 | Europe | 23 | 0.0057 |
| Republic of Moldova | 21,442 | Europe | 24 | 0.0059 |
| Austria | 19,818 | Europe | 25 | 0.0058 |
| Uzbekistan | 18,171 | Europe | 26 | 0.0061 |
| Nepal | 17,994 | Asia | 7 | 0.0061 |
| Morocco | 17,742 | Eastern Med. | 12 | 0.0061 |
| Cameroon | 16,522 | Africa | 5 | 0.0060 |
| Cote d lvoire | 14,531 | Africa | 6 | 0.0063 |
| Czechia | 14,324 | Europe | 27 | 0.0062 |
| Kenya | 14,168 | Africa | 7 | 0.0061 |
| Republic of Korea | 13,879 | Asia | 8 | 0.0058 |
| Denmark | 13,302 | Europe | 28 | 0.0057 |
| Puerto Rico | 12,940 | Americas | 15 | 0.0062 |
| El Salvador | 12,582 | Americas | 16 | 0.0065 |
| Australia | 12,428 | Asia | 9 | 0.0062 |
| Venezuela | 12,334 | Americas | 17 | 0.0057 |
| Costa Rica | 11,534 | Americas | 18 | 0.0064 |
| Sudan | 11,127 | Eastern Med. | 13 | 0.0061 |
| Ethiopia | 11,072 | Africa | 8 | 0.0062 |
| North Macedonia | 9412 | Europe | 29 | 0.0061 |
| Bulgaria | 9254 | Europe | 30 | 0.0059 |
| Norway | 9038 | Europe | 31 | 0.0065 |
| Senegal | 8985 | Africa | 9 | 0.0060 |
| Malaysia | 8815 | Asia | 10 | 0.0064 |
| Bosnia and Herzegovina | 8786 | Europe | 32 | 0.0062 |
| Democratic Republic of the Congo | 8533 | Africa | 10 | 0.0063 |
| Finland | 7351 | Europe | 33 | 0.0063 |
| Guinea | 6625 | Africa | 11 | 0.0062 |
| Gabon | 6433 | Africa | 12 | 0.0064 |
| Mauritania | 5985 | Africa | 13 | 0.0064 |
| Luxembourg | 5725 | Europe | 34 | 0.0062 |
| Djibouti | 5027 | Eastern Med. | 14 | 0.0062 |
| Central African Republic | 4561 | Africa | 14 | 0.0062 |
| Croatia | 4422 | Europe | 35 | 0.0062 |
| Hungary | 4366 | Europe | 36 | 0.0060 |
| Albania | 4290 | Europe | 37 | 0.0060 |
| Greece | 4048 | Europe | 38 | 0.0062 |
| Paraguay | 3748 | Americas | 19 | 0.0060 |
| Zambia | 3326 | Africa | 15 | 0.0060 |
| Thailand | 3261 | Asia | 11 | 0.0063 |
| Somalia | 3135 | Eastern Med. | 15 | 0.0062 |
| Maldives | 3044 | Asia | 12 | 0.0060 |
| Nicaragua | 3004 | Americas | 20 | 0.0058 |
| Lebanon | 2980 | Eastern Med. | 16 | 0.0061 |
| Congo | 2851 | Africa | 16 | 0.0061 |
| Sri Lanka | 2730 | Asia | 13 | 0.0058 |
| Montenegro | 2567 | Europe | 39 | 0.0061 |
| Cuba | 2449 | Americas | 21 | 0.0059 |
| Equatorial Guinea | 2350 | Africa | 17 | 0.0063 |
| Estonia | 2022 | Europe | 40 | 0.0060 |
| Slovakia | 2021 | Europe | 41 | 0.0060 |
| Slovenia | 1977 | Europe | 42 | 0.0059 |
| Lithuania | 1949 | Europe | 43 | 0.0060 |
| Eswatini | 1894 | Africa | 18 | 0.0064 |
| Iceland | 1839 | Europe | 44 | 0.0058 |
| Benin | 1690 | Africa | 19 | 0.0061 |
| Rwanda | 1655 | Africa | 20 | 0.0061 |
| Tunisia | 1394 | Eastern Med. | 17 | 0.0061 |
| Namibia | 1366 | Africa | 21 | 0.0065 |
| New Zealand | 1205 | Asia | 14 | 0.0066 |
| Latvia | 1193 | Europe | 45 | 0.0062 |
| Jordan | 1181 | Eastern Med. | 18 | 0.0063 |
| Liberia | 1108 | Africa | 22 | 0.0062 |
| Niger | 1108 | Africa | 23 | 0.0061 |
| Suriname | 1079 | Americas | 22 | 0.0065 |
| Georgia | 1073 | Europe | 46 | 0.0060 |
| Burkina Faso | 1065 | Africa | 24 | 0.0062 |
| Uruguay | 1064 | Americas | 23 | 0.0059 |
| Cyprus | 1040 | Europe | 47 | 0.0061 |
| Chad | 889 | Africa | 25 | 0.0060 |
| Andorra | 884 | Europe | 48 | 0.0063 |
| Jamaica | 809 | Americas | 24 | 0.0059 |
| Togo | 790 | Africa | 26 | 0.0066 |
| San Marino | 716 | Europe | 49 | 0.0060 |
| Malta | 675 | Europe | 50 | 0.0060 |
| United Republic of Tanzania | 509 | Africa | 27 | 0.0059 |
| Viet Nam | 401 | Asia | 15 | 0.0059 |
| Mauritius | 343 | Africa | 28 | 0.0061 |
| Guyana | 337 | Americas | 25 | 0.0059 |
| Guam | 319 | Asia | 16 | 0.0060 |
| United States Virgin Islands | 308 | Americas | 26 | 0.0063 |
| Mongolia | 287 | Asia | 17 | 0.0058 |
| Cayman Islands | 203 | Americas | 27 | 0.0063 |
| Cambodia | 197 | Asia | 18 | 0.0061 |
| Faroe Islands | 191 | Europe | 51 | 0.0060 |
| Gibraltar | 180 | Europe | 52 | 0.0061 |
| Bahamas | 174 | Americas | 28 | 0.0061 |
| Bermuda | 153 | Americas | 29 | 0.0062 |
| Brunei Darussalam | 141 | Asia | 19 | 0.0062 |
| Trinidad and Tobago | 137 | Americas | 30 | 0.0062 |
| Gambia | 132 | Africa | 29 | 0.0060 |
| Aruba | 115 | Americas | 31 | 0.0061 |
| Seychelles | 108 | Africa | 30 | 0.0060 |
| Barbados | 106 | Americas | 32 | 0.0059 |
| Bhutan | 92 | Asia | 20 | 0.0064 |
| Liechtenstein | 87 | Europe | 53 | 0.0061 |
| Monaco | 81 | Europe | 54 | 0.0060 |
| Sint Maarten | 79 | Americas | 33 | 0.0058 |
| Antigua and Barbuda | 76 | Americas | 34 | 0.0061 |
| French Polynesia | 62 | Asia | 21 | 0.0062 |
| Saint Vincent and the Grenadines | 50 | Americas | 35 | 0.0060 |
| Saint Martin | 46 | Americas | 36 | 0.0062 |
| Curacao | 28 | Americas | 37 | 0.0061 |
| Fiji | 27 | Asia | 22 | 0.0060 |
| Saint Lucia | 23 | Americas | 38 | 0.0059 |
| New Caledonia | 22 | Asia | 23 | 0.0059 |
| Greenland | 13 | Europe | 55 | 0.0058 |
Appendix E. Effects of Infection Parameters and Recovery Parameters in the SIR Model on Correlations

References
- WHO. Coronavirus Disease 2019 (COVID-19) Situation Report—51; World Health Organization: Geneve, Switzerland, 2020. [Google Scholar]
- WHO. Coronavirus Disease 2019 (COVID-19) Situation Report—184; World Health Organization: Geneve, Switzerland, 2020. [Google Scholar]
- Hafner, C.M. The Spread of the Covid-19 Pandemic in Time and Space. Int. J. Environ. Res. Public Health 2020, 17, 3827. [Google Scholar] [CrossRef] [PubMed]
- Frith, J.; Saker, M. It Is All About Location: Smartphones and Tracking the Spread of COVID-19. Soc. Media Soc. 2020, 6, 205630512094825. [Google Scholar] [CrossRef]
- Galvan, D.; Effting, L.; Cremasco, H.; Adam Conte-Junior, C. Can Socioeconomic, Health, and Safety Data Explain the Spread of COVID-19 Outbreak on Brazilian Federative Units? Int. J. Environ. Res. Public Health 2020, 17, 8921. [Google Scholar] [CrossRef]
- Bae, S.; Harada, K.; Chiba, I.; Makino, K.; Katayama, O.; Lee, S.; Shinkai, Y.; Shimada, H. A New Social Network Scale for Detecting Depressive Symptoms in Older Japanese Adults. Int. J. Environ. Res. Public Health 2020, 17, 8874. [Google Scholar] [CrossRef] [PubMed]
- Saccomanno, S.; Bernabei, M.; Scoppa, F.; Pirino, A.; Mastrapasqua, R.; Visco, M.A. Coronavirus Lockdown as a Major Life Stressor: Does It Affect TMD Symptoms? Int. J. Environ. Res. Public Health 2020, 17, 8907. [Google Scholar] [CrossRef]
- Lau, H.; Khosrawipour, V.; Kocbach, P.; Mikolajczyk, A.; Schubert, J.; Bania, J.; Khosrawipour, T. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J. Travel Med. 2020, 27, 1–7. [Google Scholar] [CrossRef]
- Zangari, S.; Hill, D.T.; Charette, A.T.; Mirowsky, J.E. Air quality changes in New York City during the COVID-19 pandemic. Sci. Total. Environ. 2020, 742, 140496. [Google Scholar] [CrossRef]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020. [Google Scholar] [CrossRef]
- Fernandes, N. Economic Effects of Coronavirus Outbreak (COVID-19) on the World Economy. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- So, M.K.P.; Chu, A.M.Y.; Chan, T.W.C. Impacts of the COVID-19 Pandemic on Financial Market Connectedness. Financ. Res. Lett. 2020, 101864. [Google Scholar] [CrossRef]
- Goodell, J.W.; Goutte, S. Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis. Financ. Res. Lett. 2020, 101625. [Google Scholar] [CrossRef]
- McGrail, D.J.; Dai, J.; McAndrews, K.M.; Kalluri, R. Enacting national social distancing policies corresponds with dramatic reduction in COVID19 infection rates. PLoS ONE 2020, 15, e0236619. [Google Scholar] [CrossRef] [PubMed]
- Atalan, A. Is the lockdown important to prevent the COVID-19 pandemic? Effects on psychology, environment and economy-perspective. Ann. Med. Surg. 2020, 56, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.M.Y.; Tsang, J.T.Y.; Chan, J.N.L.; Tiwari, A.; So, M.K.P. Analysis of travel restrictions for COVID-19 control in Latin America through network connectedness. J. Travel Med. 2020, 2020, taaa176. [Google Scholar] [CrossRef]
- Linka, K.; Peirlinck, M.; Sahli Costabal, F.; Kuhl, E. Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Thill, J.C. Is Spatial Really that Special? A Tale of Spaces; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2011; pp. 3–12. [Google Scholar] [CrossRef]
- Gould, P. Dynamic structures of geographic space. In Collapsing Space and Time: Geographic Aspects of Communication and Information; Harper Collins: London, UK, 1991. [Google Scholar]
- Palau, J.; Montaner, M.; Lopez, B.; De La Rosa, J.L. Collaboration analysis in recommender systems using social networks. In Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science); Springer: Berlin/Heidelberg, Germany, 2004; Volume 3191, pp. 137–151. [Google Scholar] [CrossRef]
- Sarkar, P.; Moore, A.W. Dynamic social network analysis using latent space models. Adv. Neural Inf. Process. Syst. 2005, 1145–1152. [Google Scholar] [CrossRef]
- Bonchi, F.; Castillo, C.; Gionis, A.; Jaimes, A. Social network analysis and mining for business applications. ACM Trans. Intell. Syst. Technol. 2011, 2. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G. Contributions to the mathematical theory of epidemics-I. Bull. Math. Biol. 1991, 53, 33–55. [Google Scholar] [CrossRef]
- Bansal, S.; Read, J.; Pourbohloul, B.; Meyers, L.A. The dynamic nature of contact networks in infectious disease epidemiology. J. Biol. Dyn. 2010, 4, 478–489. [Google Scholar] [CrossRef]
- So, M.K.P.; Chu, A.M.Y.; Tiwari, A.; Chan, J.N.L. On Topological Properties of COVID-19: Predicting and Assessing Pandemic Risk with Network Statistics. Sci. Rep. 2021, 5112. [Google Scholar] [CrossRef]
- So, M.K.P.; Tiwari, A.; Chu, A.M.Y.; Tsang, J.T.Y.; Chan, J.N.L. Visualizing COVID-19 pandemic risk through network connectedness. Int. J. Infect. Dis. 2020, 96, 558–561. [Google Scholar] [CrossRef]
- Chu, A.M.Y.; Tiwari, A.; So, M.K.P. Detecting early signals of COVID-19 global pandemic from network density. J. Travel Med. 2020, 27, 1–3. [Google Scholar] [CrossRef]
- Tiwari, A.; So, M.K.P.; Chong, A.C.Y.; Chan, J.N.L.; Chu, A.M.Y. Pandemic Risk of COVID-19 Outbreak in the United States: An Analysis of Network Connectedness with Air Travel Data. Int. J. Infect. Dis. 2020, 103. [Google Scholar] [CrossRef] [PubMed]
- Sewell, D.K.; Chen, Y. Latent Space Models for Dynamic Networks. J. Am. Stat. Assoc. 2015, 110, 1646–1657. [Google Scholar] [CrossRef]
- Nakao, K.; Romney, A.K. Longitudinal approach to subgroup formation: Re-analysis of Newcomb’s fraternity data. Soc. Netw. 1993, 15, 109–131. [Google Scholar] [CrossRef]
- Hoff, P.D.; Raftery, A.E.; Handcock, M.S. Latent space approaches to social network analysis. J. Am. Stat. Assoc. 2002, 97, 1090–1098. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease (COVID-19) Situation Reports. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 15 December 2020).
- Bartlett, M.S. The Square Root Transformation in Analysis of Variance. Suppl. J. R. Stat. Soc. 1936, 3, 68. [Google Scholar] [CrossRef]
- Chu, A.M.Y.; Li, R.W.M.; So, M.K.P. Bayesian spatial–temporal modeling of air pollution data with dynamic variance and leptokurtosis. Spat. Stat. 2018, 26, 1–20. [Google Scholar] [CrossRef]
- Chung, R.S.W.; Chu, A.M.Y.; So, M.K.P. Bayesian randomized response technique with multiple sensitive attributes: The case of information systems resource misuse. Ann. Appl. Stat. 2018, 12, 1969–1992. [Google Scholar] [CrossRef]
- So, M.K.P.; Chan, R.K.S. Bayesian analysis of tail asymmetry based on a threshold extreme value model. Comput. Stat. Data Anal. 2014, 71, 568–587. [Google Scholar] [CrossRef]
- So, M.K.P. Bayesian analysis of nonlinear and non-Gaussian state space models via multiple-try sampling methods. Stat. Comput. 2006, 16, 125–141. [Google Scholar] [CrossRef]
- So, M.K.P.; Yeung, C.Y.T. Vine-copula GARCH model with dynamic conditional dependence. Comput. Stat. Data Anal. 2014, 76, 655–671. [Google Scholar] [CrossRef]
- So, M.K.P.; Chan, T.W.C.; Chu, A.M.Y. Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management. J. Econom. 2020. [Google Scholar] [CrossRef]
- Ng, K.C.; So, M.K.P.; Tam, K.Y. A Latent Space Modeling Approach to Interfirm Relationship Analysis. ACM Trans. Manage. Inf. Syst. 2021, 12. [Google Scholar] [CrossRef]
- Chen, C.W.S.; So, M.K.P. On a threshold heteroscedastic model. Int. J. Forecast. 2006, 22, 73–89. [Google Scholar] [CrossRef]
- Wang, Y.; So, M.K.P. A Bayesian hierarchical model for spatial extremes with multiple durations. Comput. Stat. Data Anal. 2016, 95, 39–56. [Google Scholar] [CrossRef]
- World Tourism Organization. 100% of Global Destinations Now Have COVID-19 Travel Restrictions; World Tourism Organization: Madrid, Spain, 2020. [Google Scholar]
- Gatto, M.; Bertuzzo, E.; Mari, L.; Miccoli, S.; Carraro, L.; Casagrandi, R.; Rinaldo, A. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proc. Natl. Acad. Sci. USA 2020, 117, 10484–10491. [Google Scholar] [CrossRef]
- Nakamura, H.; Managi, S. Airport risk of importation and exportation of the COVID-19 pandemic. Transp. Policy 2020, 96, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Linka, K.; Rahman, P.; Goriely, A.; Kuhl, E. Is it safe to lift COVID-19 travel bans? The Newfoundland story. Comput. Mech. 2020, 66, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Nundy, S.; Mallick, T.K. How India is dealing with COVID-19 pandemic. Sens. Int. 2020, 1, 100021. [Google Scholar] [CrossRef]
- Watts, A.; Au, N.H.; Thomas-Bachli, A.; Forsyth, J.; Mayah, O.; Popescu, S.; Bogoch, I.I. Potential for inter-state spread of Covid-19 from Arizona, USA: Analysis of mobile device location and commercial flight data. J. Travel Med. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Guerin, O. Coronavirus: How Turkey took control of Covid-19 emergency—BBC News. BBC News. 29 May 2020. Available online: https://www.bbc.com/news/world-europe-52831017 (accessed on 18 December 2020).
- Coronavirus: How lockdown is being lifted across Europe—BBC News. BBC News. 2 July 2020. Available online: https://www.bbc.co.uk/news/explainers-52575313 (accessed on 18 December 2020).
- Mangili, A.; Gendreau, M. Infectious Risks of Air Travel. In Infections of Leisure, 4th ed.; American Society of Microbiology: Washington, DC, USA, 2009; pp. 359–366. [Google Scholar]
- Hollingsworth, T.D.; Ferguson, N.M.; Anderson, R.M. Will travel restrictions control the international spread of pandemic influenza? Nat. Med. 2006, 12, 497–499. [Google Scholar] [CrossRef] [PubMed]
- Cooper, B.S.; Pitman, R.J.; Edmunds, W.J.; Gay, N.J. Delaying the international spread of pandemic influenza. PLoS Med. 2006, 3, e212. [Google Scholar] [CrossRef] [PubMed]
- Hoff, P.D. Bilinear mixed-effects models for dyadic data. J. Am. Stat. Assoc. 2005, 100, 286–295. [Google Scholar] [CrossRef]





| Estimate | SD | |
|---|---|---|
| 0.482092 | 0.005071 | |
| 0.084863 | 0.004512 | |
| 0.007961 | 0.000055 | |
| 164.198509 | 0.014353 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, A.M.Y.; Chan, T.W.C.; So, M.K.P.; Wong, W.-K. Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model. Int. J. Environ. Res. Public Health 2021, 18, 3195. https://doi.org/10.3390/ijerph18063195
Chu AMY, Chan TWC, So MKP, Wong W-K. Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model. International Journal of Environmental Research and Public Health. 2021; 18(6):3195. https://doi.org/10.3390/ijerph18063195
Chicago/Turabian StyleChu, Amanda M. Y., Thomas W. C. Chan, Mike K. P. So, and Wing-Keung Wong. 2021. "Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model" International Journal of Environmental Research and Public Health 18, no. 6: 3195. https://doi.org/10.3390/ijerph18063195
APA StyleChu, A. M. Y., Chan, T. W. C., So, M. K. P., & Wong, W.-K. (2021). Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model. International Journal of Environmental Research and Public Health, 18(6), 3195. https://doi.org/10.3390/ijerph18063195

