Mediterranean Diet Adherence, Body Composition and Performance in Beach Handball Players: A Cross Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Data Collection
2.3.1. Assessment of Mediterranean Diet Adherence
2.3.2. Body Composition
2.3.3. Handgrip Strength
2.3.4. Countermovement Jump
2.3.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Becerra, M.O.; Espina-Agulló, J.J.; Pueo, B.; Jiménez-Olmedo, J.M.; Penichet-Tomás, A.; Sellés-Pérez, S. Anthropometric profile and performance indicators in female elite beach handball players. J. Phys. Educ. Sport 2018, 18, 1155–1160. [Google Scholar]
- Ribeiro, A.; Ribeiro, M. Surgimento e Evoluçao do Beach Handball no Brasil; Gráfica Andrade: Aracaju, Brasil, 2008. [Google Scholar]
- Pueo, B.; Espina-Agullo, J.J.; Selles-Perez, S.; Penichet-Tomas, A. Optimal Body Composition and Anthropometric Profile of World-Class Beach Handball Players by Playing Positions. Sustainability 2020, 12, 6789. [Google Scholar] [CrossRef]
- Pueo, B.; Jimenez-Olmedo, J.M.; Penichet-Tomas, A.; Becerra, M.O.; Agullo, J.J.E. Analysis of Time-Motion and Heart Rate in Elite Male and Female Beach Handball. J. Sports Sci. Med. 2017, 16, 450–458. [Google Scholar] [PubMed]
- Póvoas, S.C.; Seabra, A.F.; Ascensão, A.A.; Magalhães, J.; Soares, J.M.; Rebelo, A.N. Physical and Physiological Demands of Elite Team Handball. J. Strength Cond. Res. 2012, 26, 3365–3375. [Google Scholar] [CrossRef] [PubMed]
- Magliano, M. ¿Conoces el Balonmano Playa? In Beach Hanball en la Práctica; Available online: https://marciomagliano.com/wp-content/uploads/2019/12/Beach-Handball-en-la-pr%C3%A1ctica-por-Marcio-Magliano.pdf (accessed on 20 February 2021).
- Cheuvront, S.N.; Kenefick, R.W. Dehydration: Physiology, Assessment, and Performance Effects. Compr. Physiol. 2014, 4, 257–285. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.E. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress. Auton. Neurosci. 2017, 204, 25–34. [Google Scholar] [CrossRef]
- Golbabaei, F.; Zakerian, S.A.; Fouladi Dehaghi, B.; Ibrahimi Ghavamabadi, L.; Gharagozlou, F.; Mirzaei Aliabadi, M.; Hematjo, R. Heat stress and physical capacity: A case study of semi-profes-sional footballers. Iran. J. Public Health 2014, 43, 355–361. [Google Scholar]
- Pethick, W.A.; Murray, H.J.; McFadyen, P.; Brodie, R.; Gaul, C.A.; Stellingwerff, T. Effects of hydration status during heat acclimation on plasma volume and performance. Scand. J. Med. Sci. Sports 2019, 29, 189–199. [Google Scholar] [CrossRef]
- Phillips, S.M.; Van Loon, L.J. Dietary protein for athletes: From requirements to optimum adaptation. J. Sports Sci. 2011, 29, S29–S38. [Google Scholar] [CrossRef]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for training and competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef] [PubMed]
- American Dietetic Association; Canada, D.O.; American College of Sports Medicine; Rodriguez, N.R.; Di Marco, N.M.; Langley, S. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2009, 41, 709–731. [Google Scholar] [CrossRef]
- Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine. J. Am. Diet. Assoc. 2000, 100, 1543–1556. [CrossRef]
- Rubio-Arias, J.Á.; Jesús, D.; Campo, R.; María, J.; Nuñez, R.; Carrasco Poyatos, M.; Emilio, P.; Ramón, A.; José, F.; Díaz, J. Adhesión a la dieta mediterránea y rendimiento deportivo en un grupo de mujeres deportistas de élite de fútbol sala. Nutr. Hosp. 2015, 31, 2276–2282. [Google Scholar]
- Del Chierico, F.; Vernocchi, P.; Dallapiccola, B.; Putignani, L. Mediterranean Diet and Health: Food Effects on Gut Microbiota and Disease Control. Int. J. Mol. Sci. 2014, 15, 11678–11699. [Google Scholar] [CrossRef]
- Martini, D. Health Benefits of Mediterranean Diet. Nutrients 2019, 11, 1802. [Google Scholar] [CrossRef] [Green Version]
- Correa-Rodríguez, M.; El Mansouri-Yachou, J.; Tapia-Haro, R.M.; Molina, F.; Rus, A.; Rueda-Medina, B.; Aguilar-Ferrandiz, M.E. Mediterranean Diet, Body Composition, and Activity Associated With Bone Health in Women With Fibromyalgia Syndrome. Nurs. Res. 2019, 68, 358–364. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Román-Viñas, B.; Sanchez-Villegas, A.; Guasch-Ferré, M.; Corella, D.; La Vecchia, C. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Mol. Asp. Med. 2019, 67, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Oliver, A.J.; Gálvez-Ruiz, P.; Gonzalez-Jurado, J.A. Mortality and economic expenses of cardiovascular diseases caused by physical inactivity in Spain Prevención e intervención de la Obesidad: Actividad física y alimentación View project Sports supplements consumption in international level powerlifters View project. Artic. J. Phys. Educ. Sport 2018, 18, 1420–1427. [Google Scholar]
- Stanforth, P.R.; Crim, B.N.; Stanforth, D.; Stults-Kolehmainen, M.A. Body Composition Changes Among Female NCAA Division 1 Athletes Across the Competitive Season and Over a Multiyear Time Frame. J. Strength Cond. Res. 2014, 28, 300–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnagöl, H.H. Body composition and bone mineral density of collegiate American football players. J. Hum. Kinet. 2016, 51, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Fernández, V.; Chinchilla-Minguet, J.L.; Castillo-Rodríguez, A. Somatotype and Body Composition in Young Soccer Players According to the Playing Position and Sport Success. J. Strength Cond. Res. 2019, 33, 1904–1911. [Google Scholar] [CrossRef]
- Fields, J.B.; Merrigan, J.J.; White, J.B.; Jones, M.T. Body composition variables by sport and sport-position in elite collegiate athletes. J. Strength Cond. Res. 2018, 32, 3153–3159. [Google Scholar] [CrossRef]
- Visnapuu, M.; Jürimäe, T. The influence of basic body and hand anthropometry on the results of different throwing tests in young handball and basketball players. Anthr. Anz. 2008, 66, 225–236. [Google Scholar] [CrossRef]
- Visnapuu, M.; Jürimäe, T. Handgrip strength and hand dimensions in young handball and basketball players. J. strength Cond. Res. 2007, 2, 923–929. [Google Scholar]
- Massuça, L.M.; Fragoso, I.; Teles, J. Attributes of Top Elite Team-Handball Players. J. Strength Cond. Res. 2014, 28, 178–186. [Google Scholar] [CrossRef]
- Jimenez-Olmedo, J.M.; Penichet-Tomas, A.; Becerra, M.O.; Pueo, B.; Espina-Agullo, J.J. Relationships between anthropometric parameters and overarm throw in elite beach handball. Hum. Mov. 2019, 20, 16–24. [Google Scholar] [CrossRef]
- Silva, A.S.; Coeli Seabra Marques, R.; De Azevedo Lago, S.; Guedes Santos, D.A.; Lacerda, L.M.; Silva, D.C.; Soares, Y.O.M. Physiological and nutritional profile of elite female beach handball players from Brazil. J. Sports Med. Phys. Fitness 2016, 56, 503–509. [Google Scholar]
- Manchado, C.; Tortosa-Martínez, J.; Vila, H.; Ferragut, C.; Platen, P. Performance factors in womenʼs team handball. J. Strength Cond. Res. 2013, 27, 1708–1719. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, S.G.; Fernández, N.H.; Hernández, C.R.; Nissensohn, M.; Román-Viña, B.; Serra-Majem, L. Test KIDMED; prevalencia de la Baja Adhesión a la Dieta Mediterránea en Niños y Adolescentes; Revisión Sistemática. Nutr. Hosp. 2015, 32, 2390–2399. [Google Scholar]
- Alvero Cruz, J.A.; Cabañas, M.A.; Herrero de Lucas, A.; Martínez-Riaza, L.; Moreno Pascual, C.; Porta-Manzañido, J.; Sillero Quintana, M.; Sirvent Belando, J.E. Protocolo de valoración de la composición corporal para el reconocimiento médico-deportivo. Documento Consenso Grupo Español Cineantropometría Federación Española Medicina Deporte (FEMEDE) 2009, 131, 166–179. [Google Scholar]
- Khalil, S.F.; Mohktar, M.S.; Ibrahim, F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 2014, 14, 10895–10928. [Google Scholar] [CrossRef]
- Thomas, B.J.; Ward, L.C.; Cornish, B.H. Bioimpedance spectrometry in the determination of body water compartments: Accuracy and clinical significance. Appl. Radiat. Isot. 1998, 49, 447–455. [Google Scholar] [CrossRef]
- Vasold, K.L.; Parks, A.C.; Phelan, D.M.L.; Pontifex, M.B.; Pivarnik, J.M. Reliability and validity of commercially available low-cost bioelectrical impedance analysis. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 406–410. [Google Scholar] [CrossRef] [Green Version]
- Sterkowicz-Przybycień, K.; Sterkowicz, S.; Biskup, L.; Zarów, R.; Kryst, Ł.; Ozimek, M. Somatotype, body composition, and physical fitness in artistic gymnasts depending on age and preferred event. PLoS ONE 2019, 14, e0211533. [Google Scholar] [CrossRef] [PubMed]
- Domingos, C.; Matias, C.N.; Cyrino, E.S.; Sardinha, L.B.; Silva, A.M. The usefulness of Tanita TBF-310 for body composition assessment in Judo athletes using a four-compartment molecular model as the reference method. Rev. Assoc. Med. Bras. 2019, 65, 1283–1289. [Google Scholar] [CrossRef] [Green Version]
- Núñez, F.J.; Munguía-Izquierdo, D.; Suárez-Arrones, L. Validity of field methods to estimate fat-free mass changes throughout the season in elite youth soccer players. Front. Physiol. 2020, 11, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergi, G.; De Rui, M.; Stubbs, B.; Veronese, N.; Manzato, E. Measurement of lean body mass using bioelectrical impedance analysis: A consideration of the pros and cons. Aging Clin. Exp. Res. 2017, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Munguia-Izquierdo, D.; Suarez-Arrones, L.; Di Salvo, V.; Paredes-Hernandez, V.; Alcazar, J.; Ara, I.; Kreider, R.; Mendez-Villanueva, A. Validation of Field Methods to Assess Body Fat Percentage in Elite Youth Soccer Players. Int. J. Sports Med. 2018, 39, 349–354. [Google Scholar] [CrossRef]
- Heaney, S.; O’Connor, H.; Michael, S.; Gifford, J.; Naughton, G. Nutrition knowledge in athletes: A systematic review. Int. J. Sport Nutr. Exerc. Metab. 2011, 248–261. [Google Scholar] [CrossRef] [Green Version]
- Rush, E.C.; Crowley, J.; Freitas, I.F.; Luke, A. Validity of hand-to-foot measurement of bioimpedance: Standing compared with lying position. Obesity 2006, 14, 252–257. [Google Scholar] [CrossRef] [Green Version]
- López-Samanes, Á.; Moreno-Pérez, D.; Maté-Muñoz, J.L.; Domínguez, R.; Pallarés, J.G.; Mora-Rodriguez, R.; Ortega, J.F. Circadian rhythm effect on physical tennis performance in trained male players. J. Sports Sci. 2017, 35, 2121–2128. [Google Scholar] [CrossRef]
- Hermassi, S.; Laudner, K.; Schwesig, R. Playing level and position differences in body characteristics and physical fitness performance among male team handball players. Front. Bioeng. Biotechnol. 2019, 7, 149. [Google Scholar] [CrossRef]
- Heishman, A.; Brown, B.; Daub, B.; Miller, R.; Freitas, E.; Bemben, M. the influence of countermovement jump protocol on reactive strength index modified and flight time: Contraction time in collegiate basketball players. Sports 2019, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Salaj, S.; Markovic, G. Specificity of jumping, sprinting, and quick change-of-direction motor abilities. J. Strength Cond. Res. 2011, 25, 1249–1255. [Google Scholar] [CrossRef]
- Santos, D.A.; Dawson, J.A.; Matias, C.N.; Rocha, P.M.; Minderico, C.S.; Allison, D.B.; Sardinha, L.B.; Silva, A.M. Reference values for body composition and anthropometric measurements in athletes. PLoS ONE 2014, 9, e97846. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Heymsfield, S.B.; Pi-Sunyer, F.X.; Gallagher, D.; Pierson, R.N. Body composition analysis: Cellular level modeling of body component ratios. Int. J. Body Compos. Res. 2008, 6, 173–184. [Google Scholar]
- Campa, F.; Matias, C.; Gatterer, H.; Toselli, S.; Koury, J.C.; Andreoli, A.; Melchiorri, G.; Sardinha, L.B.; Silva, A.M. Classic bioelectrical impedance vector reference values for assessing body composition in male and female athletes. Int. J. Env. Res. Public Health 2019, 16, 5066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitamura, K.; Pereira, L.A.; Kobal, R.; Abad, C.C.C.; Finotti, R.; Nakamura, F.Y.; Loturco, I. Loaded & unloaded jump performance of top-level volleyball players from different age categories. Biol. Sport 2017, 34, 273–278. [Google Scholar] [PubMed] [Green Version]
- Loturco, I.; Kobal, R.; Gil, S.; Pivetti, B.; Kitamura, K.; Pereira, L.A.; Abad, C.C.C.; Nakamura, F.Y. Differences in loaded and unloaded vertical jumping ability and sprinting performance between Brazilian elite under-20 and senior soccer players. Am. J. Sport. Sci. 2014, 2, 8–13. [Google Scholar]
- Kobal, R.; Nakamura, F.Y.; Moraes, J.E.; Coelho, M.; Kitamura, K.; Abad, C.C.C.; Pereira, L.A.; Loturco, I. Physical performance of brazilian rugby players from different age categories and competitive levels. J. Strength Cond. Res. 2016, 30, 2433–2439. [Google Scholar] [CrossRef] [PubMed]
- Koley, S.; Kaur, S.P. Correlations of handgrip strength with selected hand-arm-anthropometric variables in Indian inter-university female volleyball players. Asian J. Sports Med. 2011, 2, 220–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, S.; Chowdhuri, B.J. Comparison of grip strength and isomeric endurance between the right and left hands of men and their relationship with age and other physical parameters. J. Hum. Ergol. (Tokyo) 1991, 20, 41–50. [Google Scholar]
- Zaccagni, L.; Toselli, S.; Bramanti, B.; Gualdi-Russo, E.; Mongillo, J.; Rinaldo, N. Handgrip strength in young adults: Association with anthropometric variables and laterality. Int. J. Environ. Res. Public Health 2020, 17, 4273. [Google Scholar] [CrossRef] [PubMed]
- Masanovic, B.; Milosevic, Z.; Corluka, M. Comparative Study of Anthropometric Measurement and Body Composition between Junior Handball and Volleyball Players from Serbian National League. Int. J. Appl. Exerc. Physiol. 2018, 7, 1. [Google Scholar]
- Cronin, J.B.; Hansen, K.T. Strength and power predictors of sports speed. J. Strength Cond. Res. 2005, 19, 349–357. [Google Scholar] [PubMed]
- Karcher, C.; Buchheit, M. On-Court demands of elite handball, with special reference to playing positions. Sports Med. 2014, 44, 797–814. [Google Scholar] [CrossRef]
- Tichá, Ľ.; Regecová, V.; Šebeková, K.; Sedláková, D.; Hamade, J.; Podracká, Ľ. Prevalence of overweight/obesity among 7-year-old children—WHO Childhood Obesity Surveillance Initiative in Slovakia, trends and differences between selected European countries. Eur. J. Pediatr. 2018, 177, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Kweitel, S. IMC: Herramienta poco útil para determinar el peso ideal de un deportista, BMI: Little useful tool to determine ideal weight of a sportsman. Rev. Int. Med. Cienc. Act. Fís. Deporte 2007, 7, 274–289. [Google Scholar]
- Clin, N.; Suárez-Carmona, M.W.; Sánchez-Oliver, A.J.; Suárez-Carmona, W.; Antonio, C.; Sánchez-Oliver, J. Relación con la fuerza y la actividad física > > AbstRAct. Nutr. Clin. Med. 2018, XII, 128–139. [Google Scholar]
- Galan-Lopez, P.; Gisladóttir, T.; Ries, F. Adherencia a la Dieta Mediterránea, Motivos para la Práctica de Ejercicio Físico y Composición Corporal en Adolescentes Islandeses: The AdolesHealth Study Adherence to the Mediterranean Diet, Motives for Physical Exercise and Body Composition in Icelan. Retos Nuevas Tendencias en Educación Física, Deporte y Recreación 2020, 2041, 552–559. [Google Scholar]
- Manzano-Carrasco, S.; Felipe, J.L.; Sanchez-Sanchez, J.; Hernandez-Martin, A.; Clavel, I.; Gallardo, L.; Garcia-Unanue, J. Relationship between adherence to the mediterranean diet and body composition with physical fitness parameters in a young active population. Int. J. Environ. Res. Public Health 2020, 17, 3337. [Google Scholar] [CrossRef]
- Urquiaga, I.; Echeverría, G.; Dussaillant, C.; Rigotti, A. Origin, components and mechanisms of action of the mediterranean diet. Rev. Med. Chil. 2017, 145, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammone, M.A.; Riccioni, G.; Parrinello, G.; D’orazio, N. Omega-3 polyunsaturated fatty acids: Benefits and endpoints in sport. Nutrients 2019, 11, 46. [Google Scholar] [CrossRef] [Green Version]
- Jäger, R.; Mohr, A.E.; Carpenter, K.C.; Kerksick, C.M.; Purpura, M.; Moussa, A.; Townsend, J.R.; Lamprecht, M.; West, N.P.; Black, K.; et al. International Society of Sports Nutrition Position Stand: Probiotics. J. Int. Soc. Sports Nutr. 2019, 16, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- León-Muñoz, L.M.; Guallar-Castillón, P.; Graciani, A.; López-García, E.; Mesas, A.E.; Aguilera, M.T.; Banegas, J.R.; Rodríguez-Artalejo, F. Adherence to the mediterranean diet pattern has declined in Spanish adults. J. Nutr. 2012, 142, 1843–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spronk, I.; Heaney, S.E.; Prvan, T.; O’Connor, H.T. Relationship between general nutrition knowledge and dietary quality in elite athletes. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 243–251. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.; Schösler, H.; Aiking, H. “Meatless days” or “less but better”? Exploring strategies to adapt Western meat consumption to health and sustainability challenges. Appetite 2014, 76, 120–128. [Google Scholar] [CrossRef]
- Ingebrigtsen, J.; Jeffreys, I.; Rodahl, S. Physical characteristics and abilities of junior elite male and female handball players. J. Strength Cond. Res. 2013, 27, 302–309. [Google Scholar] [CrossRef] [PubMed]
Study Variables | FEMALES | MALES | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JUNIOR | SENIOR | JUNIOR | SENIOR | |||||||||||||
NO | (%) | YES | (%) | NO | (%) | YES | (%) | NO | (%) | YES | (%) | NO | (%) | YES | (%) | |
Fruit or fruit juice daily | 2 | (9.5) | 5 | (23.8) | 2 | (9.5) | 12 | (57.1) | 8 | (21.1) | 6 | (15.8) | 6 | (15.8) | 18 | (47.3) |
Second serving of fruit daily | 5 | (23.8) | 2 | (9.5) | 7 | (33.3) | 7 | (33.3) | 10 | (26.3) | 4 | (10.5) | 16 | (42.1) | 8 | (21.1) |
Fresh or cooked vegetables daily | 3 | (14.3) | 4 | (19.1) | 7 | (33.3) | 7 | (33.3) | 9 | (23.7) | 5 | (13.2) | 12 | (31.6) | 12 | (31.6) |
Fresh or cooked vegetables > 1/day | 7 | (33.3) | - | 9 | (42.9) | 5 | (23.8) | 11 | (28.9) | 3 | (7.9) | 18 | (47.4) | 6 | (15.8) | |
Regular fish consumption (at least 2–3/week) | 4 | (19.1) | 3 | (14.3) | 6 | (28.6) | 8 | (38.1) | 2 | (5.3) | 12 | (31.6) | 12 | (31.6) | 12 | (31.6) |
>1/week fast-food (hamburger) restaurant | 5 | (23.8) | 2 | (9.5) | 8 | (38.1) | 6 | (28.6) | 4 | (10.5) | 10 | (26.3) | 10 | (26.3) | 14 | (36.8) |
Pulses > 1/week | - | 7 | (33.3) | 2 | (9.5) | 12 | (57.1) | 6 | (15.8) | 8 | (21.1) | 6 | (15.8) | 18 | (47.4) | |
Pasta or rice almost daily (≥5 days/week) | 6 | (28.6) | 1 | (4.8) | 8 | (38.1) | 6 | (28.6) | 3 | (7.9) | 7 | (18.4) | 11 | (28.9) | 17 | (44.7) |
Cereal or cereal product for breakfast | 4 | (19.0) | 3 | (14.3) | 6 | (28.6) | 8 | (38.1) | 5 | (13.2) | 8 | (21.1) | 9 | (23.7) | 16 | (42.1) |
Regular nut consumption (at least 2–3/week) | 6 | (28.6) | 1 | (4.8) | 5 | (23.8) | 9 | (42.9) | 6 | (15.8) | 8 | (21.1) | 9 | (23.7) | 15 | (39.5) |
Use of olive oil at home | - | 7 | (33.3) | - | 14 | (66.7) | 1 | (2.6) | 13 | (34.2) | 1 | (2.6) | 23 | (60.5) | ||
No breakfast | 4 | (19.0) | 3 | (14.3) | 13 | (61.9) | 1 | (4.8) | 10 | (26.3) | 4 | (10.5) | 20 | (52.6) | 4 | (10.5) |
Dairy product for breakfast | 1 | (4.8) | 6 | (28.6) | 5 | (23.8) | 9 | (42.9) | 5 | (13.2) | 9 | (23.7) | 10 | (26.3) | 14 | (36.8) |
Commercially baked goods or pastries for breakfast | 5 | (23.8) | 2 | (9.5) | 11 | (52.4) | 3 | (14.3) | 10 | (26.3) | 4 | (10.5) | 18 | (47.4) | 6 | (15.8) |
Two yoghurts and/or 40 g cheese daily | 2 | (9.5) | 5 | (23.8) | 8 | (38.1) | 6 | (28.6) | 4 | (10.5) | 10 | (26.3) | 10 | (26.3) | 14 | (36.8) |
Sweets and candy several times a day | 5 | (23.8) | 2 | (9.5) | 9 | (42.9) | 5 | (23.8) | 6 | (15.8) | 8 | (21.1) | 12 | (31.6) | 12 | (31.6) |
KIDMED Index Score | N | (%) | N | (%) | N | (%) | N | (%) |
---|---|---|---|---|---|---|---|---|
Poor (≤3) | 0 | (0) | 2 | (9.5) | 5 | (13.2) | 3 | (7.9) |
Average (4–7) | 7 | (33.3) | 9 | (42.9) | 8 | (21.1) | 17 | (44.7) |
Good (≥8) | 0 | (0) | 3 | (14.3) | 1 | (2.6) | 4 | (10.5) |
Study Variables | Female | ANCOVA Comparison (Adjusting for BMI) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Junior (n = 7) | Senior (n = 14) | Mean | SD | df | t | p-Value | η2p | ||||||
Age | 16.1 | ± | 1.5 | 23.2 | ± | 2.9 | |||||||
Body composition | |||||||||||||
Height (cm) | 165.0 | ± | 9.9 | 166.0 | ± | 6.3 | −1.26 | ± | 4.01 | 18.0 | −0.314 | 0.757 | 0.005 |
Weight (kg) | 56.3 | ± | 8.7 | 63.7 | ± | 8.9 | −0.357 | ± | 2.42 | 18.0 | −0.147 | 0.884 | 0.001 |
BMI (kg/m2) | 20.6 | ± | 2.1 | 23.3 | ± | 3.2 | |||||||
Fat mas (%) | 15.2 | ± | 4.9 | 18.6 | ± | 6.8 | 1.55 | ± | 1.65 | 18.0 | 0.940 | 0.360 | 0.047 |
Lean body mass (kg) | 45.2 | ± | 7.1 | 48.8 | ± | 4.2 | −1.1 | ± | 2.43 | 18.0 | −0.454 | 0.655 | 0.011 |
Sport performance | |||||||||||||
Strength (handgrip) | 29.0 | ± | 5.4 | 35.1 | ± | 7.8 | −6.69 | ± | 3.57 | 18.0 | −1.87 | 0.077 | 0.163 |
Power explosive (CMJ) | 30.1 | ± | 5.9 | 39.6 | ± | 2.5 | −7.21 | ± | 10.5 | 18.0 | −0.688 | 0.500 | 0.026 |
Mediterranean diet adherence | |||||||||||||
Total score (KIDMED) | 5.6 | ± | 1.9 | 6.15 | ± | 3.2 | −1.64 | ± | 1.30 | 18.0 | −1.26 | 0.225 | 0.08 |
Study Variables | Male | ANCOVA Comparison (Adjusting by BMI) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Junior (n = 14) | Senior (n = 24) | Mean | SD | df | t | p-Value | η2p | ||||||
Age | 17.0 | ± | 0.1 | 25.5 | ± | 4.7 | |||||||
Body composition | |||||||||||||
Height (cm) | 176.0 | ± | 6.7 | 183 | ± | 6.4 | −7.34 | ± | 2.26 | 35.0 | −3.24 | 0.003 | 0.033 |
Weight (kg) | 70.1 | ± | 11.2 | 81.3 | ± | 7.6 | −6.24 | ± | 1.81 | 35.0 | −3.44 | 0.002 | 0.689 |
BMI (kg/m2) | 22.5 | ± | 3.7 | 24.3 | ± | 1.8 | |||||||
Fat mas (%) | 8.7 | ± | 5.7 | 11.6 | ± | 5.2 | −0.53 | ± | 1.40 | 35.0 | 0.372 | 0.712 | 0.464 |
Lean body mass (kg) | 60.2 | ± | 7.4 | 68.2 | ± | 6.6 | −5.51 | ± | 2.01 | 35.0 | −2.74 | 0.01 | 0.315 |
Sport performance | |||||||||||||
Strength (Handgrip) | 46.9 | ± | 6.9 | 51.6 | ± | 9.2 | −3.71 | ± | 2.87 | 35.0 | −1.29 | 0.204 | 0.037 |
Power explosive (CMJ) | 43.7 | ± | 14.6 | 40.4 | ± | 13.6 | −0.069 | ± | 4.58 | 35.0 | −0.015 | 0.988 | 0.136 |
Mediterranean diet adherence | |||||||||||||
Total score (KIDMED) | 5.2 | ± | 2.8 | 5.7 | ± | 2.6 | −0.315 | ± | 0.94 | 35.0 | −0.335 | 0.739 | 0.016 |
Study Variables | Junior | ||||||||
---|---|---|---|---|---|---|---|---|---|
Female | Height (cm) | Body Mass (kg) | BMI (kg/m2) | Fat Mass (%) | LBM (kg) | HGS (kg) | CMJ (cm) | KIDMED Score | |
Senior | Height (cm) | n.a | 0.827 * | 0.242 | −0.086 | 0.882 * | 0.88 * | 0.52 | −0.874 |
Body mass (kg) | 0.255 | n.a | 0.744 * | 0.26 | 0.928 | 0.653 | 0.348 | −0.893 * | |
BMI (kg/m2) | −0.153 | 0.902 | n.a | 0.543 | 0.558 | 0.114 | 0.023 | −0.523 | |
Fat mass (%) | −0.128 | 0.818 | 0.936 | n.a | −0.118 | −0.264 | −0.276 | −0.082 | |
LBM (kg) | 0.570* | 0.813 | 0.531 | 0.34 | n.a | 0.777 * | 0.471 | −0.889 | |
HGS (kg) | −0.412 | −0.242 | −0.144 | −0.328 | −0.105 | n.a | 0.756 * | −0.845 ** | |
CMJ (cm) | 0.035 | 0.202 | 0.131 | 0.161 | 0.167 | −0.064 | n.a | −0.692 | |
KIDMED score | 0.147 | −0.301 | −0.396 | −0.46 | −0.047 | −0.113 | −0.608 | n.a |
Study Variables | Junior | ||||||||
---|---|---|---|---|---|---|---|---|---|
Male | Height (cm) | Body Mass (kg) | BMI (kg/m2) | Fat mass (%) | LBM (kg) | HGS (kg) | CMJ (cm) | KIDMED Score | |
Senior | Height (cm) | n.a | 0.181 | −0.211 | −0.089 | 0.361 | 0.414 | 0.348 | −0.017 |
Body mass (kg) | 0.613 ** | n.a | 0.916 ** | 0.761 ** | 0.915 ** | 0.514 * | −0.329 | −0.038 | |
BMI (kg/m2) | −0.16 | 0.678 | n.a | 0.793 | 0.750 | 0.309 | −0.458 | −0.042 | |
Fat mass (%) | −0.155 | 0.329 | 0.585 ** | n.a | 0.457 | 0.189 | −0.449 | −0.206 | |
LBM (kg) | 0.707 | 0.793 | 0.314 | −0.313 | n.a | 0.627 ** | −0.229 | 0.137 | |
HGS (kg) | −0.103 | 0.03 | 0.117 | −0.303 | 0.232 | n.a | −0.143 | 0.315 | |
CMJ (cm) | 0.224 | −0.024 | −0.276 | −0.401 | 0.228 | 0.34 | n.a | −0.494 | |
KIDMED score | −0.009 | 0.317 | 0.404 | −0.119 | 0.403 | −0.036 | −0.162 | n.a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Rodríguez, A.; Martínez-Olcina, M.; Hernández-García, M.; Rubio-Arias, J.Á.; Sánchez-Sánchez, J.; Lara-Cobos, D.; Vicente-Martínez, M.; Carvalho, M.J.; Sánchez-Sáez, J.A. Mediterranean Diet Adherence, Body Composition and Performance in Beach Handball Players: A Cross Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 2837. https://doi.org/10.3390/ijerph18062837
Martínez-Rodríguez A, Martínez-Olcina M, Hernández-García M, Rubio-Arias JÁ, Sánchez-Sánchez J, Lara-Cobos D, Vicente-Martínez M, Carvalho MJ, Sánchez-Sáez JA. Mediterranean Diet Adherence, Body Composition and Performance in Beach Handball Players: A Cross Sectional Study. International Journal of Environmental Research and Public Health. 2021; 18(6):2837. https://doi.org/10.3390/ijerph18062837
Chicago/Turabian StyleMartínez-Rodríguez, Alejandro, María Martínez-Olcina, María Hernández-García, Jacobo Á. Rubio-Arias, Javier Sánchez-Sánchez, Daniel Lara-Cobos, Manuel Vicente-Martínez, Maria José Carvalho, and Juan Antonio Sánchez-Sáez. 2021. "Mediterranean Diet Adherence, Body Composition and Performance in Beach Handball Players: A Cross Sectional Study" International Journal of Environmental Research and Public Health 18, no. 6: 2837. https://doi.org/10.3390/ijerph18062837
APA StyleMartínez-Rodríguez, A., Martínez-Olcina, M., Hernández-García, M., Rubio-Arias, J. Á., Sánchez-Sánchez, J., Lara-Cobos, D., Vicente-Martínez, M., Carvalho, M. J., & Sánchez-Sáez, J. A. (2021). Mediterranean Diet Adherence, Body Composition and Performance in Beach Handball Players: A Cross Sectional Study. International Journal of Environmental Research and Public Health, 18(6), 2837. https://doi.org/10.3390/ijerph18062837