Influence of Dynamic Balance on Jumping-Based Asymmetries in Team Sport: A between-Sports Comparison in Basketball and Handball Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Procedure
2.4. Outcomes Assessment
2.4.1. Body Composition Measures
2.4.2. Weight-bearing Dorsiflexion Test (WB-DF)
2.4.3. Y-Balance Test (YBT)
2.4.4. Triple Hop Test for Distance Unilateral (THTU)
2.4.5. Countermovement Jump Test (CMJ)
2.4.6. Unilateral Drop Jump Test (DJU)
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Suarez-Arrones, L.; Arjol-Serrano, J.L.; Casajús, J.A.; Mendez-Villanueva, A. Single-Leg Power Output and Between-Limbs Imbalances in Team-Sport Players: Unilateral Versus Bilateral Combined Resistance Training. Int. J. Sport. Physiol. Perform. 2017, 12, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.B.; Wright, A.A.; Dischiavi, S.L.; Townsend, M.A.; Marmon, A.R. Activity Demands During Multi-Directional Team Sports: A Systematic Review. Sport. Med. 2017, 47, 2533–2551. [Google Scholar] [CrossRef] [PubMed]
- Petway, A.J.; Freitas, T.T.; Calleja-González, J.; Leal, D.M.; Alcaraz, P.E. Training load and match-play demands in basketball based on competition level: A systematic review. PLoS ONE 2020, 15, e0229212. [Google Scholar] [CrossRef] [Green Version]
- Kramer, T.A.; Sacko, R.S.; Pfeifer, C.E.; Gatens, D.R.; Goins, J.M.; Stodden, D.F. The association between the funtional movement screen, Y-balance test, and physical performance test in male and female high school athletes. Int. J. Sport. Phys. Ther. 2019, 14, 911–919. [Google Scholar] [CrossRef]
- Bishop, C.; Berney, J.; Lake, J.; Loturco, I.; Blagrove, R.; Turner, A.; Read, P. Bilateral Deficit During Jumping Tasks. J. Strength Cond. Res. 2019, 1. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-Davó, J.L.; Botella, J.; Navarro, A.; Tous-Fajardo, J. Effects of adding a weekly eccentric-overload training session on strength and athletic performance in team-handball players. Eur. J. Sport Sci. 2017, 17, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Maloney, S.J.; Richards, J.; Nixon, D.G.D.; Harvey, L.J.; Fletcher, I.M. Do stiffness and asymmetries predict change of direction performance? J. Sport. Sci. 2017, 35, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Raya-González, J.; Bishop, C.; Gómez-Piqueras, P.; Veiga, S.; Viejo-Romero, D.; Navandar, A. Strength, Jumping, and Change of Direction Speed Asymmetries Are Not Associated With Athletic Performance in Elite Academy Soccer Players. Front. Psychol. 2020, 11, 175. [Google Scholar] [CrossRef] [Green Version]
- Keeley, D.W.; Plummer, H.A.; Oliver, G.D. Predicting asymmetrical lower extremity strength deficits in college-aged men and women using common horizontal and vertical power field tests: A possible screening mechanism. J. Strength Cond. Res. 2011, 25, 1632–1637. [Google Scholar] [CrossRef]
- Hart, N.H.; Nimphius, S.; Spiteri, T.; Newton, R.U. Leg strength and lean mass symmetry influences kicking performance in Australian football. J. Sport. Sci. Med. 2014, 13, 157–165. [Google Scholar]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sport. Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Kyritsis, P.; Bahr, R.; Landreau, P.; Miladi, R.; Witvrouw, E. Likelihood of ACL graft rupture: Not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br. J. Sport. Med. 2016, 50, 946–951. [Google Scholar] [CrossRef]
- Maloney, S.J. The Relationship Between Asymmetry and Athletic Performance: A Critical Review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef]
- Madruga-Parera, M.; Bishop, C.; Read, P.; Lake, J.; Brazier, J.; Romero-Rodriguez, D. Jumping-based Asymmetries are Negatively Associated with Jump, Change of Direction, and Repeated Sprint Performance, but not Linear Speed, in Adolescent Handball Athletes. J. Hum. Kinet. 2020, 71, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fort-Vanmeerhaeghe, A.; Montalvo, A.M.; Sitjà-Rabert, M.; Kiefer, A.W.; Myer, G.D. Neuromuscular asymmetries in the lower limbs of elite female youth basketball players and the application of the skillful limb model of comparison. Phys. Ther. Sport 2015, 16, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Exell, T.; Irwin, G.; Gittoes, M.; Kerwin, D. Strength and performance asymmetry during maximal velocity sprint running. Scand. J. Med. Sci. Sport. 2017, 27, 1273–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalo-Skok, O.; Serna, J.; Rhea, M.R.; Marín, P.J. Relationships between functional movement tests and performance tests in young elite male basketball players. Int. J. Sport. Phys. Ther. 2015, 10, 628. [Google Scholar]
- Barrera-Domínguez, F.J.; Almagro, B.J.; Tornero-Quiñones, I.; Sáez-Padilla, J.; Sierra-Robles, Á.; Molina-López, J. Decisive Factors for a Greater Performance in the Change of Direction and Its Angulation in Male Basketball Players. Int. J. Environ. Res. Public Health 2020, 17, 6598. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Romero-Franco, N.; Jiménez-Reyes, P. Concurrent validity and reliability of an iPhone app for the measurement of ankle dorsiflexion and inter-limb asymmetries. J. Sport. Sci. 2019, 37, 249–253. [Google Scholar] [CrossRef]
- Onofrei, R.R.; Amaricai, E.; Petroman, R.; Suciu, O. Relative and absolute within-session reliability of the modified Star Excursion Balance Test in healthy elite athletes. PeerJ 2019, 7, e6999. [Google Scholar] [CrossRef]
- Bolgla, L.A.; Keskula, D.R. Reliability of lower extremity functional performance tests. J. Orthop. Sport. Phys. Ther. 1997, 26, 138–142. [Google Scholar] [CrossRef]
- De Blas, X.; Padullés, J.M.; Del Amo, J.L.L.; Guerra-Balic, M. Creación y validación de Chronojump-Boscosystem: Un instrumento libre para la medición de saltos verticales. RICYDE Rev. Int. Cienc. Deport. 2012, 8, 334–356. [Google Scholar] [CrossRef]
- Morin, J.B.; Dalleau, G.; Kyröläinen, H.; Jeannin, T.; Belli, A. A simple method for measuring stiffness during running. J. Appl. Biomech. 2005, 21, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences: Jacob Cohen; Lawrence Erlbaum: Hillsdale, MI, USA, 1988. [Google Scholar]
- Chtourou, H.; Hammouda, O.; Souissi, H.; Chamari, K.; Chaouachi, A.; Souissi, N. Diurnal variations in physical performances related to football in young soccer players. Asian J. Sport. Med. 2012, 3, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Webb, P.; Lander, J.L. An economical fitness testing battery for high school and college rugby teams. Sport. Coach 1983, 44–46. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sport. Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G. Spreadsheets for analysis of controlled trials, with adjustment for a subject characteristic. Sportscience 2006, 10, 46–50. [Google Scholar]
- Dello Iacono, A.; Martone, D.; Milic, M.; Padulo, J. Vertical- vs. Horizontal-Oriented Drop Jump Training. J. Strength Cond. Res. 2017, 31, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Abdelkrim, N.B.; El Fazaa, S.; El Ati, J. Time-motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br. J. Sport. Med. 2007, 41, 69–75. [Google Scholar] [CrossRef]
- Michalsik, L.B. On-Court physical demands and physiological aspects in elite team handball. In Handball Sports Medicine: Basic Science, Injury Management and Return to Sport; Laver, L., Landreau, P., Seil, R., Popovic, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 15–33. ISBN 978-3-662-55892-8. [Google Scholar]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The Activity Demands and Physiological Responses Encountered During Basketball Match-Play: A Systematic Review. Sport. Med. 2018, 48, 111–135. [Google Scholar] [CrossRef]
- Dai, B.; Layer, J.; Vertz, C.; Hinshaw, T.; Cook, R.; Li, Y.; Sha, Z. Baseline Assessments of Strength and Balance Performance and Bilateral Asymmetries in Collegiate Athletes. J. Strength Cond. Res. 2019, 33, 3015–3029. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Turner, A.; Maloney, S.; Lake, J.; Loturco, I.; Bromley, T.; Read, P. Drop Jump Asymmetry is Associated with Reduced Sprint and Change-of-Direction Speed Performance in Adult Female Soccer Players. Sports 2019, 7, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozinc, Z.; Marković, G.; Hadžić, V.; Šarabon, N. Relationship between force-velocity-power profiles and inter-limb asymmetries obtained during unilateral vertical jumping and singe-joint isokinetic tasks. J. Sport. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Pardos-Mainer, E.; Casajús, J.A.; Gonzalo-Skok, O. Adolescent female soccer players’ soccer-specific warm-up effects on performance and inter-limb asymmetries. Biol. Sport 2019, 36, 199–207. [Google Scholar] [CrossRef]
- Xixirry, M.G.; Riberto, M.; Manoel, L.S. Analysis of y balance test and dorsiflexion lunge test in professional and amateur soccer players. Rev. Bras. Med. Esporte 2019, 25, 490–493. [Google Scholar] [CrossRef]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.A.; Myer, G.D.; Lloyd, R.S. A prospective investigation to evaluate risk factors for lower extremity injury risk in male youth soccer players. Scand. J. Med. Sci. Sport. 2018, 28, 1244–1251. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Bishop, C.; Busca, B.; Aguilera-Castells, J.; Vicens-Bordas, J.; Gonzalo-Skok, O. Inter-limb asymmetries are associated with decrements in physical performance in youth elite team sports athletes. PLoS ONE 2020, 15. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Lake, J.; Loturco, I.; Papadopoulos, K.; Turner, A.; Read, P. Interlimb Asymmetries: The Need for an Individual Approach to Data Analysis. J. Strength Cond. Res. 2018, 1. [Google Scholar] [CrossRef]
- Exell, T.A.; Irwin, G.; Gittoes, M.J.R.; Kerwin, D.G. Implications of intra-limb variability on asymmetry analyses. J. Sport. Sci. 2012, 30, 403–409. [Google Scholar] [CrossRef]
- Bishop, C. Interlimb Asymmetries: Are Thresholds a Usable Concept? Strength Cond. J. 2020. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Asymmetries in single and triple hop are not detrimental to change of direction speed. J. Trainology 2017, 6, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.R.; Ratamess, N.A.; Klatt, M.; Faigenbaum, A.D.; Kang, J. Do bilateral power deficits influence direction-specific movement patterns? Res. Sport. Med. 2007, 15, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Callaghan, S.J.; Berry, S.P.; Cooke, E.R.A.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. Relationship between unilateral jumping ability and asymmetry on multidirectional speed in team-sport athletes. J. Strength Cond. Res. 2014, 28, 3557–3566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maloney, S.J.; Fletcher, I.M.; Richards, J. A comparison of methods to determine bilateral asymmetries in vertical leg stiffness. J. Sport. Sci. 2016, 34, 829–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotsifaki, A.; Korakakis, V.; Whiteley, R.; Van Rossom, S.; Jonkers, I. Measuring only hop distance during single leg hop testing is insufficient to detect deficits in knee function after ACL reconstruction: A systematic review and meta-analysis. Br. J. Sport. Med. 2020, 54, 139–153. [Google Scholar] [CrossRef]
- Wahlstedt, C.; Rasmussen-Barr, E. Anterior cruciate ligament injury and ankle dorsiflexion. Knee Surgery Sport. Traumatol. Arthrosc. 2015, 23, 3202–3207. [Google Scholar] [CrossRef]
- Read, P.J.; Hughes, J.; Stewart, P.; Chavda, S.; Bishop, C.; Edwards, M.; Turner, A.N. A needs analysis and field-based testing battery for basketball. Strength Cond. J. 2014, 36, 13–20. [Google Scholar] [CrossRef]
- Nygaard Falch, H.; Guldteig Rædergård, H.; Van den Tillaar, R. Relationship of Performance Measures and Muscle Activity between a 180° Change of Direction Task and Different Countermovement Jumps. Sports 2020, 8, 47. [Google Scholar] [CrossRef]
Variables | Mean | SD | CL 95% (Lower; Upper) | Range | |
---|---|---|---|---|---|
Age (years) | 18.9 | 4.11 | 17.5 | 20.2 | 16–32 |
Weight (kg) | 78.9 | 13.0 | 74.6 | 83.2 | 52–112 |
Height (m) | 1.82 | 0.07 | 1.79 | 1.85 | 1.6–2.0 |
BMI (kg·m2–1) | 23.7 | 3.15 | 22.6 | 24.6 | 16–29 |
Fat mass (%) | 12.9 | 6.80 | 10.7 | 15.2 | 3.6–27 |
Mobility | |||||
WB-DF R (°) | 40.0 | 5.59 | 38.2 | 41.8 | 31–54 |
WB-DF L (°) | 39.7 | 5.65 | 37.8 | 41.5 | 27–51 |
WB-DF C (°) | 39.8 | 5.34 | 38.1 | 41.6 | 29–52 |
Dynamic balance | |||||
YBT A R (cm) | 51.2 | 8.26 | 48.5 | 53.9 | 33–68 |
YBT A L (cm) | 51.9 | 7.70 | 49.3 | 54.4 | 34–68 |
YBT PM R (cm) | 69.8 | 9.80 | 66.6 | 73.0 | 49–89 |
YBT PM L (cm) | 68.0 | 7.88 | 65.4 | 70.6 | 50–85 |
YBT PL R (cm) | 68.2 | 11.3 | 64.4 | 71.9 | 34–80 |
YBT PL L (cm) | 69.5 | 11.1 | 65.8 | 73.1 | 49–89 |
YBT R (cm) | 63.0 | 8.54 | 60.2 | 65.8 | 45–77 |
YBT L (cm) | 63.1 | 8.10 | 60.4 | 65.7 | 47–79 |
Lower limb strength | |||||
CMJ (cm) | 35.9 | 5.19 | 34.2 | 37.7 | 26–45 |
DJU R (cm) | 18.1 | 3.55 | 16.9 | 19.3 | 11–27 |
DJU L (cm) | 18.3 | 4.27 | 16.8 | 19.6 | 9.8–29 |
RSI R | 0.88 | 0.23 | 0.80 | 0.95 | 0.4–1.4 |
RSI L | 0.86 | 0.24 | 0.78 | 0.94 | 0.5–1.5 |
Stiffness R | 7.35 | 3.38 | 6.24 | 8.46 | 2.2–15.5 |
Stiffness L | 7.12 | 2.97 | 6.14 | 8.09 | 2.4–14.1 |
THT R (cm) | 578.8 | 57.7 | 559.8 | 597.8 | 457–738 |
THT L (cm) | 593.9 | 67.3 | 571.8 | 616.0 | 467–799 |
Variables | BB (n = 23) | HB (n = 25) | % (CL 90%) | ES (CL 90%) | Chances (%) | Outcome | ||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||||
Mobility | ||||||||
WB-DF R (°) | 39.0 | 5.27 | 41.5 | 5.68 | 6. 36 (−0.21; 13.4) | 0.46 (−0.02; 0.95) | 1/17/82 | Likely |
WB-DF L (°) | 39.3 | 4.78 | 40.6 | 6.16 | 2.96 (−3.88; 10.4) | 0.23 (−0.31; 0.76) | 9/37/53 | Unclear |
WB-DF C (°) | 39.1 | 4.70 | 41.1 | 5.72 | 4.62 (−1.71; 11.4) | 0.37 (−0.14; 0.89) | 3/25/71 | Possibly |
Dynamic balance | ||||||||
YBT A R (cm) | 53.7 | 6.5 | 47.9 | 7.5 | −11.3 (−17.2; −4.91) | −0.93 (−1.47; −0.39) | 99/1/0 | Very likely |
YBT A L (cm) | 54.4 | 7.2 | 47.1 | 6.4 | −13.3 (−18.8; −7.41) | −1.02 (−1.49; −0.55) | 100/0/0 | Most likely |
YBT PM R (cm) | 72.1 | 9.85 | 65.0 | 9.33 | −9.85 (−16.1; −3.11) | −0.69 (−1.18; −0.21) | 95/4/0 | Very likely |
YBT PM L (cm) | 69.0 | 8.89 | 64.4 | 5.96 | −6.23 (−11.3; −0.86) | −0.47 (−0.88; −0.06) | 87/13/0 | Likely |
YBT PL R (cm) | 71.6 | 9.6 | 61.8 | 11.6 | −14.6 (−21.8; −6.82) | −1.09 (−1.69; −0.49) | 99/1/0 | Very likely |
YBT PL L (cm) | 72.3 | 10.9 | 63.7 | 10.2 | −12.0 (−18.8; −4.67) | −0.79 (−1.29; −0.30) | 97/2/0 | Very likely |
YBT R (cm) | 65.8 | 7.26 | 58.3 | 8.14 | −11.8 (−17.2; −6.10) | −1.08 (−1.61; −0.54) | 100/0/0 | Most likely |
YBT L (cm) | 65.2 | 8.14 | 58.44 | 6.65 | −10.2 (−15.4; −4.75) | −0.81 (−1.26; −0.37) | 99/1/0 | Very likely |
Lower limb strength | ||||||||
CMJ (cm) | 35.2 | 4.87 | 36.8 | 5.71 | 4.25 (−3.45; 12.6) | 0.28 (−0.24; 0.80) | 6/33/60 | Unclear |
DJU R (cm) | 17.5 | 2.51 | 18.5 | 4.13 | 4.13 (−5.41; 14.6) | 0.27 (−0.38; 0.92) | 11/31/57 | Unclear |
DJU L (cm) | 16.7 | 3.37 | 19.9 | 4.13 | 19.4 (7.87; 32.1) | 0.81 (0.35; 1.28) | 0/2/98 | Very likely |
RSI R | 0.96 | 0.25 | 0.73 | 0.17 | −22.5 (−31.6; −12.1) | −0.91 (−1.36; −0.46) | 99/1/0 | Very likely |
RSI L | 0.90 | 0.28 | 0.78 | 0.16 | −11.8 (−22.4; 0.19) | −0.40 (−0.81; 0.01) | 79/20/1 | Likely |
Stiffness R | 8.64 | 3.55 | 5.08 | 1.81 | −39.5 (−51.1; −25.3) | −1.05 (−1.49; −0.60) | 100/0/0 | Most likely |
Stiffness L | 8.07 | 3.15 | 5.52 | 2.38 | −32.1 (−45.1; −16.0) | −0.88 (−1.36; −0.40) | 99/1/0 | Very likely |
THT R (cm) | 566.2 | 50.1 | 598.9 | 73.5 | 5.46 (−0.45; 11.7) | 0.57 (−0.05; 1.18) | 2/14/84 | Likely |
THT L (cm) | 583.7 | 61.3 | 599.6 | 77.5 | 2.48 (−3.71; 9.07) | 0.22 (−0.35; 0.80) | 11/36/53 | Unclear |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera-Domínguez, F.J.; Carmona-Gómez, A.; Tornero-Quiñones, I.; Sáez-Padilla, J.; Sierra-Robles, Á.; Molina-López, J. Influence of Dynamic Balance on Jumping-Based Asymmetries in Team Sport: A between-Sports Comparison in Basketball and Handball Athletes. Int. J. Environ. Res. Public Health 2021, 18, 1866. https://doi.org/10.3390/ijerph18041866
Barrera-Domínguez FJ, Carmona-Gómez A, Tornero-Quiñones I, Sáez-Padilla J, Sierra-Robles Á, Molina-López J. Influence of Dynamic Balance on Jumping-Based Asymmetries in Team Sport: A between-Sports Comparison in Basketball and Handball Athletes. International Journal of Environmental Research and Public Health. 2021; 18(4):1866. https://doi.org/10.3390/ijerph18041866
Chicago/Turabian StyleBarrera-Domínguez, Francisco J., Antonio Carmona-Gómez, Inmaculada Tornero-Quiñones, Jesús Sáez-Padilla, Ángela Sierra-Robles, and Jorge Molina-López. 2021. "Influence of Dynamic Balance on Jumping-Based Asymmetries in Team Sport: A between-Sports Comparison in Basketball and Handball Athletes" International Journal of Environmental Research and Public Health 18, no. 4: 1866. https://doi.org/10.3390/ijerph18041866
APA StyleBarrera-Domínguez, F. J., Carmona-Gómez, A., Tornero-Quiñones, I., Sáez-Padilla, J., Sierra-Robles, Á., & Molina-López, J. (2021). Influence of Dynamic Balance on Jumping-Based Asymmetries in Team Sport: A between-Sports Comparison in Basketball and Handball Athletes. International Journal of Environmental Research and Public Health, 18(4), 1866. https://doi.org/10.3390/ijerph18041866