A Comparison of Combustion Properties in Biomass–Coal Blends Using Characteristic and Kinetic Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Analysis
2.2. Thermogravimetric Experiments
2.3. Kinetic Analysis
2.3.1. Flynn–Wall–Ozawa Method
2.3.2. Kissinger–Akahira–Sunose Method
3. Results and Discussion
3.1. TG and DTG Analysis
3.1.1. Combustion Characteristics of Each Sample
3.1.2. Comparison between Coal, Biomass Materials, and Coal–Biomass Blends
- For 10 °C/min, BR > CS > wheat;
- For 20 °C/min and 30 °C/min, BR > wheat > CS.
- For 10 °C/min and 20 °C/min, CBRB > CCSB > CWB;
- For 30 °C/min, CBRB > CCSB = CWB.
3.2. Analysis of Two Kinetic Methods
Calculated Kinetic Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BM | Biomass materials |
TGA | Thermogravimetric analysis |
CBBs | Coal–biomass blends |
CS | Corn straw |
BR | Beet residues after extracting sugar |
CCSBs | Coal–corn straw blends |
CWBs | Coal–wheat blends |
CBRBs | Coal–beet residues blends |
HHV | Higher heating value |
LHV | Lower heating value |
Appendix A
FWO | KAS | FWO | KAS | FWO | KAS | |||||||
α | ECoal KJ/mol | R2Coal | ECoal KJ/mol | R2Coal | ECS KJ/mol | R2CS | ECS KJ/mol | R2CS | EWheat KJ/mol | R2Wheat | EWheat KJ/mol | R2Wheat |
5 | 17.42 | 0.9860 * | 10.39 | 0.9470 * | 56.99 | 0.2863 *** | 52.04 | 0.2321 *** | NVE | NVE | NVE | NVE |
10 | 62.97 | 0.9658 ** | 55.29 | 0.9522 ** | 141.63 | 1.0000 * | 140.43 | 1.0000 * | 310.00 | 0.9804 ** | 317.37 | 0.9793 ** |
15 | 98.48 | 0.9889 ** | 92.06 | 0.9863 ** | 139.14 | 0.9961 * | 137.61 | 0.9956 * | 197.61 | 0.9914 * | 198.91 | 0.9906 * |
20 | 110.97 | 0.9979 ** | 104.77 | 0.9973 ** | 139.05 | 0.9962 * | 137.40 | 0.9957 * | 189.90 | 0.9984 * | 190.64 | 0.9983 * |
25 | 139.50 | 0.9987 * | 134.63 | 0.9984 * | 141.00 | 0.9978 * | 139.37 | 0.9974 * | 187.60 | 0.9998 * | 188.10 | 0.9997 * |
30 | 102.76 | 0.9764 ** | 95.42 | 0.9694 ** | 143.57 | 0.9991 * | 142.02 | 0.9990 * | 187.62 | 0.9950 * | 188.01 | 0.9945 * |
35 | 92.28 | 0.9995 ** | 84.11 | 0.9992 ** | 146.59 | 0.9999 * | 145.14 | 0.9999 * | 190.36 | 0.9822 * | 190.77 | 0.9804 * |
40 | 82.26 | 0.9959 ** | 73.29 | 0.9946 ** | 147.72 | 1.0000 * | 146.28 | 1.0000 * | 196.97 | 0.9593 * | 197.61 | 0.9554 * |
45 | 75.39 | 0.9919 ** | 65.77 | 0.9888 ** | 146.89 | 1.0000 * | 145.35 | 1.0000 * | 208.94 | 0.9173 * | 210.10 | 0.9102 * |
50 | 69.20 | 0.9869 ** | 58.94 | 0.9810 ** | 137.70 | 0.9967 * | 135.62 | 0.9962 * | 103.34 | 0.8290 ** | 223.36 | 0.8012 * |
55 | 63.21 | 0.9769 ** | 52.32 | 0.9645 ** | 120.78 | 0.9754 * | 117.72 | 0.9714 * | 102.48 | 0.7847 ** | 97.62 | 0.7490 ** |
60 | 57.70 | 0.9649 ** | 46.20 | 0.9424 ** | 103.42 | 0.9293 * | 99.33 | 0.9161 * | 100.39 | 0.7424 ** | 95.22 | 0.7006 ** |
65 | 52.81 | 0.9536 ** | 40.70 | 0.9187 ** | 80.62 | 0.8670 * | 75.15 | 0.8362 * | 82.17 | 0.7370 ** | 75.70 | 0.6820 ** |
70 | 48.59 | 0.9443 ** | 35.88 | 0.8951 ** | 67.19 | 0.8402 * | 60.79 | 0.7948 * | 70.98 | 0.7703 ** | 63.43 | 0.7066 ** |
75 | 45.05 | 0.9346 ** | 31.77 | 0.8673 ** | 50.03 | 0.8104 * | 42.39 | 0.7338 * | 75.55 | 0.8034 ** | 67.87 | 0.7477 ** |
80 | 30.97 | 0.9298 * | 28.50 | 0.8370 ** | 63.88 | 0.8792 ** | 56.67 | 0.8380 ** | 90.96 | 0.8042 ** | 83.88 | 0.7587 ** |
85 | 29.18 | 0.9258 * | 25.95 | 0.8064 ** | 73.28 | 0.9752 ** | 66.30 | 0.9671 ** | 81.47 | 0.6726 *** | 73.80 | 0.6036 *** |
90 | 27.84 | 0.9202 * | 24.02 | 0.7762 ** | 158.10 | 0.9952 ** | 155.12 | 0.9944 ** | 101.16 | 0.7551 ** | 94.28 | 0.7072 ** |
95 | 26.89 | 0.9117 * | 22.75 | 0.7475 ** | 171.75 | 0.2295 ** | 169.23 | 0.2073 ** | 206.35 | 0.9560 * | 205.10 | 0.9509 * |
FWO | KAS | FWO | KAS | FWO | KAS | |||||||
α | EBR KJ/mol | R2BR | EBR KJ/mol | R2BR | ECCSB KJ/mol | R2CCSB | ECCSB KJ/mol | R2CCSB | ECWB KJ/mol | R2CWB | ECWB KJ/mol | R2CWB |
5 | 32.93 | 0.9925 * | 28.29 | 0.9893 * | 43.73 | 0.5570 ** | 38.80 | 0.4711 ** | 29.24 | 0.2763 ** | 22.97 | 0.1761 ** |
10 | 39.15 | 0.9404 * | 33.27 | 0.9123 * | 209.31 | 0.9631 ** | 211.30 | 0.9600 ** | 163.60 | 0.9361 ** | 163.01 | 0.9292 ** |
15 | 154.77 | 0.9997 * | 154.17 | 0.9997 * | 203.99 | 0.9304 *** | 205.46 | 0.9245 *** | 174.62 | 0.9734 ** | 174.33 | 0.9704 ** |
20 | 185.29 | 0.9928 * | 186.03 | 0.9921 * | 210.00 | 0.9043 *** | 211.65 | 0.8966 *** | 177.59 | 0.9966 ** | 177.25 | 0.9962 ** |
25 | 216.89 | 0.9960 * | 219.05 | 0.9957 * | 238.23 | 0.7996 *** | 241.22 | 0.7872 *** | 174.74 | 0.9976 ** | 174.08 | 0.9973 ** |
30 | 244.52 | 0.9999 * | 247.89 | 0.9999 * | 133.76 | 0.1770 *** | 131.24 | 0.1577 *** | 172.78 | 0.9866 ** | 171.80 | 0.9849 ** |
35 | 264.74 | 0.9995 * | 268.93 | 0.9995 * | NVE | NVE | NVE | NVE | 269.01 | 0.9933 * | 272.73 | 0.9928 * |
40 | 269.51 | 0.9996 * | 273.71 | 0.9996 * | NVE | NVE | NVE | NVE | 110.75 | 0.9058 ** | 105.40 | 0.8867 ** |
45 | 261.82 | 0.9997 * | 265.40 | 0.9997 * | NVE | NVE | NVE | NVE | 164.00 | 0.9874 ** | 161.02 | 0.9855 ** |
50 | 269.09 | 0.9998 * | 272.86 | 0.9997 * | 248.23 | 0.8841 ** | 249.86 | 0.8747 ** | 240.90 | 0.9810 ** | 241.68 | 0.9791 ** |
55 | 300.94 | 0.9975 * | 306.18 | 0.9974 * | 225.86 | 0.5795 ** | 226.09 | 0.5553 ** | 317.59 | 0.8713 ** | 322.14 | 0.8629 ** |
60 | 696.87 | 0.1561 * | 722.09 | 0.1523 * | 126.65 | 0.9830 ** | 121.18 | 0.9797 ** | 51.13 | 0.1120 *** | 41.65 | 0.0704 *** |
65 | 765.87 | 0.9992 * | 793.69 | 0.9992 * | 103.87 | 0.9911 ** | 96.63 | 0.9889 ** | 321.70 | 0.7255 ** | 325.49 | 0.7099 ** |
70 | 162.12 | 1.0000 * | 158.32 | 1.0000 * | 102.35 | 0.9999 ** | 94.68 | 0.9999 ** | 216.28 | 0.9745 ** | 214.32 | 0.9712 ** |
75 | 137.47 | 0.9837 * | 132.25 | 0.9804 * | 100.48 | 0.9995 ** | 92.47 | 0.9993 ** | 185.12 | 0.9927 ** | 181.39 | 0.9915 ** |
80 | 112.25 | 0.9684 * | 105.56 | 0.9604 * | 96.72 | 0.9977 ** | 88.28 | 0.9968 ** | 173.98 | 0.9958 * | 169.67 | 0.9950 * |
85 | 93.28 | 0.9530 * | 85.40 | 0.9382 * | 91.73 | 0.9965 ** | 82.81 | 0.9949 ** | 147.54 | 0.9952 * | 141.72 | 0.9944 * |
90 | 82.05 | 0.9424 * | 73.38 | 0.9211 * | 86.69 | 0.9964 ** | 77.27 | 0.9945 ** | 115.17 | 0.9890 ** | 107.23 | 0.9856 ** |
95 | 73.62 | 0.9368 * | 64.27 | 0.9096 * | 81.27 | 0.9967 ** | 71.31 | 0.9948 ** | 106.20 | 0.9825 ** | 97.49 | 0.9766 ** |
FWO | KAS | |||||||||||
α | ECBRB KJ/mol | R2CBRB | ECBRB KJ/mol | R2CBRB | ||||||||
5 | 150.76 | 0.9676 * | 151.71 | 0.9648 * | ||||||||
10 | 390.99 | 0.8539 * | 402.56 | 0.8485 * | ||||||||
15 | 643.46 | 0.9648 * | 667.61 | 0.9639 * | ||||||||
20 | 557.29 | 0.8214 * | 576.54 | 0.8166 * | ||||||||
25 | 457.81 | 0.9666 * | 471.47 | 0.9652 * | ||||||||
30 | 453.86 | 0.9776 * | 466.96 | 0.9766 * | ||||||||
35 | 594.38 | 0.9458 ** | 613.98 | 0.9439 ** | ||||||||
40 | 308.17 | 0.9843 ** | 312.25 | 0.9831 ** | ||||||||
45 | 207.35 | 0.9998 * | 205.80 | 0.9998 * | ||||||||
50 | 223.80 | 0.9686 ** | 222.76 | 0.9650 ** | ||||||||
55 | 185.11 | 0.9717 ** | 181.89 | 0.9675 ** | ||||||||
60 | 151.54 | 0.9872 ** | 146.38 | 0.9847 ** | ||||||||
65 | 126.87 | 0.9998 ** | 120.22 | 0.9997 ** | ||||||||
70 | 113.52 | 0.9995 ** | 105.92 | 0.9993 ** | ||||||||
75 | 101.45 | 0.9970 ** | 93.01 | 0.9958 ** | ||||||||
80 | 90.65 | 0.9944 ** | 81.44 | 0.9918 ** | ||||||||
85 | 80.38 | 0.9887 ** | 70.39 | 0.9828 ** | ||||||||
90 | 71.41 | 0.9819 ** | 60.66 | 0.9707 ** | ||||||||
95 | 63.79 | 0.9766 ** | 52.32 | 0.9595 ** |
References
- Munir, S.; Daood, S.S.; Nimmo, W.; Cunliffe, A.M.; Gibbs, B.M. Thermal Analysis and Devolatilization Kinetics of Cotton Stalk, Sugar Cane Bagasse and Shea Meal under Nitrogen and Air Atmospheres. Bioresour. Technol. 2009, 100, 1413–1418. [Google Scholar] [CrossRef]
- Siddiqi, M.H.; Liu, X.; Qureshi, T.; Tabish, A.N.; Nawaz, S.; Iqbal, T. Performance Analysis of Bio-Fuel Blends for Clean Energy Production: Thermogravimetric Analysis. J. Clean. Prod. 2020, 273, 122936. [Google Scholar] [CrossRef]
- Yuan, J. The Future of Coal in China. Resour. Conserv. Recycl. 2018, 129, 290–292. [Google Scholar] [CrossRef]
- Tongia, R.; Gross, S. Coal in India: Adjusting to Transition. 2019. Available online: https://www.brookings.edu/wp-content/uploads/2019/03/fp_20190731_coal_in_india.pdf (accessed on 8 October 2021).
- Li, H.; Chi, H.; Han, H.; Hu, S.; Song, G.; Wang, Y.; He, L.; Wang, Y.; Su, S.; Xiang, J. Comprehensive Study on Co-Combustion Behavior of Pelletized Coal-Biomass Mixtures in a Concentrating Photothermal Reactor. Fuel Process. Technol. 2021, 211, 106596. [Google Scholar] [CrossRef]
- Demirbas, A. Combustion Characteristics of Different Biomass Fuels. Prog. Energy Combust. Sci. 2004, 30, 219–230. [Google Scholar] [CrossRef]
- Spliethoff, H.; Unterberger, S.; Hein, K.R.G. Status of Co-Combustion of Coal and Biomass in Europe. Int. J. Energy Clean Environ. 2004, 5, 25. [Google Scholar] [CrossRef]
- Molcan, P.; Lu, G.; Le Bris, T.; Yan, Y.; Taupin, B.; Caillat, S. Characterisation of Biomass and Coal Co-Firing on a 3MWth Combustion Test Facility Using Flame Imaging and Gas/Ash Sampling Techniques. Fuel 2009, 88, 2328–2334. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Yang, Q.; Liang, R. Thermogravimetric Studies of the Behavior of Wheat Straw with Added Coal during Combustion. Biomass Bioenergy 2009, 33, 50–56. [Google Scholar] [CrossRef]
- Biagini, E.; Lippi, F.; Petarca, L.; Tognotti, L. Devolatilization Rate of Biomasses and Coal–Biomass Blends: An Experimental Investigation. Fuel 2002, 81, 1041–1050. [Google Scholar] [CrossRef]
- Haykiri-Acma, H.; Yaman, S. Effect of Co-Combustion on the Burnout of Lignite/Biomass Blends: A Turkish Case Study. Waste Manag. 2008, 28, 2077–2084. [Google Scholar] [CrossRef] [PubMed]
- Kastanaki, E.; Vamvuka, D. A Comparative Reactivity and Kinetic Study on the Combustion of Coal–Biomass Char Blends. Fuel 2006, 85, 1186–1193. [Google Scholar] [CrossRef]
- Gil, M.V.; Casal, D.; Pevida, C.; Pis, J.J.; Rubiera, F. Thermal Behaviour and Kinetics of Coal/Biomass Blends during Co-Combustion. Bioresour. Technol. 2010, 101, 5601–5608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, F.; He, Y.; Hassanpour, A.; Gardy, J.; Zhong, Z. Thermogravimetric Analysis on the Co-Combustion of Biomass Pellets with Lignite and Bituminous Coal. Energy 2020, 197, 117147. [Google Scholar] [CrossRef]
- Laougé, Z.B.; Merdun, H. Investigation of Thermal Behavior of Pine Sawdust and Coal during Co-Pyrolysis and Co-Combustion. Energy 2021, 231, 120895. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Y.; Huang, Q.; Cai, J. Thermogravimetric Characteristics and Kinetic of Plastic and Biomass Blends Co-Pyrolysis. Fuel Process. Technol. 2006, 87, 963–969. [Google Scholar] [CrossRef]
- Shen, D.K.; Gu, S.; Luo, K.H.; Bridgwater, A.V.; Fang, M.X. Kinetic Study on Thermal Decomposition of Woods in Oxidative Environment. Fuel 2009, 88, 1024–1030. [Google Scholar] [CrossRef] [Green Version]
- Várhegyi, G.; Szabó, P.; Jakab, E.; Till, F.; Richard, J.-R. Mathematical Modeling of Char Reactivity in Ar−O2 and CO2−O2 Mixtures. Energy Fuels 1996, 10, 1208–1214. [Google Scholar] [CrossRef] [Green Version]
- Russell, N.V.; Beeley, T.J.; Man, C.-K.; Gibbins, J.R.; Williamson, J. Development of TG Measurements of Intrinsic Char Combustion Reactivity for Industrial and Research Purposes. Fuel Process. Technol. 1998, 57, 113–130. [Google Scholar] [CrossRef]
- Ciuryla, V.T.; Weimer, R.F.; Bivans, D.A.; Motika, S.A. Ambient-Pressure Thermogravimetric Characterization of Four Different Coals and Their Chars. Fuel 1979, 58, 748–754. [Google Scholar] [CrossRef]
- Di Blasi, C.; Buonanno, F.; Branca, C. Reactivities of Some Biomass Chars in Air. Carbon N. Y. 1999, 37, 1227–1238. [Google Scholar] [CrossRef]
- Henrich, E.; Bürkle, S.; Meza-Renken, Z.I.; Rumpel, S. Combustion and Gasification Kinetics of Pyrolysis Chars from Waste and Biomass. J. Anal. Appl. Pyrolysis 1999, 49, 221–241. [Google Scholar] [CrossRef]
- Adánez, J.; de Diego, L.F.; García-Labiano, F.; Abad, A.; Abanades, J.C. Determination of Biomass Char Combustion Reactivities for FBC Applications by a Combined Method. Ind. Eng. Chem. Res. 2001, 40, 4317–4323. [Google Scholar] [CrossRef]
- Zolin, A.; Jensen, A.; Jensen, P.A.; Frandsen, F.; Dam-Johansen, K. The Influence of Inorganic Materials on the Thermal Deactivation of Fuel Chars. Energy Fuels 2001, 15, 1110–1122. [Google Scholar] [CrossRef]
- Stenseng, M.; Zolin, A.; Cenni, R.; Frandsen, F.; Jensen, A.; Dam-Johansen, K. Thermal Analysis in Combustion Research. J. Therm. Anal. Calorim. 2001, 64, 1325–1334. [Google Scholar] [CrossRef]
- Backreedy, R.I.; Fletcher, L.M.; Jones, J.M.; Ma, L.; Pourkashanian, M.; Williams, A. Co-Firing Pulverised Coal and Biomass: A Modeling Approach. Proc. Combust. Inst. 2005, 30, 2955–2964. [Google Scholar] [CrossRef]
- Magalhães, D.; Kazanç, F.; Riaza, J.; Erensoy, S.; Kabaklı, Ö.; Chalmers, H. Combustion of Turkish Lignites and Olive Residue: Experiments and Kinetic Modelling. Fuel 2017, 203, 868–876. [Google Scholar] [CrossRef]
- Ullah, H.; Liu, G.; Yousaf, B.; Ali, M.U.; Abbas, Q.; Zhou, C. Combustion Characteristics and Retention-Emission of Selenium during Co-Firing of Torrefied Biomass and Its Blends with High Ash Coal. Bioresour. Technol. 2017, 245, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, J.; Shao, J.; Liu, Z.; Zhang, G.; Xu, T.; Guo, J.; Wang, H.; Xu, R.; Lin, H. Thermal Behavior and Kinetic Analysis of Co-Combustion of Waste Biomass/Low Rank Coal Blends. Energy Convers. Manag. 2016, 124, 414–426. [Google Scholar] [CrossRef]
- Chansa, O.; Luo, Z.; Yu, C. Study of the Kinetic Behaviour of Biomass and Coal during Oxyfuel Co-Combustion. Chin. J. Chem. Eng. 2020, 28, 1796–1804. [Google Scholar] [CrossRef]
- Czajka, K.M. Proximate Analysis of Coal by Micro-TG Method. J. Anal. Appl. Pyrolysis 2018, 133, 82–90. [Google Scholar] [CrossRef]
- Pizarro, C.; Lavín, A.; Bueno, J. Biomass Proximate Analysis Using Thermogravimetry. Bioresour. Technol. 2013, 139, 1–4. [Google Scholar] [CrossRef]
- Merdun, H.; Laougé, Z.B. Kinetic and Thermodynamic Analyses during Co-Pyrolysis of Greenhouse Wastes and Coal by TGA. Renew. Energy 2021, 163, 453–464. [Google Scholar] [CrossRef]
- Gil, M.V.; Riaza, J.; Álvarez, L.; Pevida, C.; Pis, J.J.; Rubiera, F. Kinetic Models for the Oxy-Fuel Combustion of Coal and Coal/Biomass Blend Chars Obtained in N2 and CO2 Atmospheres. Energy 2012, 48, 510–518. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Lopez, M.; Pedrosa-Castro, G.J.; Valverde, J.L.; Sanchez-Silva, L. Kinetic Analysis of Manure Pyrolysis and Combustion Processes. Waste Manag. 2016, 58, 230–240. [Google Scholar] [CrossRef]
- Chen, G.; He, S.; Cheng, Z.; Guan, Y.; Yan, B.; Ma, W.; Leung, D.Y.C. Comparison of Kinetic Analysis Methods in Thermal Decomposition of Cattle Manure by Themogravimetric Analysis. Bioresour. Technol. 2017, 243, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.; Liu, Q.; Ran, G.; Liu, L.; Ren, S.; Chen, L.; Jiang, L. Experiment and Expectation: Co-Combustion Behavior of Anthracite and Biomass Char. Bioresour. Technol. 2019, 280, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.H. The ‘Temperature Integral’—Its Use and Abuse. Thermochim. Acta 1997, 300, 83–92. [Google Scholar] [CrossRef]
- Lu, J.-J.; Chen, W.-H. Investigation on the Ignition and Burnout Temperatures of Bamboo and Sugarcane Bagasse by Thermogravimetric Analysis. Appl. Energy 2015, 160, 49–57. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Liu, F.; Yan, B.; Cheng, Z.; Ma, W. Comparison of Combustion Kinetics of the Biomass Hydrolysis Residue with Raw Biomass Materials. Energy Fuels 2019, 34, 1193–1201. [Google Scholar] [CrossRef]
- Yılgın, M.; Deveci Duranay, N.; Pehlivan, D. Co-Pyrolysis of Lignite and Sugar Beet Pulp. Energy Convers. Manag. 2010, 51, 1060–1064. [Google Scholar] [CrossRef]
- Xie, Z.; Ma, X. The Thermal Behaviour of the Co-Combustion between Paper Sludge and Rice Straw. Bioresour. Technol. 2013, 146, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Rahib, Y.; Sarh, B.; Bostyn, S.; Bonnamy, S.; Boushaki, T.; Chaoufi, J. Non-Isothermal Kinetic Analysis of the Combustion of Argan Shell Biomass. Mater. Today Proc. 2020, 24, 11–16. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Koga, N.; Schick, C. Handbook of Thermal Analysis and Calorimetry, v.6, Recent Advances, Techniques and Applications; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-444-64062-8. [Google Scholar]
- Vyazovkin, S.; Sbirrazzuoli, N. Isoconversional Kinetic Analysis of Thermally Stimulated Processes in Polymers. Macromol. Rapid Commun. 2006, 27, 1515–1532. [Google Scholar] [CrossRef]
- Vyazovkin, S. Modification of the Integral Isoconversional Method to Account for Variation in Activation Energy. J. Comput. Chem. 2001, 22, 178–183. [Google Scholar] [CrossRef]
Characteristic | Coal | Corn Straw | Wheat | Beet Residues |
---|---|---|---|---|
Proximate analysis (wt %) | ||||
Moisture | 6.61 | 5.50 | 5.81 | 9.95 |
Ash | 37.00 | 7.47 | 4.99 | 27.28 |
Volatile matter | 3.72 | 69.18 | 54.45 | 43.13 |
Fixed carbon | 52.67 | 17.85 | 34.75 | 19.64 |
Ultimate analysis (wt %, daf) | ||||
C | 52.19 | 33.09 | 32.85 | 29.68 |
H | 3.24 | 3.94 | 4.01 | 3.96 |
S | 0.36 | 0 | 0 | 0.23 |
N | 0 | 0 | 0 | 0 |
O a | 44.21 | 62.97 | 63.14 | 66.13 |
HHV (kcal/kg) | 5404 | 4070 | 4073 | 3801 |
LHV (kcal/kg) | 5238 | 3868 | 3868 | 3598 |
Sample | Ti (°C) | Tmax (°C) | Tb (°C) | Ash Fraction | −(dα/dt)max |
---|---|---|---|---|---|
10 °C/min | |||||
Coal | 397 | 525 | 626 | 0.12 | 4.0 × 10−3 |
CS | 243 | 264 | 299 | 0.07 | 15.9 × 10−3 |
Wheat | 247 | 285 | 369 | 0.06 | 74 × 10−3 |
BR | 252 | 332 | 426 | 0.11 | 4.6 × 10−3 |
CCSB | 249 | 271 | 390 | 0.04 | 6.4 × 10−3 |
CWB | 259 | 295 | 443 | 0.03 | 5.0 × 10−3 |
CBRB | 257 | 337 | 613 | 0.06 | 2.4 × 10−3 |
20 °C/min | |||||
Coal | 383 | 435 | 808 | 0.17 | 1.80 × 10−3 |
CS | 251 | 275 | 312 | 0.03 | 15.8 × 10−3 |
Wheat | 261 | 299 | 364 | 0.07 | 8.6 × 10−3 |
BR | 254 | 338 | 438 | 0.11 | 4.4 × 10−3 |
CCSB | 260 | 281 | 367 | 0.03 | 8.7 × 10−3 |
CWB | 256 | 299 | 483 | 0.02 | 4.0 × 10−3 |
CBRB | 268 | 346 | 591 | 0.07 | 2.7 × 10−3 |
30 °C/min | |||||
Coal | 409 | 450 | 700 | 0.07 | 3.0 × 10−3 |
CS | 260 | 279 | 317 | 0.03 | 16.5 × 10−3 |
Wheat | 266 | 309 | 375 | 0.06 | 8.2 × 10−3 |
BR | 263 | 343 | 436 | 0.09 | 4.8 × 10−3 |
CCSB | 269 | 290 | 335 | 0.03 | 14.0 × 10−3 |
CWB | 275 | 313 | 356 | 0.03 | 5.1 × 10−3 |
CBRB | 264 | 346 | 622 | 0.06 | 2.4 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yan, B.; Wang, Y.; Zhang, J.; Chen, X.; Bastiaans, R.J.M. A Comparison of Combustion Properties in Biomass–Coal Blends Using Characteristic and Kinetic Analyses. Int. J. Environ. Res. Public Health 2021, 18, 12980. https://doi.org/10.3390/ijerph182412980
Wang Y, Yan B, Wang Y, Zhang J, Chen X, Bastiaans RJM. A Comparison of Combustion Properties in Biomass–Coal Blends Using Characteristic and Kinetic Analyses. International Journal of Environmental Research and Public Health. 2021; 18(24):12980. https://doi.org/10.3390/ijerph182412980
Chicago/Turabian StyleWang, Yalin, Beibei Yan, Yu Wang, Jiahao Zhang, Xiaozhong Chen, and Rob J. M. Bastiaans. 2021. "A Comparison of Combustion Properties in Biomass–Coal Blends Using Characteristic and Kinetic Analyses" International Journal of Environmental Research and Public Health 18, no. 24: 12980. https://doi.org/10.3390/ijerph182412980
APA StyleWang, Y., Yan, B., Wang, Y., Zhang, J., Chen, X., & Bastiaans, R. J. M. (2021). A Comparison of Combustion Properties in Biomass–Coal Blends Using Characteristic and Kinetic Analyses. International Journal of Environmental Research and Public Health, 18(24), 12980. https://doi.org/10.3390/ijerph182412980