Direct and Indirect Effects of Indoor Particulate Matter on Blood Indicators Related to Anemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Evaluation of PM Concentration
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Mechanism of PM Action
4.2. PM and Health Effects
4.3. Contribution of Our Study
4.4. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mishra, V.; Retherford, R.D. Does biofuel smoke contribute to anaemia and stunting in early childhood? Int. J. Epidemiol. 2007, 36, 117–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arinola, G.O.; Dutta, A.; Oluwole, O.; Olopade, C.O. Household Air Pollution, Levels of Micronutrients and Heavy Metals in Cord and Maternal Blood, and Pregnancy Outcomes. Int. J. Environ. Res. Public Health 2018, 15, 2891. [Google Scholar] [CrossRef] [Green Version]
- Demmouche, A.; Lazrag, A.; Moulessehoul, S. Prevalence of anaemia in pregnant women during the last trimester: Consequense for birth weight. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 436–445. [Google Scholar]
- Aşkar, T.K.; Büyükleblebici, O.; Hismioğulları, A.; Hünkerler, Z. Oxidative Stress, Hepcidin and Nesfatin-I Status in Childhood Iron and Vitamin B12 Deficiency Anemias. Adv. Clin. Exp. Med. 2017, 26, 621–625. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Amarachintha, S.; Wilson, A.F.; Li, X.; Du, W. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress. Cell Cycle 2017, 16, 1201–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, J.; Karlsson, O.; Wang, G.; Li, J.; Guo, Y.; Lin, X.C.; Zemplenyi, M.; Sanchez-Guerra, M.; Trevisi, L.; Urch, B.; et al. B vitamins attenuate the epigenetic effects of ambient fine particles in a pilot human intervention trial. Proc. Natl. Acad. Sci. USA 2017, 114, 3503–3508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badman, D.; Jaffe, E. Blood and air pollution: State of knowledge and research needs. Otolaryngol. Head Neck Surg. 1996, 114, 205–208. [Google Scholar] [CrossRef]
- Honda, T.; Pun, V.C.; Manjourides, J.; Suh, H. Anemia prevalence and hemoglobin levels are associated with long-term exposure to air pollution in an older population. Environ. Int. 2017, 101, 125–132. [Google Scholar] [CrossRef]
- A Odewole, O.; Williamson, R.S.; A Zakai, N.; Berry, R.; E Judd, S.; Qi, Y.P.; Adedinsewo, D.; Oakley, G.P. Near-elimination of folate-deficiency anemia by mandatory folic acid fortification in older US adults: Reasons for Geographic and Racial Differences in Stroke study 2003–2007. Am. J. Clin. Nutr. 2013, 98, 1042–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, X.; Zhong, J.; Brook, R.D.; Rajagopalan, S. Effect of Particulate Matter Air Pollution on Cardiovascular Oxidative Stress Pathways. Antioxid. Redox Signal. 2018, 28, 797–818. [Google Scholar] [CrossRef] [PubMed]
- Mehta, U.; Dey, S.; Chowdhury, S.; Ghosh, S.; E Hart, J.; Kurpad, A. The Association Between Ambient PM2.5 Exposure and Anemia Outcomes Among Children Under Five Years of Age in India. Environ. Epidemiol. 2021, 5, e125. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.S.; Kim, S.; Kim, W.J.; Kim, H.-C.; Bae, J.; Hong, Y.-C.; Ha, M.; Ahm, K.; Lee, J.-Y.; Kim, Y.; et al. Cohort profile: Beyond birth cohort study—The Korean CHildren’s ENvironmental health Study (Ko-CHENS). Environ. Res. 2019, 172, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-W.; Oh, J.; Ye, S.; Kwag, Y.; Yang, W.; Kim, Y.; Ha, E. Indoor particulate matter and blood heavy metals in housewives: A repeated measured study. Environ. Res. 2021, 197, 111013. [Google Scholar] [CrossRef]
- A Hundrup, Y.; Simonsen, M.K.; Jørgensen, T.; Obel, E.B. Cohort Profile: The Danish nurse cohort. Int. J. Epidemiol. 2011, 41, 1241–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.Y.; Magari, S.R.; Herrick, R.F.; Smith, T.J.; Christiani, D.C. Comparison of fine particle measurements from a direct-reading instrument and a gravimetric sampling method. J. Occup. Environ. Hyg. 2004, 1, 707–715. [Google Scholar] [CrossRef]
- Shi, J.; Chen, F.; Cai, Y.; Fan, S.; Cai, J.; Chen, R.; Kan, H.; Lu, Y.; Zhao, Z. Validation of a light-scattering PM2.5 sensor monitor based on the long-term gravimetric measurements in field tests. PLoS ONE 2017, 12, e0185700. [Google Scholar] [CrossRef]
- Mannino, D.M.; Mulinare, J.; Ford, E.S.; Schwartz, J. Tobacco smoke exposure and decreased serum and red blood cell folate levels: Data from the Third National Health and Nutrition Examination Survey. Nicotine Tob. Res. 2003, 5, 357–362. [Google Scholar] [CrossRef]
- Sobczyńska-Malefora, A.; Harrington, D.J. Laboratory assessment of folate (vitamin B9) status. J. Clin. Pathol. 2018, 71, 949–956. [Google Scholar] [CrossRef]
- Harris, A.M.; Sempértegui, F.; Estrella, B.; Narváez, X.; Egas, J.; Woodin, M.; Durant, J.L.; Naumova, E.N.; Griffiths, J.K. Air pollution and anemia as risk factors for pneumonia in ecuadorian children: A retrospective cohort analysis. Environ. Health 2011, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.Y.-F.; Wang, Y.-P.; Wu, Y.-C.; Cheng, S.-J.; Chen, H.-M.; Sun, A. Hematinic deficiencies and anemia statuses in oral mucosal disease patients with folic acid deficiency. J. Formos. Med. Assoc. 2015, 114, 806–812. [Google Scholar] [CrossRef] [Green Version]
- Thoradeniya, T.; Wickremasinghe, R.; Ramanayake, R.; Atukorala, S. Low folic acid status and its association with anaemia in urban adolescent girls and women of childbearing age in Sri Lanka. Br. J. Nutr. 2006, 95, 511–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathy, S.; Marsland, A.L.; Kinnee, E.J.; Tunno, B.J.; Manuck, S.B.; Gianaros, P.J.; Clougherty, J.E. Long-Term Ambient Air Pollution Exposures and Circulating and Stimulated Inflammatory Mediators in a Cohort of Midlife Adults. Environ. Health Perspect. 2021, 129, 057007. [Google Scholar] [CrossRef]
- Dutta, A.; Roychoudhury, S.; Chowdhury, S.; Ray, M.R. Changes in sputum cytology, airway inflammation and oxidative stress due to chronic inhalation of biomass smoke during cooking in premenopausal rural Indian women. Int. J. Hyg. Environ. Health 2013, 216, 301–308. [Google Scholar] [CrossRef]
- Banerjee, A.; Mondal, N.K.; Das, D.; Ray, M.R. Neutrophilic Inflammatory Response and Oxidative Stress in Premenopausal Women Chronically Exposed to Indoor Air Pollution from Biomass Burning. Inflammation 2011, 35, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-M.; The MOCEH Study Group; Ha, M.; Park, H.-S.; Lee, B.E.; Kim, Y.J.; Hong, Y.-C.; Kim, Y.; Chang, N.; Roh, Y.-M.; et al. The Mothers and Children’s Environmental Health (MOCEH) study. Eur. J. Epidemiol. 2009, 24, 573–583. [Google Scholar] [CrossRef] [Green Version]
- E Duffy, M.; Hoey, L.; Hughes, C.F.; Strain, J.; Rankin, A.; Souverein, O.W.; Dullemeijer, C.; Collings, R.; Hooper, L.; McNulty, H. Biomarker responses to folic acid intervention in healthy adults: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2013, 99, 96–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos Nouri, A.; Charalampopoulos, I.; Matzarakis, A. Beyond Singular Climatic Variables-Identifying the Dynamics of Wholesome Thermo-Physiological Factors for Existing/Future Human Thermal Comfort during Hot Dry Mediterranean Summers. Int. J. Environ. Res. Public Health 2018, 15, 2362. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, B.; Dutta, A.; Chowdhury, S.; Roychoudhury, S.; Ray, M.R. Reduction of DNA mismatch repair protein expression in airway epithelial cells of premenopausal women chronically exposed to biomass smoke. Environ. Sci. Pollut. Res. Int. 2013, 21, 2826–2836. [Google Scholar] [CrossRef] [PubMed]
- Imam, M.U.; Zhang, S.; Ma, J.; Wang, H.; Wang, F. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients 2017, 9, 671. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Prasad, S.K.; Pal, S.; Maji, B.; Syamal, A.K.; Mukherjee, S. Synergistic protective effect of folic acid and vitamin B12against nicotine-induced oxidative stress and apoptosis in pancreatic islets of the rat. Pharm. Biol. 2015, 54, 433–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndiaye, N.F.; Idohou-Dossou, N.; Diouf, A.; Guiro, A.T.; Wade, S. Folate Deficiency and Anemia Among Women of Reproductive Age (15-49 Years) in Senegal: Results of a National Cross-Sectional Survey. Food Nutr. Bull. 2018, 39, 65–74. [Google Scholar] [CrossRef]
- Accinelli, R.A.; Leon-Abarca, J.A. Solid fuel use is associated with anemia in children. Environ. Res. 2017, 158, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Haidar, J. Prevalence of Anaemia, Deficiencies of Iron and Folic Acid and Their Determinants in Ethiopian Women. J. Health Popul. Nutr. 2010, 28, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Bora, K. Air Pollution as a Determinant of Undernutrition Prevalence among Under-Five Children in India: An Exploratory Study. J. Trop. Pediatr. 2021, 67, fmab089. [Google Scholar] [CrossRef]
- Morales-Ancajima, V.C.; Tapia, V.; Vu, B.N.; Liu, Y.; Alarcón-Yaquetto, D.E.; Gonzales, G.F. Increased Outdoor PM2.5 Concentration Is Associated with Moderate/Severe Anemia in Children Aged 6–59 Months in Lima, Peru. J. Environ. Public Health 2019, 2019, 6127845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.; Chandra, J.; Sharma, S.; Jain, A.; Pemde, H.K. Determinants of nutritional anemia in adolescents. Indian Pediatr. 2015, 52, 867–869. [Google Scholar] [CrossRef] [PubMed]
- Vreugdenhil, G.; Wognum, A.W.; van Eijk, H.G.; Swaak, A.J. Anaemia in rheumatoid arthritis: The role of iron, vitamin B12, and folic acid deficiency, and erythropoietin responsiveness. Ann. Rheum. Dis. 1990, 49, 93–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Tang, M. PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environ. Pollut. 2019, 254 Pt A, 112937. [Google Scholar] [CrossRef]
Characteristics | Total Observations-284 | Anemic-31 | Non-Anemic-253 | p-Value |
% or Mean ± SD | ||||
Age (mean ± SD) | 34.34 ± 3.65 | 35.03 ± 3.10 | 34.25 ± 4.59 | 0.245 |
BMI kg/m2 (mean ± SD) | 23.43 ± 4.47 | 22.36 ± 3.45 | 23.55 ± 3.67 | 0.061 |
BMI < 18.5 (n, %) | 20 (7.04) | 3 (9.68) | 17 (6.72) | 0.130 |
18.5 ≤ BMI < 25 (n, %) | 184 (64.79) | 24 (77.42) | 160 (63.24) | |
BMI ≥ 25 (n, %) | 80 (28.17) | 4 (12.90) | 76 (30.04) | |
PM Value | ||||
Gravimetric PM2.5 | 30.68 ± 20.50 | 28.09 ± 26.93 | 30.99 ± 21.50 | 0.565 |
Gravimetric PM10 | 48.12 ± 27.10 | 46.61 ± 37.98 | 48.30 ± 26.5 | 0.811 |
Biomarker (mean ± SD) | ||||
Hemoglobin | 13.08 ± 1.06 | 11.13 ± 0.83 | 13.3 ± 0.82 | <0.001 |
Hematocrit | 40.43 ± 3.04 | 35.4 ± 2.02 | 41.01 ± 2.56 | <0.001 |
MCV | 92.74 ± 4.92 | 88.68 ± 8.43 | 93.21± 4.11 | <0.001 |
MCH | 30.0 ± 1.86 | 27.90 ± 3.33 | 30.25 ± 1.42 | <0.001 |
MCHC | 32.34 ± 0.89 | 31.39 ± 1.05 | 32.45 ± 0.80 | <0.001 |
Folate | 11.16 ± 7.07 | 10.25 ± 4.21 | 11.27 ± 7.35 | 0.301 |
Ferritin | 43.01 ± 33.59 | 9.41 ± 7.18 | 47.15 ± 33.61 | <0.001 |
p-Value; t-test | ||||
Characteristics | Total Observations (N = 153) | Anemic (N = 18) | Normal (N = 135) | p-Value |
% or Mean ± SD | ||||
Age (mean ± SD) | 34.42 ± 3.60 | 35.11 ± 3.48 | 34.33 ± 3.38 | 0.377 |
BMI kg/m2 (mean ± SD) | 23.02 ± 3.39 | 22.54 ± 3.85 | 23.08 ± 3.58 | 0.576 |
BMI < 18.5 (n, %) | 11 (7.19) | 3 (16.67) | 8 (5.93) | 0.252 |
18.5 ≤ BMI < 25 (n, %) | 103 (67.32) | 11 (61.11) | 92 (68.15) | |
BMI ≥ 25 (n, %) | 39 (25.49) | 4 (22.22) | 35 (25.93) | |
PM Value | ||||
Gravimetric PM2.5 | 28.32 ± 16.99 | 23.02 ± 12.26 | 29.02 ± 17.44 | 0.076 |
Gravimetric PM10 | 44.76 ± 21.89 | 38.33 ± 15.27 | 45.62 ± 22.53 | 0.085 |
sensor PM2.5 | 11.63 ± 7.67 | 11.91 ± 6.98 | 11.59 ± 7.78 | 0.857 |
sensor PM10 | 21.69 ± 13.82 | 21.90 ± 12.16 | 21.66 ± 14.06 | 0.939 |
Biomarker (mean ± SD) | ||||
Hemoglobin | 12.95 ± 0.97 | 11.25 ± 0.49 | 13.18 ± 0.77 | <0.001 |
Hematocrit | 40.17 ± 2.87 | 35.85 ± 1.37 | 40.75 ± 2.50 | <0.001 |
MCV | 93.05 ± 4.58 | 89.26 ± 6.81 | 93.56 ± 3.96 | 0.017 |
MCH | 30.02 ± 1.72 | 28.01 ± 2.50 | 30.29 ± 1.39 | 0.001 |
MCHC | 32.25 ± 0.79 | 31.36 ± 0.74 | 32.37 ± 0.71 | <0.001 |
Folate | 11.21 ± 7.07 | 11.00 ± 4.21 | 11.23 ± 7.35 | 0.849 |
ferritin | 40.18 ± 33.59 | 9.412 ± 7.18 | 43.97 ± 33.62 | <0.001 |
Alcoholexperience | ||||
No (n, %) | 44 (28.76) | 3 (16.67) | 41 (30.37) | 0.177 |
Yes (n, %) | 109 (71.24) | 15 (83.33) | 94 (69.63) | |
(Drinking more than once a week) | ||||
No (n, %) | 97 (88.99) | 13 (86.67) | 84 (89.36) | 0.470 |
Yes (n, %) | 12 (11) | 2 (13.33) | 10 (10.63) | |
Physical activity | ||||
No (n, %) | 124 (81.05) | 15 (83.33) | 109 (80.74) | 0.792 |
Yes (n, %) | 29 (18.95) | 3 (16.67) | 26 (19.26) | |
Education level | ||||
≤High school (n, %) | 32 (20.92) | 6 (33.33) | 26 (19.26) | 0.168 |
≥college (n, %) | 121 (79.08) | 12 (66.67) | 109 (80.74) | |
Smokingexperience (n, %) | ||||
Yes | 23 (15.03) | 2 (11.11) | 21 (15.56) | 0.620 |
Cook fuel | ||||
gas (n, %) | 102 (66.67) | 10 (55.56) | 92 (68.15) | 0.287 |
electricity (n, %) | 51 (33.33) | 8 (44.44) | 43 (31.85) | |
p-Value; t-test, Survey p-Value; chi-squared test |
Blood Indicators Related to Anemia | Gravimetric PM2.5 | Gravimetric PM10 | ||||
---|---|---|---|---|---|---|
Estimate | Std. Error | Pr (>|t|) | Estimate | Std. Error | Pr (>|t|) | |
RBC | 0.003 | 0.002 | 0.158 | 0.002 | 0.002 | 0.224 |
Hb 1 | 0.001 | 0.005 | 0.905 | 0.000 | 0.005 | 0.946 |
Hematocrit | −0.003 | 0.015 | 0.833 | −0.004 | 0.014 | 0.789 |
MCV 2 | −0.069 | 0.022 | 0.003 ** | −0.064 | 0.022 | 0.005 ** |
MCH 3 | −0.019 | 0.009 | 0.039 ** | −0.019 | 0.009 | 0.036 ** |
MCHC 4 | 0.003 | 0.004 | 0.401 | 0.002 | 0.004 | 0.635 |
Blood Indicators Related to Anemia | RBC 1 | Hb 2 | Hematocrit | MCV 3 | MCH 4 | MCHC 5 |
---|---|---|---|---|---|---|
Moving average | Estimate (Std. Error) | Estimate (Std. Error) | Estimate (Std. Error) | Estimate (Std. Error) | Estimate (Std. Error) | Estimate (Std. Error) |
Sensor PM2.5 | ||||||
lag01 | −0.002 | 0.011 | −0.005 | 0.037 | 0.038 | 0.027 |
(0.009) | (0.024) | (0.081) | (0.074) | (0.025) | (0.024) | |
lag02 | 0.004 | 0.018 | 0.029 | −0.013 | 0.010 | 0.015 |
(0.009) | (0.025) | (0.082) | (0.093) | (0.031) | (0.026) | |
lag03 | 0.013 | 0.040 | 0.070 | −0.115 | −0.009 | 0.033 |
(0.010) | (0.029) | (0.094) | (0.106) | (0.038) | (0.031) | |
lag04 | −0.004 | −0.007 | −0.043 | −0.019 | 0.007 | 0.014 |
(0.007) | (0.020) | (0.064) | (0.072) | (0.025) | (0.020) | |
lag05 | −0.005 | −0.011 | −0.031 | 0.038 | 0.011 | −0.003 |
(0.006) | (0.016) | (0.051) | (0.058) | (0.021) | (0.016) | |
lag06 | −0.003 | −0.012 | −0.023 | 0.025 | −0.002 | −0.013 |
(0.005) | (0.015) | (0.044) | (0.052) | (0.019) | (0.015) | |
lag07 | 0.000 | 0.005 | 0.014 | 0.040 | 0.011 | −0.001 |
(0.004) | (0.011) | (0.034) | (0.041) | (0.014) | (0.012) | |
lag08 | 0.000 | 0.000 | −0.017 | −0.043 | −0.002 | 0.013 |
(0.004) | (0.014) | (0.043) | (0.047) | (0.017) | (0.015) | |
lag09 | −0.006 | −0.034 ** | −0.105 ** | −0.112 ** | −0.039 ** | −0.002 |
(0.004) | (0.012) | (0.037) | (0.047) | (0.016) | (0.014) | |
lag010 | −0.003 | −0.024 ** | −0.059 * | −0.081 ** | −0.037 ** | −0.011 |
(0.004) | (0.011) | (0.033) | (0.037) | (0.012) | (0.011) | |
lag011 | −0.009 ** | −0.033 ** | −0.086 ** | −0.016 | −0.015 | −0.011 |
(0.004) | (0.012) | (0.037) | (0.032) | (0.012) | (0.013) | |
lag012 | 0.006 | 0.011 | 0.032 | −0.041 | −0.015 | 0.000 |
(0.006) | (0.018) | (0.062) | (0.052) | (0.020) | (0.023) |
Blood Indicators Related to Anemia | a | b | a × b | c’ | c |
---|---|---|---|---|---|
(Indirect Effect) | (Direct Effect) | (Total Effect) | |||
MCV | −0.017 | 0.081 ** | −0.001 | −0.007 | −0.008 |
MCH | −0.017 | 0.037 ** | −0.001 | −0.008 * | −0.008 ** |
MCHC | −0.017 | 0.012 * | 0.000 | −0.006 *** | −0.006 *** |
Blood Indicators Related to Anemia | a | b | a × b | c’ | c |
---|---|---|---|---|---|
(Indirect Effect) | (Direct Effect) | (Total Effect) | |||
MCV | −0.141 * | 0.164 ** | −0.023 | −0.067 | −0.090 * |
MCH | −0.141 * | 0.061 ** | −0.009 | −0.031 * | −0.039 ** |
MCHC | −0.141 * | 0.006 | −0.001 | −0.01 | −0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwag, Y.; Ye, S.; Oh, J.; Lee, D.-W.; Yang, W.; Kim, Y.; Ha, E. Direct and Indirect Effects of Indoor Particulate Matter on Blood Indicators Related to Anemia. Int. J. Environ. Res. Public Health 2021, 18, 12890. https://doi.org/10.3390/ijerph182412890
Kwag Y, Ye S, Oh J, Lee D-W, Yang W, Kim Y, Ha E. Direct and Indirect Effects of Indoor Particulate Matter on Blood Indicators Related to Anemia. International Journal of Environmental Research and Public Health. 2021; 18(24):12890. https://doi.org/10.3390/ijerph182412890
Chicago/Turabian StyleKwag, Youngrin, Shinhee Ye, Jongmin Oh, Dong-Wook Lee, Wonho Yang, Yangho Kim, and Eunhee Ha. 2021. "Direct and Indirect Effects of Indoor Particulate Matter on Blood Indicators Related to Anemia" International Journal of Environmental Research and Public Health 18, no. 24: 12890. https://doi.org/10.3390/ijerph182412890
APA StyleKwag, Y., Ye, S., Oh, J., Lee, D. -W., Yang, W., Kim, Y., & Ha, E. (2021). Direct and Indirect Effects of Indoor Particulate Matter on Blood Indicators Related to Anemia. International Journal of Environmental Research and Public Health, 18(24), 12890. https://doi.org/10.3390/ijerph182412890