The Longitudinal Relationship between Internet Addiction and Depressive Symptoms in Adolescents: A Random-Intercept Cross-Lagged Panel Model
Abstract
:1. Introduction
1.1. Relationship between Internet Addiction and Depressive Symptoms
1.2. Gender Differences in Internet Addiction
1.3. Gender Differences in Depressive Symptoms
1.4. Coping Strategy and Internet Addiction, Depression
2. Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. Internet Addiction
2.2.2. Depressive Symptoms
2.2.3. Coping Style
2.3. Statistical Analyses
3. Results
3.1. Descriptive Statistics, Correlations, and Prevalence of Internet Addiction (IA) and Depressive Symptoms
3.2. The Results of the Random Intercept Cross-Lagged Model (RI-CLPM)
3.3. Gender Differences in the Relationship between Internet Addiction and Depressive Symptoms and the Effects of Covariates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- China Internet Network Information Center (CNNIC). The 48th Statistical Report on the Development of Internet in China; CNNIC: Beijing, China, 2021; pp. 17–22. Available online: http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/202109/t20210915_71543.htm (accessed on 10 October 2021). (In Chinese)
- Young, K.S. Internet addiction: The emergence of a new clinical disorder. Cyber Psychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- China Internet Network Information Center (CNNIC). 2020 National Study Report on Internet Use by Minors; CNNIC: Beijing, China, 2020; pp. 1–9. Available online: http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/qsnbg/202107/t20210720_71505.htm (accessed on 10 October 2021). (In Chinese)
- Chou, C.; Hsiao, M.C. Internet addiction, usage, gratification, and pleasure experience: The taiwan college students’ case. Comput. Educ. 2000, 35, 65–80. [Google Scholar] [CrossRef]
- Yang, S.C.; Tung, C. Comparison of Internet addicts and non-addicts in taiwanese high school. Comput. Hum. Behav. 2007, 23, 79–96. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, D. Epidemiological characteristics of depressive symptoms in middle school students. Chin. J. Behav. Med. Brain Sci. 2005, 14, 103–105. [Google Scholar]
- Su, Z.; Kang, Y.; Li, J. Adolescent depression and its related influencing factors. Chin. J. Health Psychol. 2011, 5, 629–631. [Google Scholar]
- Al–gamal, E.; Alzayyat, A.; Ahmad, M.M. Prevalence of Internet addiction and its association with psychological distress and coping strategies among university students in Jordan. Perspect. Psychiatr. Care 2016, 52, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Compas, B.E.; Desjardins, L.; Vannatta, K.; Young-Saleme, T.; Rodriguez, E.M.; Dunn, M.; Bemis, H.; Snyder, S.; Gerhardt, C.A. Children and adolescents coping with cancer: Self- and parent reports of coping and anxiety/depression. Health Psychol. 2014, 33, 853–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraut, R.; Patterson, M.; Lundmark, V.; Kiesler, S.; Mukophadhyay, T.; Scherlis, W. Internet paradox: A social technology that reduces social involvement and psychological well-being? Am. Psychol. 1998, 53, 1017–1031. [Google Scholar] [CrossRef]
- Bryant, J.; Zillmann, D. Using Television to Alleviate Boredom and Stress: Selective Exposure as a Function of Induced Excitational States. J. Broadcasting 1984, 28, 1–20. [Google Scholar] [CrossRef]
- Ko, C.; Yen, J.; Chen, C.; Yeh, Y.; Yen, C. Predictive values of psychiatric symptoms for Internet addiction in adolescents: A 2-year prospective study. Arch. Pediatrics Adolesc. Med. 2009, 163, 937–943. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.A. A cognitive–behavioral model of pathological Internet use. Comput. Hum. Behav. 2001, 17, 187–195. [Google Scholar] [CrossRef]
- Seki, T.; Hamazaki, K.; Natori, T.; Inadera, H. Relationship between Internet addiction and depression among Japanese university students. J. Affect. Disord. 2019, 256, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Dalbudak, E.; Evren, C.; Aldemir, S.; Evren, B. The severity of Internet addiction risk and its relationship with the severity of borderline personality features, childhood traumas, dissociative experiences, depression and anxiety symptoms among Turkish University Students. Psychiatry Res. 2014, 219, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.; Ko, C.; Yen, C.; Wu, H.; Yang, M. The comorbid psychiatric symptoms of Internet addiction: Attention deficit and hyperactivity disorder (ADHD), depression, social phobia, and hostility. J. Adolesc. Health 2007, 41, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Ostovar, S.; Allahyar, N.; Aminpoor, H.; Moafian, F.; Nor, M.B.M.; Griffiths, M.D. Internet addiction and its psychosocial risks (depression, anxiety, stress and loneliness) among Iranian adolescents and young adults: A structural equation model in a cross-sectional study. Int. J. Ment. Health Addict. 2016, 14, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Qin, N.; Cao, S.; Gao, F. Reciprocal associations between shyness, self-esteem, loneliness, depression and Internet addiction in chinese adolescents. Addict. Res. Theory 2020, 29, 98–110. [Google Scholar] [CrossRef]
- Liang, L.; Zhou, D.; Yuan, C.; Shao, A.; Bian, Y. Gender differences in the relationship between Internet addiction and depression: A cross-lagged study in Chinese adolescents. Comput. Hum. Behav. 2016, 63, 463–470. [Google Scholar] [CrossRef]
- Hamaker, E.L.; Kuiper, R.M.; Grasman, R.P.P.P. A critique of the cross-lagged panel model. Psychol. Methods 2015, 20, 102–116. [Google Scholar] [CrossRef]
- Chakraborty, K.; Basu, D.; Kumar, K.G.V. Internet addiction: Consensus, controversies, and the way ahead. East Asian Arch. Psychiatry 2010, 20, 123–132. [Google Scholar] [PubMed]
- Weinstein, A.; Lejoyeux, M. Internet addiction or excessive Internet use. Am. J. Drug Alcohol Abus. 2010, 36, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Shek, D.T.L. Internet addiction in Hongkong adolescents: A three-year longitudinal study. J. Pediatric Adolesc. Gynecol. 2013, 26, S10–S17. [Google Scholar]
- Avenevoli, S.; Swendsen, J.; He, J.; Burstein, M.; Merikangas, K.R. Major depression in the national comorbidity survey–adolescent supplement: Prevalence, correlates, and treatment. J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, E.J.; Copeland, W.; Angold, A. Trends in psychopathology across the adolescent years: What changes when children become adolescents, and when adolescents become adults? J. Child Psychol. Psychiatry 2011, 52, 1015–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinberg, L. (Ed.) Adolescence, 8th ed.; The McGrwa-Hill Companies: New York, NY, USA, 2007. [Google Scholar]
- Hankin, B.L.; Abramson, L.Y.; Moffitt, T.E.; Silva, P.A.; McGee, R.; Angell, K.E. Development of depression from preadolescence to young adulthood: Emerging gender differences in a 10-year longitudinal study. J. Abnorm. Psychol. 1998, 107, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.J.; Kremer, P.; Douglas, K.; Toumborou, J.W.; Williams, J. Gender differences in adolescent depression: Differential female susceptibility to stressors affecting family functioning. Aust. J. Psychol. 2015, 67, 131–139. [Google Scholar] [CrossRef]
- Billings, A.G.; Moos, R.H. The role of coping responses and social resources in attenuating the stress of life events. J. Behav. Med. 1981, 4, 139–157. [Google Scholar] [CrossRef]
- Nedim-Bal, P.; Metan, H. The effect of computer addiction management psycho training program on 9th grade students. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Derg. 2016, 16, 62–74. [Google Scholar]
- Whang, L.S.; Lee, S.; Chang, G. Internet over-users’ psychological profiles: A behavior sampling analysis on Internet addiction. Cyber Psychol. Behav. 2003, 6, 143–150. [Google Scholar] [CrossRef]
- McMahon, E.M.; Corcoran, P.; McAuliffe, C.; Keeley, H.; Perry, I.J.; Arensman, E. Mediating effects of coping style on associations between mental health factors and self-harm among adolescents. Crisis J. Crisis Interv. Suicide Prev. 2013, 34, 242–250. [Google Scholar] [CrossRef]
- Valiente, C.; Lemery-Chalfant, K.; Swanson, J. Children’s responses to daily social stressors: Relations with parenting, children’s effortful control, and adjustment. J. Child Psychol. Psychiatry 2009, 50, 707–717. [Google Scholar] [CrossRef]
- Budge, S.L.; Adelson, J.L.; Howard, K.A.S. Anxiety and depression in transgender individuals: The roles of transition status, loss, social support, and coping. J. Consult. Clin. Psychol. 2013, 81, 545–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogendoorn, S.M.; Prins, P.J.M.; Boer, F.; Vervoort, L.; Wolters, L.H.; Moorlag, H.; Nauta, M.H.; Garst, H.; Hartman, C.A.; de Haan, E. Mediators of cognitive behavioral therapy for anxiety-disordered children and adolescents: Cognition, perceived control, and coping. J. Clin. Child Adolesc. Psychol. 2014, 43, 486–500. [Google Scholar] [CrossRef]
- Zung, W.W. A self-rating depression scale. Arch. Gen. Psychiatry 1965, 12, 63–70. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Zhou, N.; Cao, H.; Liu, F.; Wu, L.; Liang, Y.; Xu, J.; Meng, H.; Zang, N.; Hao, R.; An, Y.; et al. A four-wave, cross-lagged model of problematic internet use and mental health among Chinese college students: Disaggregation of within-person and between-person effects. Dev. Psychology 2020, 56, 1009–1021. [Google Scholar] [CrossRef] [PubMed]
- Kojima, R.; Shinohara, R.; Akiyama, Y.; Yokomichi, H.; Yamagata, Z. Temporal directional relationship between problematic Internet use and depressive symptoms among Japanese adolescents: A random intercept, cross-lagged panel model. Addict. Behav. 2021, 120, 6. [Google Scholar] [CrossRef] [PubMed]
N | % | |
---|---|---|
Gender | ||
Male | 651 | 44.619 |
Female | 808 | 55.380 |
Only child | ||
yes | 820 | 56.202 |
no | 639 | 43.797 |
Age | ||
11–15 | 778 | 53.324 |
16–19 | 681 | 46.675 |
First (T1) | Second (T2) | Third (T3) | |
---|---|---|---|
IA | |||
Mean (SD) | 33.60 (11.91) | 32.01 (10.82) | 29.72 (10.48) |
IA n (%) | |||
≤50 | 155 (10.62%) | 117 (8.01%) | 79 (5.41%) |
≤50 < 80 | 146 (10.00%) | 114 (7.81%) | 74 (5.07%) |
80≤ | 9 (0.62%) | 3 (0.21%) | 5 (0.34%) |
Depressive symptoms | |||
Mean (SD) | 39.43 (8.42) | 37.02 (8.62) | 37.21 (9.65) |
Depressive symptoms n (%) | |||
41< | 615 (42.15%) | 460 (31.53%) | 540 (37.01%) |
Variable | IA T1 | IA T2 | IA T3 | DEP T1 | DEP T2 | DEP T3 | |
---|---|---|---|---|---|---|---|
1 | IA T1 | 1 | |||||
2 | IA T2 | 0.56 | 1 | ||||
3 | IA T3 | 0.57 | 0.58 | 1 | |||
4 | DEP T1 | 0.24 | 0.19 | 0.2 | 1 | ||
5 | DEP T2 | 0.23 | 0.33 | 0.24 | 0.49 | 1 | |
6 | DEP T3 | 0.20 | 0.21 | 0.22 | 0.44 | 0.51 | 1 |
CFI | TLI | SRMR | RMSEA | χ2 | p |
---|---|---|---|---|---|
0.93 | 0.82 | 0.08 | 0.10 | 107.18 | 0.00 |
CFI | TLI | SRMR | RMSEA | χ2 | p |
---|---|---|---|---|---|
0.98 | 0.95 | 0.05 | 0.06 | 54.46 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, X.; Li, G. The Longitudinal Relationship between Internet Addiction and Depressive Symptoms in Adolescents: A Random-Intercept Cross-Lagged Panel Model. Int. J. Environ. Res. Public Health 2021, 18, 12869. https://doi.org/10.3390/ijerph182412869
Yi X, Li G. The Longitudinal Relationship between Internet Addiction and Depressive Symptoms in Adolescents: A Random-Intercept Cross-Lagged Panel Model. International Journal of Environmental Research and Public Health. 2021; 18(24):12869. https://doi.org/10.3390/ijerph182412869
Chicago/Turabian StyleYi, Xiaoyan, and Guangming Li. 2021. "The Longitudinal Relationship between Internet Addiction and Depressive Symptoms in Adolescents: A Random-Intercept Cross-Lagged Panel Model" International Journal of Environmental Research and Public Health 18, no. 24: 12869. https://doi.org/10.3390/ijerph182412869
APA StyleYi, X., & Li, G. (2021). The Longitudinal Relationship between Internet Addiction and Depressive Symptoms in Adolescents: A Random-Intercept Cross-Lagged Panel Model. International Journal of Environmental Research and Public Health, 18(24), 12869. https://doi.org/10.3390/ijerph182412869