Basin-Scale Pollution Loads Analyzed Based on Coupled Empirical Models and Numerical Models
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Areas and Data Sources
2.2. Methods
2.2.1. Calculation for Pollutant Emission Amount
- (1)
- In rural areas, domestic sewage and garbage produced from residents’ daily life were discharged randomly due to imperfect sewage collection channels, and the drainage facilities were not improved [2]. Combined the statistical yearbook of cities in Sichuan Province (2016), the quantity of rural resident population and the daily pollution discharge coefficient of population were used to calculate the annual emissions in the study.
- (2)
- Agricultural planting pollution caused by excessive chemical fertilizers in agricultural producing activities, of which the annual discharge was related to the pure consumption of nitrogen and phosphate fertilizers. In this paper, the amount of fertilizer applied and the loss coefficient of nitrogen and phosphorus fertilizers were used to calculate the pollutant emissions from agricultural planting [28,29].
- (3)
- Livestock and free range poultry sources refer to the pollution load produced by livestock and poultry that have not formed large-scale breeding. The calculation of pollutant emission amount takes into account the total number of free range livestock and poultry and the daily discharge coefficient of livestock and poultry pollutants which derived from the “Handbook of Pollution Production and Emission Coefficients for the First National General Survey of Pollution Sources”, result of the first pollution sources census of China.
- (4)
- Aquaculture pollution involves two types, one is the excrement of fishing pollutant, and the other is excessive fishing fodder feeding. Given the characteristics of aquaculture pollutants, the annual discharge was calculated by bait coefficient, content percentage of nitrogen and phosphorus in fodders and cultured fishery products respectively.
2.2.2. Simulation of Pollutant Inflowing Loads
2.2.3. Pollutant Statistics in Different Spatial Areas
2.3. Model Development and Validation
2.3.1. Input Data
2.3.2. Subbasin and Hydrological Response Unit Division
2.3.3. Model Calibration and Validation
3. Results and Discussion
3.1. Total Pollution Emissions
3.2. Temporal Characteristics of Pollution Loads
3.2.1. Yearly Pollution Loads of Different Pollution Sources
3.2.2. Monthly and Seasonal Pollution Loads of Different Pollution Sources
3.3. Spatial Characteristics Pollution Loads
3.3.1. Pollution Loads of Different Administrative Regions
3.3.2. Pollution Load of Different Sub-Watershed
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, H.; Chen, Y.; Wang, Y.; Song, Z.; Tong, H.; Wei, Y.; Yu, Q.; Xu, Z.; Yang, S. Contribution rates analysis for sources apportionment to special river sections in Yangtze River Basin. J. Hydrol. 2021, 600, 126519. [Google Scholar] [CrossRef]
- Yang, L.P.; Mei, K.; Liu, X.M.; Wu, L.S.; Zhang, M.H.; Xu, J.M.; Wang, F. Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China. Environ. Sci. Pollut. Res. 2013, 20, 5341–5352. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 2016, 566, 1552–1567. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Zhang, Y.; Song, J.X.; Li, P.; Wang, Y.S.; Zhang, X.M.; Li, Z.B.; Bi, Z.L.; Zhang, X.; Qin, Y.L.; et al. Response of nitrogen pollution in surface water to land use and social-economic factors in the Weihe River watershed, northwest China. Sustain. Cities Soc. 2019, 50, 101658. [Google Scholar] [CrossRef]
- Wilbers, G.J.; Becker, M.; Nga, T.; Sebesvari, Z.; Renaud, F.G. Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. Sci. Total Env. 2014, 485, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Li, Z.H.; Deng, X.Z.; Yang, J.; Chen, D.D.; Li, W.Q. An analysis of spatiotemporal patterns in Chinese agricultural productivity between 2004 and 2014. Ecol. Indic. 2019, 105, 591–600. [Google Scholar] [CrossRef]
- Shrestha, S.; Kazama, F.; Newham, L.T.H. A framework for estimating pollutant export coefficients from long-term in-stream water quality monitoring data. Environ. Model. Softw. 2008, 23, 182–194. [Google Scholar] [CrossRef]
- Adu, J.T.; Kumarasamy, M.V. Assessing Non-Point Source Pollution Models: A Review. Pol. J. Environ. Stud. 2018, 27, 1913–1922. [Google Scholar] [CrossRef]
- Chen, M.; Chen, J.; Du, P. An inventory analysis of rural pollution loads in China. Water Sci. Technol. 2006, 54, 65–74. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, Y.; Hu, X. Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017. J. Environ. Manag. 2020, 263, 110400. [Google Scholar] [CrossRef]
- Lu, Z.J.; Liu, Q.Y.; Xiong, Y.; Huang, F.; Zhou, J.B.; Schauer, J.J. A hybrid source apportionment strategy using positive matrix factorization (PMF) and molecular marker chemical mass balance (MM-CMB) model. Environ. Pollut. 2018, 238, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.K.; Chen, J.; Huang, B.; Zhao, Y.C. Source apportionment of soil heavy metals using robust spatial receptor model with categorical land-use types and RGWR-corrected in-situ FPXRF data. Environ. Pollut. 2021, 270, 116220. [Google Scholar] [CrossRef]
- Uranishi, K.; Ikemori, F.; Nakatsubo, R.; Shimadera, H.; Kondo, A.; Kikutani, Y.; Asano, K.; Sugata, S. Identification of biased sectors in emission data using a combination of chemical transport model and receptor model. Atmos. Environ. 2017, 166, 166–181. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, L.D.; Sun, R.H.; Jing, Y.C. An improved export coefficient model to estimate non-point source phosphorus pollution risks under complex precipitation and terrain conditions. Environ. Sci. Pollut. Res. 2018, 25, 20946–20955. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, S.B.; Li, S.; Shen, Z.Y. Temporal and spatial scaling effects of parameter sensitivity in relation to non-point source pollution simulation. J. Hydrol. 2019, 571, 36–49. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Yohannes, F. Testing and evaluation of the agricultural non-point source pollution model (AGNPS) on Augucho catchment, western Hararghe, Ethiopia. Agric. Ecosyst. Environ. 2003, 99, 201–212. [Google Scholar] [CrossRef]
- Yazdi, M.N.; Ketabchy, M.; Sample, D.J.; Scott, D.; Liao, H.H. An evaluation of HSPF and SWMM for simulating streamflow regimes in an urban watershed. Environ. Model. Softw. 2019, 118, 211–225. [Google Scholar] [CrossRef]
- Guo, W.X.; Fu, Y.C.; Ruan, B.Q.; Ge, H.F.; Zhao, N.N. Agricultural non-point source pollution in the Yongding River Basin. Ecol. Indic. 2014, 36, 254–261. [Google Scholar] [CrossRef]
- Xin, X.K.; Yin, W.; Li, K.F. Estimation of non-point source pollution loads with flux method in Danjiangkou Reservoir area, China. Water Sci. Eng. 2017, 10, 134–142. [Google Scholar] [CrossRef]
- Chen, Y.H.; Zhang, S.H.; Huang, D.S.; Li, B.L.; Liu, J.U.; Liu, W.J.; Ma, J.; Wang, F.; Wang, Y.; Wu, S.J.; et al. The development of China’s Yangtze River Economic Belt: How to make it in a green way? Sci. Bull. 2017, 62, 648–651. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Sun, C.W. Comprehensive carrying capacity, economic growth and the sustainable development of urban areas: A case study of the Yangtze River Economic Belt. J. Clean. Prod. 2018, 195, 486–496. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Wang, Q.G.; Zhang, J.; Li, Q.S.; Wang, Y.Q.; Wang, M.J.; Huang, X. Distribution and characteristics of microplastics in urban waters of seven cities in the Tuojiang River basin, China. Environ. Res. 2020, 189, 109893. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.D.; Bai, L.; Qiao, Q.; Zhang, Y.; Li, X.Y.; Zhao, R.N.; Liu, J.Y. Anthropogenic total phosphorus emissions to the Tuojiang River Basin, China. J. Clean. Prod. 2021, 294, 126325. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, X.; Cao, H.; Zhao, Y.; Shan, B. Water Quality in Representative Tuojiang River Network in Southwest China. Water 2018, 10, 864. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Lin, Z.B.; Zhang, R.D. Impact of phosphate mining and separation of mined materials on the hydrology and water environment of the Huangbai River basin, China. Sci. Total Environ. 2016, 543, 347–356. [Google Scholar] [CrossRef]
- Wang, H.X.; Xu, J.L.; Liu, X.J.; Sheng, L.X.; Zhang, D.; Li, L.W.; Wang, A.X. Study on the pollution status and control measures for the livestock and poultry breeding industry in northeastern China. Environ. Sci. Pollut. Res. 2018, 25, 4435–4445. [Google Scholar] [CrossRef]
- El Zrelli, R.; Rabaoui, L.; Daghbouj, N.; Abda, H.; Castet, S.; Josse, C.; van Beek, P.; Souhaut, M.; Michel, S.; Bejaoui, N.; et al. Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): High mining potential and implications for environmental protection. Environ. Sci. Pollut. Res. 2018, 25, 14690–14702. [Google Scholar] [CrossRef]
- Wang, H.; He, P.; Shen, C.; Wu, Z. Effect of irrigation amount and fertilization on agriculture non-point source pollution in the paddy field. Environ. Sci. Pollut. Res. 2019, 26, 10363–10373. [Google Scholar] [CrossRef]
- Zhang, T.; Ni, J.P.; Xie, D.T. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area. Environ. Sci. Pollut. Res. 2015, 22, 16453–16462. [Google Scholar] [CrossRef]
- Chen, W.; He, B.; Nover, D.; Duan, W.; Luo, C.; Zhao, K.; Chen, W. Spatiotemporal patterns and source attribution of nitrogen pollution in a typical headwater agricultural watershed in Southeastern China. Environ. Sci. Pollut. Res. 2018, 25, 2756–2773. [Google Scholar] [CrossRef]
- Makarewicz, J.C.; Lewis, T.W.; Winslow, M.; Rea, E.; Dressel, L.; Pettenski, D.; Snyder, B.J.; Richards, P.; Zollweg, J. Utilizing intensive monitoring and simulations for identifying sources of phosphorus and sediment and for directing, siting, and assessing BMPs: The Genesee River example. J. Great Lakes Res. 2015, 41, 743–759. [Google Scholar] [CrossRef]
- Matias, N.G.; Johnes, P.J. Catchment Phosphorous Losses: An Export Coefficient Modelling Approach with Scenario Analysis for Water Management. Water Resour. Manag. 2012, 26, 1041–1064. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Guo, T.; Wang, R.Y.; Engel, B.A.; Flanagan, D.C.; Li, S.Y.; Pijanowski, B.C.; Collingsworth, P.D.; Lee, J.G.; Wallace, C.W. A SWAT-based optimization tool for obtaining cost-effective strategies for agricultural conservation practice implementation at watershed scales. Sci. Total Environ. 2019, 691, 685–696. [Google Scholar] [CrossRef]
- Risal, A.; Parajuli, P.B. Quantification and simulation of nutrient sources at watershed scale in Mississippi. Sci. Total Environ. 2019, 670, 633–643. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Wu, L.; Gao, J.E.; Ma, X.Y.; Li, D. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions. Environ. Sci. Pollut. Res. 2015, 22, 10647–10660. [Google Scholar] [CrossRef]
- Liu, R.M.; Wang, Q.R.; Xu, F.; Men, C.; Guo, L.J. Impacts of manure application on SWAT model outputs in the Xiangxi River watershed. J. Hydrol. 2017, 555, 479–488. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the swat model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Wang, Y.G.; Zhang, W.S.; Engel, B.A.; Peng, H.; Theller, L.; Shi, Y.Y.; Hu, S. A fast mobile early warning system for water quality emergency risk in ungauged river basins. Environ. Model. Softw. 2015, 73, 76–89. [Google Scholar] [CrossRef]
- Wu, M.; Tang, X.Q.; Li, Q.Y.; Yang, W.J.; Jin, F.; Tang, M.Z.; Scholz, M. Review of Ecological Engineering Solutions for Rural Non-Point Source Water Pollution Control in Hubei Province, China. Water Air Soil Pollut. 2013, 224, 1561. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Y.; Fan, B.; Yang, M.; Cai, L.; Fu, X.; Liu, X.; Hou, J. Estimation and spatial analysis of water pollution loads from towns in China. Int. J. Sustain. Dev. World Ecol. 2011, 18, 219–225. [Google Scholar] [CrossRef]
- Li, S.; Gong, Q.; Yang, S. Analysis of the Agricultural Economy and Agricultural Pollution Using the Decoupling Index in Chengdu, China. Int. J. Environ. Res. Public Health 2019, 16, 4233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, M.R.; Quin, B.F.; Nguyen, M.L. Phosphorus runoff from agricultural land and direct fertilizer effects: A review. J. Environ. Qual. 2004, 33, 1954–1972. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.F.; Gu, X.H.; Ye, Y.T.; Yang, C.G.; Dai, X.Y.; Chen, D.X.; Yang, C. Assessment of pollutant loads discharged from aquaculture ponds around Taihu Lake, China. Aquac. Res. 2013, 44, 795–806. [Google Scholar] [CrossRef]
- Meng, W.Q.; Feagin, R.A. Mariculture is a double-edged sword in China. Estuar. Coast. Shelf Sci. 2019, 222, 147–150. [Google Scholar] [CrossRef]
- Falconer, L.; Telfer, T.C.; Ross, L.G. Modelling seasonal nutrient inputs from non-point sources across large catchments of importance to aquaculture. Aquaculture 2018, 495, 682–692. [Google Scholar] [CrossRef] [Green Version]
- Yan, R.; Gao, Y.; Li, L.; Gao, J. Estimation of water environmental capacity and pollution load reduction for urban lakeside of Lake Taihu, eastern China. Ecol. Eng. 2019, 139, 105587. [Google Scholar] [CrossRef]
- Rosenberg, E.A.; Keys, P.W.; Booth, D.B.; Hartley, D.; Burkey, J.; Steinemann, A.C.; Lettenmaier, D.P. Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington State. Clim. Chang. 2010, 102, 319–349. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.Y.; Qiu, J.L.; Hong, Q.; Chen, L. Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region. Sci. Total Environ. 2014, 493, 138–146. [Google Scholar] [CrossRef]
- Yu, M.; Yuan, X.; He, Q.; Yu, Y.; Cao, K.; Zhang, W. Temporal-spatial analysis of crop residue burning in China and its impact on aerosol pollution. Environ. Pollut. 2019, 245, 616–626. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Zhang, L.; Sun, K.; Cao, W. Simulation effects of clean water corridor technology on the control of non-point source pollution in the Paihe River basin, Chaohu lake. Environ. Sci. Pollut. Res. 2021, 28, 23534–23546. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhu, Z.; Li, T. Pollution source localization in an urban water supply network based on dynamic water demand. Environ. Sci. Pollut. Res. 2019, 26, 17901–17910. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.H.; Cui, Z.J. Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings. J. Clean. Prod. 2018, 172, 475–480. [Google Scholar] [CrossRef]
- He, W.; Wen, Y.L.; Xiong, Z.Q. Spatial-temporal dynamics and scenario simulation of land ecological security: A case study of Deyang, Sichuan Province, China. Environ. Sci. Pollut. Res. 2021, 28, 20209–20221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.-l.; Cui, B.-h.; Zhang, S.-m.; Wu, Q.-y.; Yao, L. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China. Environ. Sci. Pollut. Res. 2018, 25, 19101–19113. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Schwarzbauer, J. Historical Deposition of Riverine Contamination on Terrestrial Floodplains as Revealed by Organic Indicators from an Industrial Point Source. Water Air Soil Pollut. 2016, 227, 20. [Google Scholar] [CrossRef]
- Wang, C.; Bi, J.; Zhang, X.X.; Fang, Q.; Qi, Y. In-time source tracking of watershed loads of Taihu Lake Basin, China based on spatial relationship modeling. Environ. Sci. Pollut. Res. 2018, 25, 22085–22094. [Google Scholar] [CrossRef]
- Yang, H.C.; Wang, G.Q.; Wang, L.J.; Zheng, B.H. Impact of land use changes on water quality in headwaters of the Three Gorges Reservoir. Environ. Sci. Pollut. Res. 2016, 23, 11448–11460. [Google Scholar] [CrossRef]
Pollution Sources | Formula | Symbols and Units | Remarks |
---|---|---|---|
Rural living sources | Where Gp represents some kind of pollution emission (10,000 tons/year); N represents Number of permanent residents (one person); Sp represents discharge coefficient of pollutants (g/day·person) | The pollution loads of COD, TN, TP, and N-NH4+ are calculated by the same formula. | |
Agricultural source | Where P represents a load of a certain pollutant (10,000 tons/year); AN, AP represents the amount of Nitrogen and Phosphorus fertilizer applied in farmland (Tons/Year); FN, FP represents loss Coefficient of Nitrogen and Phosphate Fertilizer (%) | ||
Livestock and poultry breeding source | Where M represents the discharge of certain pollutants (10,000 tons/year); Ci represents the total number of animals of type i (one head); Pi represents type i animal emission factor (kg/head (only)····day) | ||
Aquaculture source | MN, MP Represents nitrogen load and phosphorus load (kg/ton) respectively; C is the bait coefficient; Nf, Pf represents the percentage of nitrogen and phosphorus in the bait respectively; Nb, Pb represents the content percentage of nitrogen and phosphorus in cultured fishery products respectively | Applicable to the calculation of TN and TP pollution load |
Type | Waste Water (L/Day) | COD | TN | TP | NH3-N | |
---|---|---|---|---|---|---|
Rural living sources g/day·person | Chengdu | 130.00 | 52.00 | 10.10 | 0.97 | 7.10 |
Zigong | 120.00 | 50.00 | 10.20 | 0.91 | 7.30 | |
Luzhou | 130.00 | 52.00 | 10.10 | 0.97 | 7.10 | |
Deyang | 140.00 | 57.00 | 10.90 | 0.97 | 7.70 | |
Neijiang | 150.00 | 66.00 | 10.60 | 1.07 | 7.30 | |
Leshan | 140.00 | 57.00 | 10.90 | 0.97 | 7.70 | |
Meishan | 125.00 | 50.00 | 10.70 | 0.97 | 7.80 | |
Yibin | 125.00 | 50.00 | 10.70 | 0.97 | 7.80 | |
Ziyang | 130.00 | 52.00 | 10.10 | 0.97 | 7.10 | |
Agricultural source % | Nitrogen fertilizer | 1.85 | 1.55 | 1.35 | ||
Phosphorus fertilizer | 1.85 | 1.55 | 1.35 | |||
Livestock and poultry breeding source kg/day | Pig | 4.42 | 0.40 | 0.02 | 0.00 | 0.01 |
Cow | 20.42 | 2.24 | 0.10 | 0.01 | 0.03 | |
Aquaculture source g/kg | Fish | 40.76 | 3.58 | 0.70 | 1.19 |
Data Name | Datatype | Accuracy | Sources |
---|---|---|---|
DEM | .tif | 30 m | Chinese Academy of Sciences mirror site |
Land-use type map | .shp | 30 m | Sichuan Academy of Environmental Sciences |
The soil type of map | .shp | 1:1,000,000 | Harmonized World Soil Database version (HWSD) |
Meteorological data | .txt | - | China Meteorological Science Data Center |
Hydrological and water quality monitoring data; agricultural management farming system; point source pollution data | .xls | - | Sichuan Provincial Ecological Environment Monitoring Station |
Pollution Source | Pollution Type | The Quantity of Pollutant Discharge (10,000 Ton/Year) | |||
---|---|---|---|---|---|
COD | TN | TP | N-NH4+ | ||
NPS | Rural living source | 13.67 | 3.64 | 0.26 | 1.82 |
Agricultural source | 10.06 | 2.01 | 1.68 | 1.47 | |
Livestock and free range poultry sources | 0.19 | 0.01 | 0 | 0.01 | |
Aquaculture source | 9.76 | 0.86 | 0.17 | 0.14 | |
PS | Urban sewage treatment plant | 19.84 | 3.93 | 0.35 | 2.57 |
Industrial point source | 0.95 | 0.15 | 0.01 | 0.08 | |
Large-scale livestock and poultry breeding source | 0.031 | 0.002 | 0.0005 | 0.0004 | |
Phosphogypsum yard source | 0 | 0 | 0.003 | 0 | |
Total | 54.5 | 10.60 | 2.47 | 6.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Chen, X.; Yang, S.; Song, Z.; Wang, Y.; Yu, Q. Basin-Scale Pollution Loads Analyzed Based on Coupled Empirical Models and Numerical Models. Int. J. Environ. Res. Public Health 2021, 18, 12481. https://doi.org/10.3390/ijerph182312481
Zhang M, Chen X, Yang S, Song Z, Wang Y, Yu Q. Basin-Scale Pollution Loads Analyzed Based on Coupled Empirical Models and Numerical Models. International Journal of Environmental Research and Public Health. 2021; 18(23):12481. https://doi.org/10.3390/ijerph182312481
Chicago/Turabian StyleZhang, Man, Xiaolong Chen, Shuihua Yang, Zhen Song, Yonggui Wang, and Qing Yu. 2021. "Basin-Scale Pollution Loads Analyzed Based on Coupled Empirical Models and Numerical Models" International Journal of Environmental Research and Public Health 18, no. 23: 12481. https://doi.org/10.3390/ijerph182312481
APA StyleZhang, M., Chen, X., Yang, S., Song, Z., Wang, Y., & Yu, Q. (2021). Basin-Scale Pollution Loads Analyzed Based on Coupled Empirical Models and Numerical Models. International Journal of Environmental Research and Public Health, 18(23), 12481. https://doi.org/10.3390/ijerph182312481