An Analysis on Promoting Prefabrication Implementation in Construction Industry towards Sustainability
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Analyzing Contents Using NVivo
3.2. Developing a Framework of Prefabrication Implementation Research
4. Discussion
4.1. Environmental Sustainability
4.2. Economic Sustainability
4.2.1. Building Quality
Quality Control
Quality Defects
4.2.2. Construction Productivity
Productivity Improvement
Schedule Delay
4.2.3. Lifecycle Cost
High Capital Cost
Low Lifecycle Cost
4.3. Social Sustainability
4.3.1. Occupational Safety and Health
4.3.2. Social Climates and Attitudes
4.4. Technologies Development
4.5. Strategies for Promoting Prefabrication
4.5.1. Mandatory Policy
4.5.2. Incentives
4.6. Future Research Directions
4.6.1. Environmental Sustainability Research Directions
4.6.2. Economic Sustainability Research Directions
4.6.3. Social Sustainability Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Y.S.; Zhao, D.; Wang, D.D.; Xing, Y.D. Sustainable Performance of Buildings through Modular Prefabrication in the Construction Phase: A Comparative Study. Sustainability 2019, 11, 5658. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Lee, M.W.; Jaillon, L.; Poon, C.S. The hindrance to using prefabrication in Hong Kong’s building industry. J. Clean. Prod. 2018, 204, 70–81. [Google Scholar] [CrossRef]
- Dixit, M.K.; Fernández-Solís, J.L.; Lavy, S.; Culp, C.H. Identification of parameters for embodied energy measurement: A literature review. Energy Build. 2010, 42, 1238–1247. [Google Scholar] [CrossRef]
- Steinhardt, D.A.; Manley, K. Adoption of prefabricated housing-the role of country context. Sustain. Cities Soc. 2016, 22, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Chong, H.-Y. Environmental sustainability of off-site manufacturing: A literature review. Eng. Constr. Archit. Manag. 2019; ahead-of-print. [Google Scholar]
- Cao, X.; Li, X.; Zhu, Y.; Zhang, Z. A comparative study of environmental performance between prefabricated and traditional residential buildings in China. J. Clean. Prod. 2015, 109, 131–143. [Google Scholar] [CrossRef]
- Jeong, J.; Hong, T.; Ji, C.; Kim, J.; Lee, M.; Jeong, K.; Lee, S. An integrated evaluation of productivity, cost and CO2 emission between prefabricated and conventional columns. J. Clean. Prod. 2017, 142, 2393–2406. [Google Scholar] [CrossRef]
- Mao, C.; Shen, Q.P.; Pan, W.; Ye, K.H. Major Barriers to Off-Site Construction: The Developer’s Perspective in China. J. Manag. Eng. 2015, 31, 04014043. [Google Scholar] [CrossRef]
- Zhang, X.L.; Skitmore, M.; Peng, Y. Exploring the challenges to industrialized residential building in China. Habitat Int. 2014, 41, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.B.; Yang, R.; Li, L.; Bi, X.; Liu, B.S.; Li, S.Y.; Zhou, S.X. Factors influencing the application of prefabricated construction in China: From perspectives of technology promotion and cleaner production. J. Clean. Prod. 2019, 219, 753–762. [Google Scholar] [CrossRef]
- Hwang, B.G.; Shan, M.; Looi, K.Y. Key constraints and mitigation strategies for prefabricated prefinished volumetric construction. J. Clean. Prod. 2018, 183, 183–193. [Google Scholar] [CrossRef]
- Li, X.; Shen, G.Q.; Wu, P.; Yue, T. Integrating Building Information Modeling and Prefabrication Housing Production. Autom. Constr. 2019, 100, 46–60. [Google Scholar] [CrossRef]
- Alzahri; Zin, R.M.; Farni, I.; Zainuddin, M.; Edrizal; Publishing, I.O.P. Critical Success Factors on the Implementation of Industrialized Building System in West Sumatra. In Proceedings of the 4th International Conference on Construction and Building Engineering & 12th Regional Conference in Civil Engineering, Kuala Lumpur, Malaysia, 20–22 August 2019. [Google Scholar]
- Li, Z.D.; Shen, G.Q.; Alshawi, M. Measuring the impact of prefabrication on construction waste reduction: An empirical study in China. Resour. Conserv. Recycl. 2014, 91, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.L.; Chen, Y.J. Sustainability Assessment of Prefabricated Building Based on ANP-Entropy Weight Method: Case Study of Guangzhou City. In Construction Research Congress 2020: Infrastructure Systems and Sustainability; ElAsmar, M., Tang, P., Grau, D., Eds.; ASCE: Reston, MA, USA, 2020; pp. 259–267. [Google Scholar]
- Mao, C.; Xie, F.Y.; Hou, L.; Wu, P.; Wang, J.; Wang, X.Y. Cost analysis for sustainable off-site construction based on a multiple-case study in China. Habitat Int. 2016, 57, 215–222. [Google Scholar] [CrossRef]
- Shen, K.C.; Cheng, C.; Li, X.D.; Zhang, Z.H. Environmental Cost-Benefit Analysis of Prefabricated Public Housing in Beijing. Sustainability 2019, 11, 207. [Google Scholar] [CrossRef] [Green Version]
- Durdyev, S.; Ismail, S. Offsite Manufacturing in the Construction Industry for Productivity Improvement. Eng. Manag. J. 2019, 31, 35–46. [Google Scholar] [CrossRef]
- Li, C.Z.; Xu, X.; Shen, G.Q.; Fan, C.; Li, X.; Hong, J.K. A model for simulating schedule risks in prefabrication housing production: A case study of six-day cycle assembly activities in Hong Kong. J. Clean. Prod. 2018, 185, 366–381. [Google Scholar] [CrossRef]
- Fard, M.M.; Terouhid, S.A.; Kibert, C.J.; Hakim, H. Safety concerns related to modular/prefabricated building construction. Int. J. Inj. Control Saf. Promot. 2017, 24, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Andrukhiv, A.; Sokil, M.; Fedushko, S.; Syerov, Y.; Kalambet, Y.; Peracek, T. Methodology for increasing the efficiency of dynamic process calculations in elastic elements of complex engineering constructions. Electronics 2021, 10, 40. [Google Scholar] [CrossRef]
- Park, M.; Ingawale-Verma, Y.; Kim, W.; Ham, Y. Construction policymaking: With an example of singaporean government’s policy to diffuse prefabrication to private sector. Ksce J. Civ. Eng. 2011, 15, 771–779. [Google Scholar] [CrossRef]
- Jiang, W.P.; Luo, L.R.; Wu, Z.Z.; Fei, J.B.; Antwi-Afari, M.F.; Yu, T. An Investigation of the Effectiveness of Prefabrication Incentive Policies in China. Sustainability 2019, 11, 5149. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.Q.; Zhu, J.B.; Hertogh, M.; Sheng, Z.H. Incentive Mechanism of Prefabrication in Mega Projects with Reputational Concerns. Sustainability 2018, 10, 1260. [Google Scholar] [CrossRef] [Green Version]
- Kamali, M.; Hewage, K. Development of performance criteria for sustainability evaluation of modular versus conventional construction methods. J. Clean. Prod. 2017, 142, 3592–3606. [Google Scholar] [CrossRef]
- Gould, R.; Missimer, M.; Mesquita, P.L. Using social sustainability principles to analyse activities of the extraction lifecycle phase: Learnings from designing support for concept selection. J. Clean. Prod. 2017, 140, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Missimer, M.; Robèrt, K.-H.; Broman, G. A strategic approach to social sustainability—Part 1: Exploring the social system. J. Clean. Prod. 2017, 140, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Qian, S. Evaluation of social life-cycle performance of buildings: Theoretical framework and impact assessment approach. J. Clean. Prod. 2019, 213, 792–807. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Liu, w.; Zhang, H.; Wang, Q.; Hua, T.; Xue, H. A Review and Scientometric Analysis of Global Research on Prefabricated Buildings. Adv. Civ. Eng. 2021, 2021. [Google Scholar]
- Luo, T.; Xue, X.; Tan, Y.; Wang, Y.; Zhang, Y. Exploring a body of knowledge for promoting the sustainable transition to prefabricated construction. Eng. Constr. Archit. Manag. 2020. [Google Scholar] [CrossRef]
- Lu, W.; Yuan, H. A framework for understanding waste management studies in construction. Waste Manag. 2011, 31, 1252–1260. [Google Scholar] [CrossRef] [Green Version]
- Zou, P.X.W.; Xu, X.; Sanjayan, J.; Wang, J. Review of 10 years research on building energy performance gap: Life-cycle and stakeholder perspectives. Energy Build. 2018, 178, 165–181. [Google Scholar] [CrossRef]
- Jaillon, L.; Poon, C.S.; Chiang, Y.H. Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong. Waste Manag. 2009, 29, 309–320. [Google Scholar] [CrossRef]
- Zhao, X. A scientometric review of global BIM research: Analysis and visualization. Autom. Constr. 2017, 80, 37–47. [Google Scholar] [CrossRef]
- Angeles, R. RFID technologies: Supply-chain applications and implementation issues. Inf. Syst. Manag. 2005, 22, 51–65. [Google Scholar] [CrossRef]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, A.T.W.; Poon, C.S. Promoting effective construction and demolition waste management towards sustainable development: A case study of Hong Kong. Sustain. Dev. 2020, 28, 1713–1724. [Google Scholar] [CrossRef]
- Xie, L.L.; Chen, Y.J.; Xia, B.; Hua, C.X. Importance-Performance Analysis of Prefabricated Building Sustainability: A Case Study of Guangzhou. Adv. Civ. Eng. 2020, 2020, 8839118. [Google Scholar] [CrossRef]
- Wu, P.; Pienaar, J.; O’Brien, D. Developing a lean benchmarking process to monitor the carbon efficiency in precast concrete factories—A case study in Singapore. J. Green Build. 2013, 8, 133–152. [Google Scholar] [CrossRef]
- Teng, Y.; Pan, W. Systematic embodied carbon assessment and reduction of prefabricated high-rise public residential buildings in Hong Kong. J. Clean. Prod. 2019, 238, 117791. [Google Scholar] [CrossRef]
- Liu, G.W.; Chen, R.D.; Xu, P.P.; Fu, Y.; Mao, C.; Hong, J.K. Real-time carbon emission monitoring in prefabricated construction. Autom. Constr. 2020, 110, 102945. [Google Scholar] [CrossRef]
- Li, C.Z.; Zhao, Y.; Xu, X. Investigation of dust exposure and control practices in the construction industry: Implications for cleaner production. J. Clean. Prod. 2019, 227, 810–824. [Google Scholar] [CrossRef]
- Fuertes, A.; Casals, M.; Gangolells, M.; Forcada, N.; Macarulla, M.; Roca, X. An Environmental Impact Causal Model for improving the environmental performance of construction processes. J. Clean. Prod. 2013, 52, 425–437. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, W.; Jianli Hao, J. The evolution of construction waste sorting on-site. Renew. Sustain. Energy Rev. 2013, 20, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Tsoka, S.; Theodosiou, T.; Papadopoulou, K.; Tsikaloudaki, K. Assessing the Energy Performance of Prefabricated Buildings Considering Different Wall Configurations and the Use of PCMs in Greece. Energies 2020, 13, 5026. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Y.L.; Liu, Y.J. Research on the integrated application of green construction design of prefabricated buildings based on BIM. Basic Clin. Pharmacol. Toxicol. 2020, 126, 153. [Google Scholar]
- Shen, J.L.; Krietemeyer, B.; Bartosh, A.; Gao, Z.; Zhang, J.S. Green Design Studio: A modular-based approach for high-performance building design. Build. Simul. 2021, 14, 241–268. [Google Scholar] [CrossRef]
- Shin, H.K.; Lee, J.S.; Jung, C.W.; Ahn, Y.H. Relocatable modular buildings for a short-term international event: The pyeong-chang winter olympic games. J. Green Build. 2020, 15, 3–35. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Courard, L.; Groslambert, S.; Jehin, T.; Leonard, A.; Xiao, J.Z. Use of recycled concrete aggregates from precast block for the production of new building blocks: An industrial scale study. Resour. Conserv. Recycl. 2020, 157, 104786. [Google Scholar] [CrossRef]
- Venkrbec, V.; Klansek, U. Suitability of recycled concrete aggregates from precast panel buildings deconstructed at expired lifespan for structural use. J. Clean. Prod. 2020, 247, 119593. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, S. Emission reduction of China׳s steel industry: Progress and challenges. Renew. Sustain. Energy Rev. 2016, 61, 319–327. [Google Scholar] [CrossRef]
- Jaillon, L.; Poon, C.S. Sustainable construction aspects of using prefabrication in dense urban environment: A Hong Kong case study. Constr. Manag. Econ. 2008, 26, 953–966. [Google Scholar] [CrossRef]
- Quale, J.; Eckelman, M.J.; Williams, K.W.; Sloditskie, G.; Zimmerman, J.B. Construction Matters: Comparing Environmental Impacts of Building Modular and Conventional Homes in the United States. J. Ind. Ecol. 2012, 16, 243–253. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, K.; Li, W.; Ji, C.; Wang, Z.; Skibniewski, M.J. Social network analysis for social risks of construction projects in high-density urban areas in China. J. Clean. Prod. 2018, 198, 940–961. [Google Scholar] [CrossRef]
- Loosemore, M.; Malouf, N. Safety training and positive safety attitude formation in the Australian construction industry. Saf. Sci. 2019, 113, 233–243. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Shen, L. Research on the mobility behaviour of Chinese construction workers based on evolutionary game theory. Econ. Res. -Ekon. Istraz. 2018, 31, 1–14. [Google Scholar]
- Jaillon, L.; Poon, C.S. Life cycle design and prefabrication in buildings: A review and case studies in Hong Kong. Autom. Constr. 2014, 39, 195–202. [Google Scholar] [CrossRef]
- Yuan, Z.; Sun, C.; Wang, Y. Design for Manufacture and Assembly-oriented parametric design of prefabricated buildings. Autom. Constr. 2018, 88, 13–22. [Google Scholar] [CrossRef]
- Wasim, M.; Serra, P.V.; Ngo, T.D. Design for manufacturing and assembly for sustainable, quick and cost-effective prefabricated construction—A review. Int. J. Constr. Manag. 2020, 1–9. [Google Scholar] [CrossRef]
- Hong, J.; Shen, G.Q.; Li, Z.; Zhang, B.; Zhang, W. Barriers to promoting prefabricated construction in China: A cost-benefit analysis. J. Clean. Prod. 2018, 172, 649–660. [Google Scholar] [CrossRef]
- Liu, J.K.; Gong, E.Q.; Wang, D.; Teng, Y. Cloud Model-Based Safety Performance Evaluation of Prefabricated Building Project in China. Wirel. Pers. Commun. 2018, 102, 3021–3039. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Yuan, Z.M.; Ni, G.D.; Lin, H.; Lu, Y.J. The quality traceability system for prefabricated buildings using blockchain: An integrated framework. Front. Eng. Manag. 2020, 7, 528–546. [Google Scholar] [CrossRef]
- Li, Z.; Shen, G.Q.; Xue, X. Critical review of the research on the management of prefabricated construction. Habitat Int. 2014, 43, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Liu, W.; Wang, S.; Du, D. In-plane strengthening effect of prefabricated concrete walls on masonry structures: Shaking table test. Shock Vib. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Li, Z.; Li, L.; Gao, Y. Constraints on the Promotion of Prefabricated Construction in China. Sustainability 2018, 10, 2516. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, L.; Wu, Z.; Zhang, S.; Song, H. Investigating Young Consumers’ Purchasing Intention of Green Housing in China. Sustainability 2018, 10, 1044. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L.; Shen, H.C.; Zuo, J. Risks in Prefabricated Buildings in China: Importance-Performance Analysis Approach. Sustainability 2019, 11, 3450. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Zhang, S.; Su, Y.; Wu, Z. Factors Affecting the Capital Cost of Prefabrication-A Case Study of China. Sustainability 2017, 9, 1512. [Google Scholar] [CrossRef] [Green Version]
- Sutrisna, M.; Ramnauth, V.; Zaman, A. Towards adopting off-site construction in housing sectors as a potential source of competitive advantage for builders. Archit. Eng. Des. Manag. 2020, 1–19. [Google Scholar] [CrossRef]
- Li, X.J. Research on investment risk influence factors of prefabricated building projects. J. Civ. Eng. Manag. 2020, 26, 599–613. [Google Scholar] [CrossRef]
- Cheng, D.; Ma, J.X. Iop, Research on the restrictive factors of the development of Chinese prefabricated buildings. In Proceedings of the 2020 3rd International Conference of Green Buildings and Environmental Management, China; IOP Publishing: London, UK, 2020; Volume 531. [Google Scholar]
- Godbole, S.; Lam, N.; Mafas, M.; Fernando, S.; Gad, E.; Hashemi, J. Dynamic loading on a prefabricated modular unit of a building during road transportation. J. Build. Eng. 2018, 18, 260–269. [Google Scholar] [CrossRef]
- Haller, M.; Lu, W.; Stehn, L.; Jansson, G. An indicator for superfluous iteration in offsite building design processes. Archit. Eng. Des. Manag. 2015, 11, 360–375. [Google Scholar] [CrossRef]
- Wang, M.D.; Wang, C.C.; Sepasgozar, S.; Zlatanova, S. A Systematic Review of Digital Technology Adoption in Off-Site Construction: Current Status and Future Direction towards Industry 4.0. Buildings 2020, 10, 204. [Google Scholar] [CrossRef]
- Yu, T.; Man, Q.P.; Wang, Y.W.; Shen, G.Q.; Hong, J.K.; Zhang, J.S.; Zhong, J. Evaluating different stakeholder impacts on the occurrence of quality defects in offsite construction projects: A Bayesian-network-based model. J. Clean. Prod. 2019, 241, 118390. [Google Scholar] [CrossRef]
- Chiang, Y.-H.; Chan, E.H.-W.; Lok, L.K.-L. Prefabrication and barriers to entry—A case study of public housing and institutional buildings in Hong Kong. Habitat Int. 2006, 30, 482–499. [Google Scholar] [CrossRef]
- Yoo, M.; Kim, J.; Choi, C. Effects of BIM-Based Construction of Prefabricated Steel Framework from the Perspective of SMEs. Appl. Sci. 2019, 9, 1732. [Google Scholar] [CrossRef] [Green Version]
- Ko, H.S.; Azambuja, M.; Felix Lee, H. Cloud-based Materials Tracking System Prototype Integrated with Radio Frequency Identification Tagging Technology. Autom. Constr. 2016, 63, 144–154. [Google Scholar] [CrossRef]
- Riaz, Z.; Arslan, M.; Kiani, A.K.; Azhar, S. CoSMoS: A BIM and wireless sensor based integrated solution for worker safety in confined spaces. Autom. Constr. 2014, 45, 96–106. [Google Scholar] [CrossRef]
- Irizarry, J.; Karan, E.P.; Jalaei, F. Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Autom. Constr. 2013, 31, 241–254. [Google Scholar] [CrossRef]
- Liu, K.N.; Su, Y.K.; Zhang, S.J. Evaluating Supplier Management Maturity in Prefabricated Construction Project-Survey Analysis in China. Sustainability 2018, 10, 3046. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.L.; Liu, Z.S.; Mbachu, J. Development of Intelligent Prefabs Using IoT Technology to Improve the Performance of Prefabricated Construction Projects. Sensors 2019, 19, 4131. [Google Scholar] [CrossRef] [Green Version]
- Sabet, P.G.P.; Chong, H.Y. Interactions between building information modelling and off-site manufacturing for productivity improvement. Int. J. Manag. Proj. Bus. 2020, 13, 233–255. [Google Scholar] [CrossRef]
- Arashpour, M.; Kamat, V.; Bai, Y.; Wakefield, R.; Abbasi, B. Optimization modeling modeling of multi-skilled resources in prefabrication: Theorizing cost analysis of process integration in off-site construction. Autom. Constr. 2018, 95, 1–9. [Google Scholar] [CrossRef]
- Pan, W.; Gibb, A.G.F.; Dainty, A.R.J. Strategies for Integrating the Use of Off-Site Production Technologies in House Building. J. Constr. Eng. Manag.-Asce 2012, 138, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Zhang, S.J.; Su, Y.K.; Wu, Z.Z. Capital Cost Optimization for Prefabrication: A Factor Analysis Evaluation Model. Sustainability 2018, 10, 159. [Google Scholar] [CrossRef] [Green Version]
- Tam, V.W.Y.; Fung, I.W.H.; Sing, M.C.P.; Ogunlana, S.O. Best practice of prefabrication implementation in the Hong Kong public and private sectors. J. Clean. Prod. 2015, 109, 216–231. [Google Scholar] [CrossRef]
- Jang, S.; Lee, G. Process, productivity, and economic analyses of BIM based multi-trade prefabrication-A case study. Autom. Constr. 2018, 89, 86–98. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, J.J.; Shen, L. A Conceptual Development Framework for Prefabricated Construction Supply Chain Management: An Integrated Overview. Sustainability 2020, 12, 1878. [Google Scholar] [CrossRef] [Green Version]
- Bin Ismail, Z.A. Hybrid intelligent vehicle system for managing construction supply chain in precast concrete building construction projects. World J. Eng. 2021, 18, 538–546. [Google Scholar] [CrossRef]
- Luo, L.Z.; Jin, X.; Shen, G.Q.; Wang, Y.J.; Liang, X.; Li, X.; Li, C.Z. Supply Chain Management for Prefabricated Building Projects in Hong Kong. J. Manag. Eng. 2020, 36, 05020001. [Google Scholar] [CrossRef]
- Yi, W.; Phipps, R.; Wang, H. Sustainable Ship Loading Planning for Prefabricated Products in the Construction Industry. Sustainability 2020, 12, 8905. [Google Scholar] [CrossRef]
- Arashpour, M.; Bai, Y.; Aranda-Mena, G.; Bab-Hadiashar, A.; Hosseini, R.; Kalutara, P. Optimizing decisions in advanced manufacturing of prefabricated products: Theorizing supply chain configurations in off-site construction. Autom. Constr. 2017, 84, 146–153. [Google Scholar] [CrossRef]
- Li, C.Z.; Hong, J.; Fan, C.; Xu, X.; Shen, G.Q. Schedule delay analysis of prefabricated housing production: A hybrid dynamic approach. J. Clean. Prod. 2018, 195, 1533–1545. [Google Scholar] [CrossRef]
- Li, C.Z.; Zhong, R.Y.; Xue, F.; Xu, G.; Chen, K.; Huang, G.G.; Shen, G.Q. Integrating RFID and BIM technologies for mitigating risks and improving schedule performance of prefabricated house construction. J. Clean. Prod. 2017, 165, 1048–1062. [Google Scholar] [CrossRef]
- Li, C.Z.; Hong, J.; Xue, F.; Shen, G.Q.; Xu, X.; Luo, L. SWOT analysis and Internet of Things-enabled platform for prefabrication housing production in Hong Kong. Habitat Int. 2016, 57, 74–87. [Google Scholar] [CrossRef]
- Kim, Y.-W.; Han, S.-H.; Yi, J.-S.; Chang, S. Supply chain cost model for prefabricated building material based on time-driven activity-based costing. Can. J. Civ. Eng. 2016, 43, 287–293. [Google Scholar] [CrossRef]
- Tian, D.; Li, X.; Ma, T. Research on design and analysis of prefabricated concrete building component system based on BIM. Build. Struct. 2016, 46, 58–62. [Google Scholar]
- Li, M.; Yu, H.; Jin, H.; Liu, P. Methodologies of safety risk control for China’s metro construction based on BIM. Saf. Sci. 2018, 110, 418–426. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, Z.; Mei, T.; Li, Q.; Li, P. Labor crew workspace analysis for prefabricated assemblies’ installation: A 4D-BIM-based approach. Eng. Constr. Archit. Manag. 2018, 25, 374–411. [Google Scholar] [CrossRef]
- Wong, P.S.P.; Whelan, B.; Holdsworth, S. Are contractors ready for greater use of prefabrication in projects? An empirical analysis on the role of unlearning and counter-knowledge. Int. J. Constr. Manag. 2021, 21, 353–368. [Google Scholar] [CrossRef]
- Lu, W.; Yuan, H. Investigating waste reduction potential in the upstream processes of offshore prefabrication construction. Renew. Sustain. Energy Rev. 2013, 28, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Shi, Q.; Wu, P.; Sheng, Z.; Wang, X. Complexity analysis of prefabrication contractors’ dynamic price competition in mega projects with different competition strategies. Complexity 2018, 2018. [Google Scholar] [CrossRef]
- Lehmann, S. Low carbon construction systems using prefabricated engineered solid wood panels for urban infill to significantly reduce greenhouse gas emissions. Sustain. Cities Soc. 2013, 6, 57–67. [Google Scholar] [CrossRef]
- Demiralp, G.; Guven, G.; Ergen, E. Analyzing the benefits of RFID technology for cost sharing in construction supply chains: A case study on prefabricated precast components. Autom. Constr. 2012, 24, 120–129. [Google Scholar] [CrossRef]
- Pan, W.; Chen, L.; Zhan, W. PESTEL analysis of construction productivity enhancement strategies: A case study of three economies. J. Manag. Eng. 2019, 35, 05018013. [Google Scholar] [CrossRef]
- Pan, W.; Sidwell, R. Demystifying the cost barriers to offsite construction in the UK. Constr. Manag. Econ. 2011, 29, 1081–1099. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, A.T.W.; Poon, C.S. An Off-Site Snapshot Methodology for Estimating Building Construction Waste Composition—A Case Study of Hong Kong. Environ. Impact Assess. Rev. 2019, 77, 128–135. [Google Scholar] [CrossRef]
- Feng, T.; Tai, S.; Sun, C.; Man, Q. Study on Cooperative Mechanism of Prefabricated Producers Based on Evolutionary Game Theory. Math. Probl. Eng. 2017, 2017, 1676045. [Google Scholar] [CrossRef] [Green Version]
- Lou, N.; Guo, J.J. Study on Key Cost Drivers of Prefabricated Buildings Based on System Dynamics. Adv. Civ. Eng. 2020, 2020. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, X.; Zhang, A.; Tian, C.; Zhang, X.; Tan, Y. Design and compilation of specifications for a modular-prefabricated high-rise steel frame structure with diagonal braces. Part I: Integral structural design. Struct. Des. Tall Spec. Build. 2018, 27, e1415. [Google Scholar] [CrossRef]
- Luo, L.-Z.; Mao, C.; Shen, L.-Y.; Li, Z.-D. Risk factors affecting practitioners’ attitudes toward the implementation of an industrialized building system: A case study from China. Eng. Constr. Archit. Manag. 2015, 22, 622–643. [Google Scholar] [CrossRef]
- Ning, X.; Lam, K.C. Cost-safety trade-off in unequal-area construction site layout planning. Autom. Constr. 2013, 32, 96–103. [Google Scholar] [CrossRef]
- Arashpour, M.; Wakefield, R.; Blismas, N.; Maqsood, T. Autonomous production tracking for augmenting output in off-site construction. Autom. Constr. 2015, 53, 13–21. [Google Scholar] [CrossRef]
- Li, X.J.; Wang, C.; Alashwal, A.; Bora, S. Game analysis on prefabricated building evolution based on dynamic revenue risks in China. J. Clean. Prod. 2020, 267, 121730. [Google Scholar] [CrossRef]
- Rad, K.G.; Kim, S.-Y. Factors Affecting Construction Labor Productivity: Iran Case Study. Iran. J. Sci. Technol.-Trans. Civ. Eng. 2018, 42, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.G.; Wu, X.; Yan, X. Multiobjective Optimization of Safety Risk of Prefabricated Building Construction considering Risk Correlation. Math. Probl. Eng. 2020, 2020, 1–11. [Google Scholar]
- Hosseinian, S.S.; Torghabeh, Z.J.; Ressang, A. Relative importance of factors affecting construction hazards in the design phase. Appl. Mech. Mater. 2013, 330, 862–866. [Google Scholar] [CrossRef]
- Zhao, W.S.; Zhang, B.B.; Yang, Y. Empirical study of comprehensive benefits for prefabricated buildings: A case study of Hefei city. Int. J. Electr. Eng. Educ. 2020. [Google Scholar]
- Amin, M.A.M.; Abas, N.H.; Deraman, R. The Effect of Prefabricated Steel Framing System towards Construction Occupational Safety and Health (OSH); IOP Conference Series: Materials Science and Engineering 2019; IOP Publishing: London, UK, 2019; p. 012035. [Google Scholar]
- Wuni, I.Y.; Shen, G.Q.; Hwang, B.G. Risks of modular integrated construction: A review and future research directions. Front. Eng. Manag. 2020, 7, 63–80. [Google Scholar] [CrossRef]
- Jin, X.; Shen, G.Q.; Ekanayake, E. Improving Construction Industrialization Practices from a Socio-Technical System Perspective: A Hong Kong Case. Int. J. Environ. Res. Public Health 2021, 18, 9017. [Google Scholar] [CrossRef]
- Jeong, G.; Kim, H.; Lee, H.-S.; Park, M.; Hyun, H. Analysis of safety risk factors of modular construction to identify accident trends. J. Asian Archit. Build. Eng. 2021, 1–13. [Google Scholar] [CrossRef]
- Murali, K.; Sambath, K. Sustainable Performance Criteria for Prefabrication Construction System. Int. J. Sci. Res. Publ. 2020, 10, 455–458. [Google Scholar]
- Yuan, Y.; Ye, S.; Lin, L. Process Monitoring with Support of IoT in Prefabricated Building Construction. Sens. Mater. 2021, 33, 1167–1185. [Google Scholar]
- Sharif, M.M.; Haas, C.; Walbridge, S. Using termination points and 3D visualization for dimensional control in prefabrication. Autom. Constr. 2022, 133, 103998. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, P.-H.; Chen, C.-T. Evolutionary game analysis of government and enterprises during promotion process of prefabricated construction. J. Interdiscip. Math. 2017, 20, 1587–1593. [Google Scholar] [CrossRef]
- Rahman, M.M. Barriers of Implementing Modern Methods of Construction. J. Manag. Eng. 2014, 30, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, P.; Lavikka, R. Overcoming Path Dependency in an Industrialised House-Building Company through Entrepreneurial Orientation. Buildings 2020, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, H.; Wu, Z. Attitude of the Chinese public toward off-site construction: A text mining study. J. Clean. Prod. 2019, 238, 117926. [Google Scholar] [CrossRef]
- Hwang, B.G.; Shan, M.; Looi, K.Y. Developing a Knowledge-based Decision Support System for Prefabricated Prefinished Volumetric Construction. In Proceedings of the 4th International Conference on Research Methodology for Built Environment and Engineering, Kuala Lumpur, Malaysia, 24–25 April 2019; Salleh, S.A., Yusuwan, N., Hashim, N., Yaman, R., Eds.; Iop Publishing Ltd.: Bristol, UK, 2019; Volume 385. [Google Scholar]
- Zhai, Y.; Zhong, R.Y.; Huang, G.Q. Towards operational hedging for logistics uncertainty management in prefabrication construction. IFAC-Pap. 2015, 48, 1128–1133. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.H.; Jaillon, L.; Chu, P.; Poon, C.S. Comparing carbon emissions of precast and cast-in-situ construction methods–A case study of high-rise private building. Constr. Build. Mater. 2015, 99, 39–53. [Google Scholar] [CrossRef]
- Hou, J.W.; Wang, X.D.; Liu, J.D.; Chen, Z.H.; Zhong, X. Study on the stability bearing capacity of multi-column wall in modular steel building. Eng. Struct. 2020, 214, 110648. [Google Scholar] [CrossRef]
- Nguyen, K.T.; Navaratnam, S.; Mendis, P.; Zhang, K.; Barnett, J.; Wang, H. Fire safety of composites in prefabricated buildings: From fibre reinforced polymer to textile reinforced concrete. Compos. Part B Eng. 2020, 187, 107815. [Google Scholar] [CrossRef]
- Srisangeerthanan, S.; Hashemi, M.J.; Rajeev, P.; Gad, E.; Fernando, S. Review of performance requirements for inter-module connections in multi-story modular buildings. J. Build. Eng. 2020, 28, 101087. [Google Scholar] [CrossRef]
- Shang, G.; Pheng, L.S.; Gina, O.L.T. Understanding the low adoption of prefabrication prefinished volumetric construction (PPVC) among SMEs in Singapore: From a change management perspective. Int. J. Build. Pathol. Adapt. 2018. Available online: https://www.emerald.com/insight/content/doi/10.1108/IJBPA-08-2020-0070/full/html (accessed on 8 January 2021).
- Borodinecs, A.; Zemitis, J.; Dobelis, M.; Kalinka, M. 3D scanning data use for modular building renovation based on BIM model. In Proceedings of the Vi International Scientific Conference Integration, Partnership and Innovation in Construction Science and Education, Moscow, Russia, 14–16 November 2018; Volkov, A., Pustovgar, A., Adamtsevich, A., Eds.; EDP Sciences: Moscow, Russia, 2018; Volume 251. [Google Scholar]
- Mostafa, S.; Kim, K.P.; Tam, V.W.Y.; Rahnamayiezekavat, P. Exploring the status, benefits, barriers and opportunities of using BIM for advancing prefabrication practice. Int. J. Constr. Manag. 2020, 20, 146–156. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, W.; Luo, H.B.; Zhang, Y. Virtual pre-assembly for large steel structures based on BIM, PLP algorithm, and 3D measurement. Front. Eng. Manag. 2019, 6, 207–220. [Google Scholar] [CrossRef]
- Sharafi, P.; Rashidi, M.; Samali, B.; Ronagh, H.; Mortazavi, M. Identification of Factors and Decision Analysis of the Level of Modularization in Building Construction. J. Archit. Eng. 2018, 24, 12. [Google Scholar] [CrossRef]
- Hammad, A.W.A.; Akbarnezhad, A.; Wu, P.; Wang, X.Y.; Haddad, A. Building information modelling-based framework to contrast conventional and modular construction methods through selected sustainability factors. J. Clean. Prod. 2019, 228, 1264–1281. [Google Scholar] [CrossRef]
- Hsu, P.Y.; Angeloudis, P.; Aurisicchio, M. Optimal logistics planning for modular construction using two-stage stochastic programming. Autom. Constr. 2018, 94, 47–61. [Google Scholar] [CrossRef]
- Ramaji, I.J.; Memari, A.M. Extending the current model view definition standards to support multi-storey modular building projects. Archit. Eng. Des. Manag. 2018, 14, 158–176. [Google Scholar] [CrossRef]
- Sun, Y.H.; Wang, J.; Wu, J.; Shi, W.X.; Ji, D.Z.; Wang, X.Y.; Zhao, X.Z. Constraints Hindering the Development of High-Rise Modular Buildings. Appl. Sci.-Basel 2020, 10, 7159. [Google Scholar] [CrossRef]
- Zhai, Y.; Chen, K.; Zhou, J.S.X.; Cao, J.; Lyu, Z.Y.; Jin, X.; Shen, G.Q.P.; Lu, W.S.; Huang, G.Q. An Internet of Things-enabled BIM platform for modular integrated construction: A case study in Hong Kong. Adv. Eng. Inform. 2019, 42, 15. [Google Scholar] [CrossRef]
- He, R.; Li, M.K.; Gan, V.J.L.; Ma, J. BIM-enabled computerized design and digital fabrication of industrialized buildings: A case study. J. Clean. Prod. 2021, 278, 13. [Google Scholar] [CrossRef]
- Xu, Z.; Zayed, T.; Niu, Y.M. Comparative analysis of modular construction practices in mainland China, Hong Kong and Singapore. J. Clean. Prod. 2020, 245, 14. [Google Scholar] [CrossRef]
- Balasbaneh, A.T.; Ramli, M.Z. A comparative life cycle assessment (LCA) of concrete and steel-prefabricated prefinished volumetric construction structures in Malaysia. Environ. Sci. Pollut. Res. 2020, 27, 43186–43201. [Google Scholar] [CrossRef]
- Jiang, W.; Huang, Z.; Peng, Y.; Fang, Y.Q.; Cao, Y.Z. Factors affecting prefabricated construction promotion in China: A structural equation modeling approach. PLoS ONE 2020, 15, e0227787. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Chen, K.; Xue, F.; Pan, W. Searching for an optimal level of prefabrication in construction: An analytical framework. J. Clean. Prod. 2018, 201, 236–245. [Google Scholar] [CrossRef]
- Wang, Y.N.; Xue, X.L.; Yu, T.; Wang, Y.W. Mapping the dynamics of China’s prefabricated building policies from 1956 to 2019: A bibliometric analysis. Build. Res. Inf. 2021, 49, 216–233. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, L.; Pan, J. Identification and analyses of hidden transaction costs in project dispute resolutions. Int. J. Proj. Manag. 2015, 33, 711–718. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, D.; Guo, C.X.; Huang, H.Z. Evolutionary Game of Government Subsidy Strategy for Prefabricated Buildings Based on Prospect Theory. Math. Probl. Eng. 2020, 2020. [Google Scholar]
- Minunno, R.; O’Grady, T.; Morrison, G.M.; Gruner, R.L. Exploring environmental benefits of reuse and recycle practices: A circular economy case study of a modular building. Resour. Conserv. Recycl. 2020, 160, 104855. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, J.I.; Khanzode, A.; Fischer, M. Empirical study of identifying logistical problems in prefabricated interior wall panel construction. J. Manag. Eng. 2021, 37, 05021002. [Google Scholar] [CrossRef]
- Tan, T.; Chen, K.; Xue, F.; Lu, W.S. Barriers to Building Information Modeling (BIM) implementation in China’s prefabricated construction: An interpretive structural modeling (ISM) approach. J. Clean. Prod. 2019, 219, 949–959. [Google Scholar] [CrossRef]
- Zhang, X.; Azhar, S.; Nadeem, A.; Khalfan, M. Using Building Information Modelling to achieve Lean principles by improving efficiency of work teams. Int. J. Constr. Manag. 2018, 18, 293–300. [Google Scholar] [CrossRef]
- Won, J.; Lee, G.; Dossick, C.; Messner, J. Where to Focus for Successful Adoption of Building Information Modeling within Organization. J. Constr. Eng. Manag. 2013, 139, 04013014. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.; Xue, X.; Wang, Y.; Luo, X.; Shang, S. New media data-driven measurement for the development level of prefabricated construction in China. J. Clean. Prod. 2019, 241, 118353. [Google Scholar] [CrossRef]
- Gong, P.; Teng, Y.; Li, X.; Luo, L.Z. Modeling Constraints for the On-Site Assembly Process of Prefabrication Housing Production: A Social Network Analysis. Sustainability 2019, 11, 1387. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Yu, T.; Hong, J.K.; Shen, G.Q. Making incentive policies more effective: An agent-based model for energy-efficiency retrofit in China. Energy Policy 2019, 126, 177–189. [Google Scholar] [CrossRef]
Categories | Influence Factors | References |
---|---|---|
Improve quality | Design for Manufacture and Assembly (DFMA) | [59,60] |
Win-win relationship between supplier and contractor | [62] | |
Monitoring tools for monitoring and checking the status and quality problems | [19,63] | |
Additional protection of loading and fixation | [61] | |
Concentrating on each single element | [61] | |
Quality supervision | [64] | |
Quality issues | Accelerate the process | [65,66] |
Excessive pursuit of assembly rate | [66] | |
Increased use of prefabrication for a relatively shorter time period | [22] | |
Incompetent design | [67] | |
Technical issues | [68,69,70,71] | |
Lack of competence in the assembly | [66] | |
Lack of standards and specifications | [68,69] | |
Stakeholders’ experience and skills | [67] | |
The knowledge of workers, designers, manufacturers, and assemblers | [66,72] | |
Dynamic loading of components during road transportation | [73] |
Influence Factors | References | |
---|---|---|
Improve productivity | Information Technology | [62,77,78,84] |
Production engineering innovation | [87] | |
Multi-skilling | [85] | |
Design standardization, modularization and recycling | [87] | |
Better quality achieved at the factory production | [88] | |
Increase resources | [87] | |
Schedule delay | Slow quality inspection procedures | [89,90] |
Misplacement on the storage site resulting from carelessness | [89,90] | |
Owner crane breakdown and maintenance | [67] | |
Inefficient design data transition | [67] | |
Project scale, resources, and management | [67] | |
Inefficient verification of precast components because of ambiguous labels | [67] | |
Lack of competence in the assembly | [66] | |
Long design time | [2,91] | |
Inflexible for design change | [92,93] | |
Inefficiency of design approval | [67,89] | |
Delay of the delivery of precast element to site | [90,92] | |
Low information interoperability between different enterprise resource planning systems | [67] | |
Design information gap between designer and manufacturer | [67] | |
Installation error of precast elements | [67] | |
Logistics information inconsistency because of human errors | [67] |
Categories | Influence Factors | References |
---|---|---|
Increased cost | Design diversity & complexity | [2,102,103,104] |
Lack of codes and standards | [31,68] | |
Unknown techniques | [31,87,104] | |
Well-proven methods and materials | [87] | |
Aesthetics | [87] | |
Maintenance complexity | [87] | |
Quality impression | [31,87,105] | |
Supply chain issues | [31,87] | |
Additional transportation cost | [69] | |
Additional procurement cost | [61,66] | |
Highly skilled workers | [31,61,66,106] | |
Complex techniques | [24,61] | |
Extra labor cost on checking, counting, and sorting raw materials | [61] | |
Long lead-in times | [2,24] | |
Design change | [2,102] | |
Occupying extra space for the accommodation of precast components | [61] | |
Additional use of tower cranes (vertical transportation) | [61] | |
High employee training cost | [61] | |
Lack of knowledge and understanding | [31,96] | |
Decreased cost | Decreased labor | [14] |
Cheaper labor rates | [2,107] | |
High thermal efficiency | [14] | |
Fewer site materials | [34] | |
Increased productivity | [108] | |
Avoidance of construction site hindrances | [61] | |
Decreased management cost | [61] | |
Faster project delivery | [61] | |
Decreased transportation cost for materials & waste | [34,109] | |
Decreased waste disposal cost | [34] | |
Reduction of formwork | [61] | |
Controlled quality | [61] | |
Lower maintenance and repair expenses | [61] | |
Incentive mechanisms | [110,111] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Luo, L.; Li, H.; Wang, Y.; Bi, G.; Antwi-Afari, M.F. An Analysis on Promoting Prefabrication Implementation in Construction Industry towards Sustainability. Int. J. Environ. Res. Public Health 2021, 18, 11493. https://doi.org/10.3390/ijerph182111493
Wu Z, Luo L, Li H, Wang Y, Bi G, Antwi-Afari MF. An Analysis on Promoting Prefabrication Implementation in Construction Industry towards Sustainability. International Journal of Environmental Research and Public Health. 2021; 18(21):11493. https://doi.org/10.3390/ijerph182111493
Chicago/Turabian StyleWu, Zezhou, Lirong Luo, Heng Li, Ying Wang, Guoqiang Bi, and Maxwell Fordjour Antwi-Afari. 2021. "An Analysis on Promoting Prefabrication Implementation in Construction Industry towards Sustainability" International Journal of Environmental Research and Public Health 18, no. 21: 11493. https://doi.org/10.3390/ijerph182111493