Adiposity and Long-Term Adiposity Change Are Associated with Incident Diabetes: A Prospective Cohort Study in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Anthropometric Measurements
2.3. Definitions
2.4. Statistics Analyses
3. Results
3.1. Study Participants
3.2. Associations between Baseline BMI, WC, and the WHtR with Incident T2DM
3.3. Associations between Long-Term Adiposity Changes with Incident T2dm
3.4. Subgroup Analysis and Effect Modification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Diabetes. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 19 June 2021).
- International Diabetes Federation. IDF Diabetes Atlas, 8th ed.; International Diabetes Federation: Brussels, Belgium, 2017. [Google Scholar]
- Krasteva, A.; Panov, V.; Krasteva, A.; Kisselova, A.; Krastev, Z. Oral Cavity and Systemic Diseases—Diabetes Mellitus. Biotechnol. Biotechnol. Equip. 2011, 25, 2183–2186. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Liu, S.W.; Wang, L.J.; Bai, Y.M.; Zeng, X.Y.; Guo, H.B.; Liu, Y.N.; Jiang, Y.Y.; Dong, W.L.; He, G.X.; et al. Burden of diabetes, hyperglycaemia in China from to 2016: Findings from the 1990 to 2016, global burden of disease study. Diabetes Metab. 2019, 45, 286–293. [Google Scholar] [CrossRef]
- Joshi, R.D.; Dhakal, C.K. Predicting Type 2 Diabetes Using Logistic Regression and Machine Learning Approaches. Int. J. Env. Res. Public Health 2021, 18, 7346. [Google Scholar] [CrossRef]
- Habibi, S.; Ahmadi, M.; Alizadeh, S. Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining. Glob. J. Health Sci. 2015, 7, 304–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rydén, L.; Standl, E.; Bartnik, M.; Van den Berghe, G.; Betteridge, J.; de Boer, M.J.; Cosentino, F.; Jönsson, B.; Laakso, M.; Malmberg, K.; et al. Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: Executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2007, 28, 88–136. [Google Scholar] [CrossRef] [PubMed]
- Tuso, P. Prediabetes and lifestyle modification: Time to prevent a preventable disease. Perm. J. 2014, 18, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.; Peeters, A.; de Courten, M.; Stoelwinder, J. The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Res. Clin. Pract. 2010, 89, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Bragg, F.; Tang, K.; Guo, Y.; Iona, A.; Du, H.; Holmes, M.V.; Bian, Z.; Kartsonaki, C.; Chen, Y.; Yang, L.; et al. Associations of General and Central Adiposity with Incident Diabetes in Chinese Men and Women. Diabetes Care 2018, 41, 494–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dale, C.E.; Fatemifar, G.; Palmer, T.M.; White, J.; Prieto-Merino, D.; Zabaneh, D.; Engmann, J.E.L.; Shah, T.; Wong, A.; Warren, H.R.; et al. Causal Associations of Adiposity and Body Fat Distribution with Coronary Heart Disease, Stroke Subtypes, and Type 2 Diabetes Mellitus: A Mendelian Randomization Analysis. Circulation 2017, 135, 2373–2388. [Google Scholar] [CrossRef] [Green Version]
- Nuttall, F.Q. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Sun, G.; Zheng, L.; Hu, W.; Li, W.; Sun, Y. Associations between metabolic risk factors and body mass index, waist circumference, waist-to-height ratio and waist-to-hip ratio in a Chinese rural population. J. Diabetes Investig. 2016, 7, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Manson, J.E.; Yuan, C.; Liang, M.H.; Grodstein, F.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Associations of Weight Gain from Early to Middle Adulthood with Major Health Outcomes Later in Life. JAMA 2017, 318, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Biggs, M.L.; Mukamal, K.J.; Luchsinger, J.A.; Ix, J.H.; Carnethon, M.R.; Newman, A.B.; de Boer, I.H.; Strotmeyer, E.S.; Mozaffarian, D.; Siscovick, D.S. Association between adiposity in midlife and older age and risk of diabetes in older adults. JAMA 2010, 303, 2504–2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, E.S.; Williamson, D.F.; Liu, S. Weight change and diabetes incidence: Findings from a national cohort of US adults. Am. J. Epidemiol. 1997, 146, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Wannamethee, S.G.; Shaper, A.G. Weight change and duration of overweight and obesity in the incidence of type 2 diabetes. Diabetes Care 1999, 22, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, S.; Horimai, C.; Katsukawa, F. Ethnic differences in abdominal visceral fat accumulation between Japanese, African-Americans, and Caucasians: A meta-analysis. Acta Diabetol. 2003, 40 (Suppl. 1), S302–S304. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, R.; Ding, L.; Meng, Z.; Zhang, Q.; Shen, Y.; Hu, G.; Liu, M. Waist Circumference and its Changes Are More Strongly Associated with the Risk of Type 2 Diabetes than Body Mass Index and Changes in Body Weight in Chinese Adults. J. Nutr. 2020, 150, 1259–1265. [Google Scholar] [CrossRef]
- Zhou, B.F. Cooperative Meta-Analysis Group of the Working Group on Obesity in C, Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar] [PubMed]
- American Diabetes Assoication, 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43 (Suppl. 1), S14–S31. [CrossRef] [Green Version]
- Chen, Y.; Wang, N.; Dong, X.; Zhu, J.; Chen, Y.; Jiang, Q.; Fu, C. Associations between serum amino acids and incident type 2 diabetes in Chinese rural adults. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2416–2425. [Google Scholar] [CrossRef]
- National Cholesterol Education Program (NCEP), Expert Panel on Detection, E., and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III), Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421.
- InterAct, C.; Langenberg, C.; Sharp, S.J.; Schulze, M.B.; Rolandsson, O.; Overvad, K.; Forouhi, N.G.; Spranger, J.; Drogan, D.; Huerta, J.M.; et al. Long-term risk of incident type 2 diabetes and measures of overall and regional obesity: The EPIC-InterAct case-cohort study. PLoS Med. 2012, 9, e1001230. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, G.; Duval, S.; Jacobs, D.R., Jr.; Silventoinen, K. Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: A meta-analysis. Epidemiol. Rev. 2007, 29, 115–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, S.; Horikawa, C.; Fujihara, K.; Heianza, Y.; Hirasawa, R.; Yachi, Y.; Sugawara, A.; Tanaka, S.; Shimano, H.; Iida, K.T.; et al. Comparisons of the strength of associations with future type 2 diabetes risk among anthropometric obesity indicators, including waist-to-height ratio: A meta-analysis. Am. J. Epidemiol. 2012, 176, 959–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Q.; Nyamdorj, R. Is the association of type II diabetes with waist circumference or waist-to-hip ratio stronger than that with body mass index? Eur. J. Clin. Nutr. 2010, 64, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Kodama, S.; Horikawa, C.; Fujihara, K.; Yoshizawa, S.; Yachi, Y.; Tanaka, S.; Ohara, N.; Matsunaga, S.; Yamada, T.; Hanyu, O.; et al. Quantitative relationship between body weight gain in adulthood and incident type 2 diabetes: A meta-analysis. Obes. Rev. 2014, 15, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, Y.; Watanabe, M.; Nakai, M.; Kokubo, Y.; Higashiyama, A.; Nishimura, K.; Kobayashi, T.; Takegami, M.; Nakao, Y.M.; Watanabe, T.; et al. Changes in Waist Circumference and the Incidence of Type 2 Diabetes in Community-Dwelling Men and Women: The Suita Study. J. Epidemiol. 2015, 25, 489–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautier, A.; Roussel, R.; Ducluzeau, P.H.; Lange, C.; Vol, S.; Balkau, B.; Bonnet, F. Increases in waist circumference and weight as predictors of type 2 diabetes in individuals with impaired fasting glucose: Influence of baseline BMI: Data from the DESIR study. Diabetes Care 2010, 33, 1850–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh-Banerjee, P.; Wang, Y.; Hu, F.B.; Spiegelman, D.; Willett, W.C.; Rimm, E.B. Changes in body weight and body fat distribution as risk factors for clinical diabetes in US men. Am. J. Epidemiol. 2004, 159, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Burhans, M.S.; Hagman, D.K.; Kuzma, J.N.; Schmidt, K.A.; Kratz, M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr. Physiol. 2018, 9, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamman, R.F.; Wing, R.R.; Edelstein, S.L.; Lachin, J.M.; Bray, G.A.; Delahanty, L.; Hoskin, M.; Kriska, A.M.; Mayer-Davis, E.J.; Pi-Sunyer, X.; et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care 2006, 29, 2102–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, A.B.; Lee, J.S.; Visser, M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Nevitt, M.; Harris, T.B. Weight change and the conservation of lean mass in old age: The Health, Aging and Body Composition Study. Am. J. Clin. Nutr. 2005, 82, 872–878, quiz 915-6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poehlman, E.T.; Dvorak, R.V.; DeNino, W.F.; Brochu, M.; Ades, P.A. Effects of resistance training and endurance training on insulin sensitivity in nonobese, young women: A controlled randomized trial. J. Clin. Endocrinol. Metab. 2000, 85, 2463–2468. [Google Scholar] [CrossRef]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex differences in human adipose tissues—The biology of pear shape. Biol. Sex Differ. 2012, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef] [Green Version]
- Mauvais-Jarvis, F. Gender differences in glucose homeostasis and diabetes. Physiol. Behav. 2018, 187, 20–23. [Google Scholar] [CrossRef]
- Varlamov, O.; Bethea, C.L.; Roberts, C.T., Jr. Sex-specific differences in lipid and glucose metabolism. Front. Endocrinol. 2015, 5, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; He, G.; Zou, X.; Zhang, X.; Li, J.; Wang, Z.; Gao, H.; Luo, L.; Zhang, Z.; Yu, J.; et al. Genetic diversities and phylogenetic analyses of three Chinese main ethnic groups in southwest China: A Y-Chromosomal STR study. Sci. Rep. 2018, 8, 15339. [Google Scholar] [CrossRef] [Green Version]
- Medina-Remón, A.; Kirwan, R.; Lamuela-Raventós, R.M.; Estruch, R. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit. Rev. Food Sci. Nutr. 2018, 58, 262–296. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total | Non-T2DM | New T2DM | p value |
---|---|---|---|---|
Participants, n | 7441 | 6677 | 764 | |
Age at baseline, years | 43.97 ± 15.04 | 43.55 ± 15.09 | 47.62 ± 14.10 | <0.001 |
Men, % | 3494 (47.0) | 3123 (46.8) | 371 (48.6) | 0.368 |
Non-Han Chinese, % | 3057 (41.1) | 2790 (41.8) | 267 (34.9) | <0.001 |
Education ≥9 years, % | 3177 (42.7) | 2908 (43.6) | 269 (35.2) | <0.001 |
Married, % | 5979 (80.4) | 5362 (80.3) | 617 (80.8) | 0.802 |
Farmer, % | 4254 (57.2) | 3777 (56.6) | 477 (62.4) | 0.002 |
Current smoker, % | 2116 (28.4) | 1874 (28.1) | 242 (31.7) | 0.040 |
Alcohol use, % | 2354 (31.6) | 2097 (31.4) | 257 (33.6) | 0.224 |
Physical activity, % | 6458 (86.8) | 5787 (86.7) | 671 (87.8) | 0.402 |
History of hypertension, % | 1816 (24.4) | 1591 (23.8) | 225 (29.5) | 0.001 |
History of dyslipidemia, % | 4170 (56.0) | 3705 (55.5) | 465 (60.9) | 0.005 |
IGR, % † | 2948 (39.6) | 2612 (39.1) | 336 (44.0) | 0.010 |
BMI, kg/m2 | 22.74 ± 3.29 | 22.65 ± 3.23 | 23.53 ± 3.73 | <0.001 |
<22.0 | 3407 (45.8) | 3115 (46.7) | 292 (38.2) | <0.001 |
22.0–23.9 | 1783 (24.0) | 1607 (24.1) | 176 (23.0) | |
24.0–27.9 | 1781 (23.9) | 1583 (23.7) | 198 (25.9) | |
≥28.0 | 470 (6.3) | 372 (5.6) | 98 (12.8) | |
WC, cm † | 76.15 ± 9.26 | 75.84 ± 9.08 | 78.78 ± 10.33 | <0.001 |
≥85/90 | 917 (13.2) | 755 (12.1) | 162 (22.2) | <0.001 |
WHtR † | 0.49 ± 0.06 | 0.48 ± 0.06 | 0.50 ± 0.07 | <0.001 |
≥0.5 | 2573 (37.0) | 2211 (35.6) | 362 (49.5) | <0.001 |
Characteristics | Cases, n | Incident Density/1000 PYs | HR (95% CI) | ||
---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | |||
BMI (per SD increase, kg/m2) | 764 | 14.54 | 1.23 (1.16, 1.29) *** | 1.22 (1.16, 1.29) *** | |
<22.0 | 292 | 14.06 | 0.86 (0.71, 1.04) | 0.85 (0.70, 1.02) | |
22.0–23.9 | 176 | 12.02 | 1.00 | 1.00 | |
24.0–27.9 | 198 | 15.78 | 1.10 (0.90, 1.35) | 1.13 (0.92, 1.39) | |
≥28.0 | 98 | 30.71 | 2.32 (1.81, 2.98) *** | 2.37 (1.83, 3.05) *** | |
WC (per SD increase, cm) | 731 | 14.75 | 1.33 (1.24, 1.42) *** | 1.35 (1.26, 1.45) *** | 1.28 (1.16, 1.42) *** |
<85/90 | 569 | 13.18 | 1.00 | 1.00 | 1.00 |
≥85/90 | 162 | 25.42 | 1.94 (1.63, 2.31) *** | 2.00 (1.67, 2.40) *** | 1.65 (1.33, 2.04) *** |
WHtR (per SD increase) | 731 | 14.75 | 1.34 (1.25, 1.43) *** | 1.34 (1.25, 1.43) *** | 1.32 (1.18, 1.48) *** |
<0.5 | 369 | 11.72 | 1.00 | 1.00 | 1.00 |
≥0.5 | 362 | 20.03 | 1.70 (1.46, 1.97) *** | 1.72 (1.47, 2.00) *** | 1.47 (1.23, 1.76) *** |
Characteristics | Cases, n | Incident Density/1000 PYs | HR (95% CI) | ||
---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | |||
Weight change (per SD increase, kg) | 604 | 15.18 | 1.09 (1.01, 1.18) * | 1.08 (1.00, 1.16) | 1.16 (1.07, 1.26) *** |
loss of >2 | 163 | 16.50 | 1.05 (0.84, 1.32) | 1.06 (0.84, 1.33) | 0.98 (0.78, 1.23) |
loss of ≤2 to gain of <2 | 137 | 13.95 | 1.00 | 1.00 | 1.00 |
gain of ≥2 to gain of <6 | 120 | 13.43 | 0.96 (0.75, 1.23) | 0.96 (0.75, 1.22) | 0.96 (0.75, 1.23) |
gain of ≥6 | 184 | 16.52 | 1.15 (0.92, 1.44) | 1.13 (0.90, 1.42) | 1.23 (0.98, 1.55) |
WC change (per SD increase, cm) | 571 | 15.69 | 1.15 (1.06, 1.25) ** | 1.15 (1.06, 1.24) ** | 1.48 (1.35, 1.62) *** |
loss of >3 | 87 | 15.18 | 0.94 (0.71, 1.25) | 0.93 (0.70, 1.24) | 0.70 (0.52, 0.93) * |
loss of ≤3 to gain of <3 | 113 | 14.06 | 1.00 | 1.00 | 1.00 |
gain of ≥3 to gain of <9 | 132 | 14.30 | 0.97 (0.76, 1.25) | 0.97 (0.75, 1.24) | 1.10 (0.86, 1.42) |
gain of ≥9 | 239 | 17.85 | 1.21 (0.97, 1.52) | 1.18 (0.95, 1.48) | 1.61 (1.27, 2.03) *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wang, Y.; Xu, K.; Zhou, J.; Yu, L.; Wang, N.; Liu, T.; Fu, C. Adiposity and Long-Term Adiposity Change Are Associated with Incident Diabetes: A Prospective Cohort Study in Southwest China. Int. J. Environ. Res. Public Health 2021, 18, 11481. https://doi.org/10.3390/ijerph182111481
Chen Y, Wang Y, Xu K, Zhou J, Yu L, Wang N, Liu T, Fu C. Adiposity and Long-Term Adiposity Change Are Associated with Incident Diabetes: A Prospective Cohort Study in Southwest China. International Journal of Environmental Research and Public Health. 2021; 18(21):11481. https://doi.org/10.3390/ijerph182111481
Chicago/Turabian StyleChen, Yun, Yiying Wang, Kelin Xu, Jie Zhou, Lisha Yu, Na Wang, Tao Liu, and Chaowei Fu. 2021. "Adiposity and Long-Term Adiposity Change Are Associated with Incident Diabetes: A Prospective Cohort Study in Southwest China" International Journal of Environmental Research and Public Health 18, no. 21: 11481. https://doi.org/10.3390/ijerph182111481
APA StyleChen, Y., Wang, Y., Xu, K., Zhou, J., Yu, L., Wang, N., Liu, T., & Fu, C. (2021). Adiposity and Long-Term Adiposity Change Are Associated with Incident Diabetes: A Prospective Cohort Study in Southwest China. International Journal of Environmental Research and Public Health, 18(21), 11481. https://doi.org/10.3390/ijerph182111481