The Effects of Running Compared with Functional High-Intensity Interval Training on Body Composition and Aerobic Fitness in Female University Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Physical, Physiological and Body Composition Assessment
2.4. Aerobic Fitness Test
2.5. Muscle Performance Test
2.6. Intervention
2.7. Statistical Analyses
3. Results
- Body Composition
- Resting Heart Rate and Blood Pressure
- Aerobic Capacity
- Muscle Performance
4. Discussion
4.1. Body Composition
4.2. Aerobic Fitness
4.3. Muscle Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bermejo-Cantarero, A.; Álvarez-Bueno, C.; Martinez-Vizcaino, V.; García-Hermoso, A.; Torres-Costoso, A.I.; Sánchez-López, M. Association between physical activity, sedentary behavior, and fitness with health related quality of life in healthy children and adolescents: A protocol for a systematic review and meta-analysis. Medicine 2017, 96, e6407. [Google Scholar] [CrossRef]
- Biddle, S.J.; Gorely, T.; Stensel, D.J. Health-enhancing physical activity and sedentary behaviour in children and adolescents. J. Sports Sci. 2004, 22, 679–701. [Google Scholar] [CrossRef]
- Hallal, P.C.; Victora, C.G.; Azevedo, M.R.; Wells, J.C. Adolescent physical activity and health: A systematic review. Sports Med. 2006, 36, 1019–1030. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Liguori, G.; Feito, Y.; Fountaine, C.; Roy, B. ACSM’s Guidelines for Exercise Testing and Prescription, 11th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2021. [Google Scholar]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Lovell, G.P.; El Ansari, W.; Parker, J.K. Perceived exercise benefits and barriers of non-exercising female university students in the United Kingdom. Int. J. Environ. Res. Public Health 2010, 7, 784–798. [Google Scholar] [CrossRef] [Green Version]
- Reichert, F.F.; Barros, A.J.; Domingues, M.R.; Hallal, P.C. The role of perceived personal barriers to engagement in leisure-time physical activity. Am. J. Public Health 2007, 97, 515–519. [Google Scholar] [CrossRef]
- Gillen, J.B.; Gibala, M.J. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl. Physiol. Nutr. Metab. 2014, 39, 409–412. [Google Scholar] [CrossRef]
- Laursen, P.B.; Jenkins, D.G. The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002, 32, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Allen, R.P.; Roberson, D.W.; Jurancich, M. Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. J. Strength Cond. Res. 2012, 26, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Dias, K.A.; Ingul, C.B.; Tjønna, A.E.; Keating, S.E.; Gomersall, S.R.; Follestad, T.; Hosseini, M.S.; Hollekim-Strand, S.M.; Ro, T.B.; Haram, M.; et al. Effect of High-Intensity Interval Training on Fitness, Fat Mass and Cardiometabolic Biomarkers in Children with Obesity: A Randomised Controlled Trial. Sports Med. 2018, 48, 733–746. [Google Scholar] [CrossRef]
- Milanović, Z.; Sporiš, G.; Weston, M. Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports Med. 2015, 45, 1469–1481. [Google Scholar] [CrossRef]
- Sultana, R.N.; Sabag, A.; Keating, S.E.; Johnson, N.A. The Effect of Low-Volume High-Intensity Interval Training on Body Composition and Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 1687–1721. [Google Scholar] [CrossRef]
- Gaesser, G.A.; Angadi, S.S. High-intensity interval training for health and fitness: Can less be more? J. Appl. Physiol. 2011, 111, 1540–1541. [Google Scholar] [CrossRef] [PubMed]
- Billat, L.V. Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: Aerobic interval training. Sports Med. 2001, 31, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.D.; Close, G.L.; MacLaren, D.P.; Gregson, W.; Drust, B.; Morton, J.P. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: Implications for exercise adherence. J. Sports Sci. 2011, 29, 547–553. [Google Scholar] [CrossRef]
- Aaltonen, S.; Rottensteiner, M.; Kaprio, J.; Kujala, U.M. Motives for physical activity among active and inactive persons in their mid-30s. Scand. J. Med. Sci. Sports 2014, 24, 727–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parfitt, G.; Rose, E.A.; Burgess, W.M. The psychological and physiological responses of sedentary individuals to prescribed and preferred intensity exercise. Br. J. Health Psychol. 2006, 11, 39–53. [Google Scholar] [CrossRef]
- Ekkekakis, P.; Parfitt, G.; Petruzzello, S.J. The pleasure and displeasure people feel when they exercise at different intensities: Decennial update and progress towards a tripartite rationale for exercise intensity prescription. Sports Med. 2011, 41, 641–671. [Google Scholar] [CrossRef] [PubMed]
- Ekkekakis, P.; Hall, E.E.; Petruzzello, S.J. The relationship between exercise intensity and affective responses demystified: To crack the 40-year-old nut, replace the 40-year-old nutcracker! Ann. Behav. Med. 2008, 35, 136–149. [Google Scholar] [CrossRef]
- Feito, Y.; Heinrich, K.M.; Butcher, S.J.; Poston, W.S.C. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Haddock, C.K.; Poston, W.S.; Heinrich, K.M.; Jahnke, S.A.; Jitnarin, N. The Benefits of High-Intensity Functional Training Fitness Programs for Military Personnel. Mil. Med. 2016, 181, e1508–e1514. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, K.M.; Spencer, V.; Fehl, N.; Poston, W.S. Mission essential fitness: Comparison of functional circuit training to traditional Army physical training for active duty military. Mil. Med. 2012, 177, 1125–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, K.M.; Becker, C.; Carlisle, T.; Gilmore, K.; Hauser, J.; Frye, J.; Harms, C.A. High-intensity functional training improves functional movement and body composition among cancer survivors: A pilot study. Eur. J. Cancer Care 2015, 24, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Hoffstetter, W.; Serafini, P.; Mangine, G. Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of HIFT. PLoS ONE 2018, 13, e0198324. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.; Knapp, K.; Lackie, A.; Lewry, C.; Horvey, K.; Benko, C.; Trinh, J.; Butcher, S. Multimodal high-intensity interval training increases muscle function and metabolic performance in females. Appl. Physiol. Nutr. Metab. 2015, 40, 1157–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McRae, G.; Payne, A.; Zelt, J.G.; Scribbans, T.D.; Jung, M.E.; Little, J.P.; Gurd, B.J. Extremely low volume, whole-body aerobic-resistance training improves aerobic fitness and muscular endurance in females. Appl. Physiol. Nutr. Metab. 2012, 37, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.; Sales, A.; Carlson, L.; Steele, J. A comparison of the motivational factors between CrossFit participants and other resistance exercise modalities: A pilot study. J. Sports Med. Phys. Fitness 2017, 57, 1227–1234. [Google Scholar] [CrossRef]
- Heinrich, K.M.; Patel, P.M.; O’Neal, J.L.; Heinrich, B.S. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: An intervention study. BMC Public Health 2014, 14, 789. [Google Scholar] [CrossRef] [Green Version]
- Brisebois, M.F.; Rigby, B.R.; Nichols, D.L. Physiological and Fitness Adaptations after Eight Weeks of High-Intensity Functional Training in Physically Inactive Adults. Sports 2018, 6, 146. [Google Scholar] [CrossRef] [Green Version]
- Armour, M.; Ee, C.C.; Naidoo, D.; Ayati, Z.; Chalmers, K.J.; Steel, K.A.; de Manincor, M.J.; Delshad, E. Exercise for dysmenorrhoea. Cochrane Database Syst. Rev. 2019, 9, Cd004142. [Google Scholar] [CrossRef]
- Motahari-Tabari, N.; Shirvani, M.A.; Alipour, A. Comparison of the Effect of Stretching Exercises and Mefenamic Acid on the Reduction of Pain and Menstruation Characteristics in Primary Dysmenorrhea: A Randomized Clinical Trial. Oman Med. J. 2017, 32, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Reliability and Validity of Three Wristbands in Running with Change of Direction. Master’s Thesis, Shanghai University of Sports, Shanghai, China, 2021. [Google Scholar]
- Menz, V.; Marterer, N.; Amin, S.B.; Faulhaber, M.; Hansen, A.B.; Lawley, J.S. Functional vs. Running Low-Volume High-Intensity Interval Training: Effects on VO(2)max and Muscular Endurance. J. Sports Sci. Med. 2019, 18, 497–504. [Google Scholar]
- Kushner, R.F.; Gudivaka, R.; Schoeller, D.A. Clinical characteristics influencing bioelectrical impedance analysis measurements. Am. J. Clin. Nutr 1996, 64, 423s–427s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safrit, M.J.; Glaucia Costa, M.; Hooper, L.M.; Patterson, P.; Ehlert, S.A. The validity generalization of distance run tests. Can. J. Sport Sci. 1988, 13, 188–196. [Google Scholar] [PubMed]
- Cooper, K.H. A means of assessing maximal oxygen intake. Correlation between field and treadmill testing. Jama 1968, 203, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, N.T.; Busk, P.L. Relationships between selected muscle endurance tasks and gender. J. Strength Cond. Res. 2007, 21, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Castro-Pinero, J.; Espana-Romero, V.; Artero, E.G.; Ortega, F.B.; Cuenca, M.M.; Jimenez-Pavon, D.; Chillon, P.; Girela-Rejon, M.J.; Mora, J.; et al. Field-based fitness assessment in young people: The ALPHA health-related fitness test battery for children and adolescents. Br. J. Sports Med. 2011, 45, 518–524. [Google Scholar] [CrossRef]
- Sperlich, B.; Wallmann-Sperlich, B.; Zinner, C.; Von Stauffenberg, V.; Losert, H.; Holmberg, H.C. Functional High-Intensity Circuit Training Improves Body Composition, Peak Oxygen Uptake, Strength, and Alters Certain Dimensions of Quality of Life in Overweight Women. Front. Physiol. 2017, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Bianco, A.; Lupo, C.; Alesi, M.; Spina, S.; Raccuglia, M.; Thomas, E.; Paoli, A.; Palma, A. The sit up test to exhaustion as a test for muscular endurance evaluation. Springerplus 2015, 4, 309. [Google Scholar] [CrossRef]
- Snarr, R.L.; Esco, M.R. Electromyographic comparison of traditional and suspension push-ups. J. Hum. Kinet 2013, 39, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Hammond-Bennett, A.; Hypnar, A.; Mason, S. Health-related physical fitness and physical activity in elementary school students. BMC Public Health 2018, 18, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, A.; Sharma, D.; Bhatt, M.; Dixit, A.; Pradeep, P. Comparison between Standing Broad Jump test and Wingate test for assessing lower limb anaerobic power in elite sportsmen. Med. J. Armed Forces India 2017, 73, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.; Ramsbottom, R.; Hazeldine, R. Maximal shuttle running over 40 m as a measure of anaerobic performance. Br. J. Sports Med. 1993, 27, 228–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabata, I.; Nishimura, K.; Kouzaki, M.; Hirai, Y.; Ogita, F.; Miyachi, M.; Yamamoto, K. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med. Sci. Sports Exerc. 1996, 28, 1327–1330. [Google Scholar] [CrossRef] [Green Version]
- Domaradzki, J.; Cichy, I.; Rokita, A.; Popowczak, M. Effects of Tabata Training During Physical Education Classes on Body Composition, Aerobic Capacity, and Anaerobic Performance of Under-, Normal- and Overweight Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 876. [Google Scholar] [CrossRef] [Green Version]
- Racil, G.; Coquart, J.B.; Elmontassar, W.; Haddad, M.; Goebel, R.; Chaouachi, A.; Amri, M.; Chamari, K. Greater effects of high- compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females. Biol. Sport 2016, 33, 145–152. [Google Scholar] [CrossRef]
- Tjønna, A.E.; Stølen, T.O.; Bye, A.; Volden, M.; Slørdahl, S.A.; Odegård, R.; Skogvoll, E.; Wisløff, U. Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin. Sci. 2009, 116, 317–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macpherson, R.E.; Hazell, T.J.; Olver, T.D.; Paterson, D.H.; Lemon, P.W. Run sprint interval training improves aerobic performance but not maximal cardiac output. Med. Sci. Sports Exerc. 2011, 43, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar]
- Buchan, D.S.; Ollis, S.; Young, J.D.; Cooper, S.M.; Shield, J.P.; Baker, J.S. High intensity interval running enhances measures of physical fitness but not metabolic measures of cardiovascular disease risk in healthy adolescents. BMC Public Health 2013, 13, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weston, K.L.; Azevedo, L.B.; Bock, S.; Weston, M.; George, K.P.; Batterham, A.M. Effect of Novel, School-Based High-Intensity Interval Training (HIT) on Cardiometabolic Health in Adolescents: Project FFAB (Fun Fast Activity Blasts)—An Exploratory Controlled Before-And-After Trial. PLoS ONE 2016, 11, e0159116. [Google Scholar] [CrossRef] [Green Version]
- Batacan, R.B., Jr.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med. 2017, 51, 494–503. [Google Scholar] [CrossRef]
- Gist, N.H.; Fedewa, M.V.; Dishman, R.K.; Cureton, K.J. Sprint interval training effects on aerobic capacity: A systematic review and meta-analysis. Sports Med. 2014, 44, 269–279. [Google Scholar] [CrossRef]
- Nieuwoudt, S.; Fealy, C.E.; Foucher, J.A.; Scelsi, A.R.; Malin, S.K.; Pagadala, M.; Rocco, M.; Burguera, B.; Kirwan, J.P. Functional high-intensity training improves pancreatic β-cell function in adults with type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E314–E320. [Google Scholar] [CrossRef]
- Crawford, D.A.; Drake, N.B.; Carper, M.J.; DeBlauw, J.; Heinrich, K.M. Are Changes in Physical Work Capacity Induced by High-Intensity Functional Training Related to Changes in Associated Physiologic Measures? Sports 2018, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Sobrero, G.; Arnett, S.; Schafer, M.; Stone, W.; Tolbert, T.A.; Salyer-Funk, A.; Crandall, J.; Farley, L.B.; Brown, J.; Lyons, S.; et al. A Comparison of High Intensity Functional Training and Circuit Training on Health and Performance Variables in Women: A Pilot Study. Women Sport Phys. Act. J. 2017, 25, 1–10. [Google Scholar] [CrossRef]
- Gettman, L.R.; Pollock, M.L. Circuit Weight Training: A Critical Review of Its Physiological Benefits. Phys. Sportsmed. 1981, 9, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Magel, J.R.; Foglia, G.F.; McArdle, W.D.; Gutin, B.; Pechar, G.S.; Katch, F.I. Specificity of swim training on maximum oxygen uptake. J. Appl. Physiol. 1975, 38, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Penry, J.T.; Wilcox, A.R.; Yun, J. Validity and reliability analysis of Cooper’s 12-minute run and the multistage shuttle run in healthy adults. J. Strength Cond. Res. 2011, 25, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Rodas, G.; Ventura, J.L.; Cadefau, J.A.; Cussó, R.; Parra, J. A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur. J. Appl. Physiol. 2000, 82, 480–486. [Google Scholar] [CrossRef]
- Sloth, M.; Sloth, D.; Overgaard, K.; Dalgas, U. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2013, 23, e341–e352. [Google Scholar] [CrossRef] [PubMed]
- Viana, R.B.; de Lira, C.A.B.; Naves, J.P.A.; Coswig, V.S.; Del Vecchio, F.B.; Gentil, P. Tabata protocol: A review of its application, variations and outcomes. Clin. Physiol. Funct. Imaging 2019, 39, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gist, N.H.; Freese, E.C.; Cureton, K.J. Comparison of responses to two high-intensity intermittent exercise protocols. J. Strength Cond. Res. 2014, 28, 3033–3040. [Google Scholar] [CrossRef] [PubMed]
- Simoneau, J.A.; Lortie, G.; Boulay, M.R.; Marcotte, M.; Thibault, M.C.; Bouchard, C. Human skeletal muscle fiber type alteration with high-intensity intermittent training. Eur. J. Appl. Physiol. Occup. Physiol. 1985, 54, 250–253. [Google Scholar] [CrossRef]
- Jakobsen, M.D.; Sundstrup, E.; Randers, M.B.; Kjær, M.; Andersen, L.L.; Krustrup, P.; Aagaard, P. The effect of strength training, recreational soccer and running exercise on stretch-shortening cycle muscle performance during countermovement jumping. Hum. Mov. Sci. 2012, 31, 970–986. [Google Scholar] [CrossRef] [PubMed]
Parameter | HIIT-R Group (n = 10) | HIIT-F Group (n = 10) | p-Value |
---|---|---|---|
Age (yrs) | 20.7 ± 0.6 | 20.2 ± 0.7 | p = 0.14 |
Height (m) | 161.1 ± 3.1 | 160.7 ± 2.8 | p = 0.76 |
Weight (kg) | 56.6 ± 6.7 | 57.8 ± 6.7 | p = 0.69 |
Lean muscle mass (kg) | 36.5 ± 1.7 | 36.0 ± 2.1 | p = 0.53 |
BMI (kg/m2) | 21.9 ± 3.1 | 22.4 ± 2.2 | p = 0.70 |
WHR | 0.80 ± 0.0 | 0.80 ± 0.0 | p = 0.79 |
Body fat (%) | 31.6 ± 4.1 | 32.3 ± 3.6 | p = 0.71 |
HR resting (bpm) | 70.8 ± 13.9 | 72.5 ± 11.2 | p = 0.77 |
HR max (bpm) | 188.2 ± 9.7 | 189.1 ± 10.4 | p = 0.18 |
VO2max (mL/kg/min) | 31.3 ± 7.0 | 32.8 ± 5.4 | p = 0.61 |
Duration | Frequency | Exercises | Exercise Bout/Recovery Duration |
---|---|---|---|
12 weeks | 3 sessions/week | Jumping Jacks | 20 s |
Stepping | 10 s | ||
High knees | 20 s | ||
Stepping | 10 s | ||
Side to side squat | 20 s | ||
Stepping | 10 s | ||
Mountain climbers | 20 s | ||
Stepping | 10 s | ||
Forearm plank to high plank | 20 s | ||
Stepping | 10 s | ||
Burpees | 20 s | ||
Stepping | 10 s | ||
Deep squat jumps | 20 s | ||
Stepping | 10 s | ||
Butt kickers | 20 s | ||
Stepping | 10 s |
HIIT-R Group (n = 10) | HIIT-F Group (n = 10) | Interaction Effect | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | Baseline | Post | Δ | p-Value | Baseline | Post | Δ | p-Value | p-Value | 𝜂2 |
Weight (kg) | 56.6 ± 6.7 | 55.8 ± 6.5 | −1.3% ± 2.1% | ns | 57.8 ± 6.7 | 56.6 ± 6.4 | −1.9% ± 3.0% | ns | ns | 0.020 |
Lean muscle mass (kg) | 36.5 ± 1.7 | 37.2 ± 1.8 | 1.8% ± 1.4% | p < 0.05 | 36.0 ± 2.1 | 36.4 ± 2.1 | 1.2% ± 1.2% | p < 0.05 | ns | 0.056 |
BMI (kg/m2) | 21.9 ± 3.1 | 21.6 ± 3.1 | −1.3% ± 2.1% | ns | 22.4 ± 2.2 | 21.9 ± 2.1 | −1.9% ± 3.0% | ns | ns | 0.018 |
WHR | 0.8 ± 0.0 | 0.8 ± 0.0 | −0.6% ± 0.9% | ns | 0.8 ± 0.0 | 0.8 ± 0.0 | −0.3% ± 0.5% | ns | ns | 0.032 |
Body fat (%) | 31.6 ± 4.1 | 26.3 ± 4.8 | −17.1% ± 7.4% | p < 0.01 | 32.3 ± 3.6 | 28.3 ± 3.9 | −12.6% ± 5.1% | p < 0.01 | ns | 0.118 |
HR resting (bpm) | 76.5 ± 10.1 | 74.2 ± 7.4 | −2.5% ± 5.5% | ns | 77.8 ± 9.1 | 75.3 ± 8.6 | −3.1% ± 5.3% | ns | ns | 0.001 |
HR max (bpm) | 188.7 ± 6.7 | 185.8 ± 6.0 | −1.5% ± 1.1% | p < 0.05 | 183.7 ± 9.3 | 181.8 ± 7.8 | −1.0% ± 1.3% | p < 0.05 | ns | 0.050 |
VO2max (mL/kg/min) | 31.3 ± 7.0 | 36.7 ± 8.8 | 17.1 ± 5.6% | p < 0.01 | 32.8 ± 5.4 | 36.9 ± 6.4 | 12.7% ± 6.7% | p < 0.01 | ns | 0.075 |
HIIT-R Group (n = 10) | HIIT-F Group (n = 10) | Interaction Effect | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | Baseline | Post-Training | Δ | p-Value | Baseline | Post-Training | Δ | p-Value | p-Value | 𝜂2 |
Sit-ups (reps) | 35.3 ± 6.7 | 35.7 ± 5.9 | 1.8% ± 7.5% | ns | 37.3 ± 4.8 | 43.4 ± 5.3 | 16.5% ± 3.1% | p < 0.01 | p < 0.01 | 0.760 |
Flexed push-ups (reps) | 7.7 ± 1.3 | 7.4 ± 1.6 | −3.9% ± 10.5% | ns | 8.0 ± 1.4 | 8.3 ± 1.7 | 3.4% ± 5.6% | ns | ns | 0.180 |
Standing broad jump (cm) | 176.0 ± 5.8 | 177.1 ± 5.5 | 0.6% ± 1.0% | ns | 178.0 ± 6.1 | 187.0 ± 5.5 | 5.1% ± 2.2% | p < 0.01 | p < 0.01 | 0.686 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wiltshire, H.D.; Baker, J.S.; Wang, Q. The Effects of Running Compared with Functional High-Intensity Interval Training on Body Composition and Aerobic Fitness in Female University Students. Int. J. Environ. Res. Public Health 2021, 18, 11312. https://doi.org/10.3390/ijerph182111312
Lu Y, Wiltshire HD, Baker JS, Wang Q. The Effects of Running Compared with Functional High-Intensity Interval Training on Body Composition and Aerobic Fitness in Female University Students. International Journal of Environmental Research and Public Health. 2021; 18(21):11312. https://doi.org/10.3390/ijerph182111312
Chicago/Turabian StyleLu, Yining, Huw D. Wiltshire, Julien S. Baker, and Qiaojun Wang. 2021. "The Effects of Running Compared with Functional High-Intensity Interval Training on Body Composition and Aerobic Fitness in Female University Students" International Journal of Environmental Research and Public Health 18, no. 21: 11312. https://doi.org/10.3390/ijerph182111312