Factors Affecting the Cases and Deaths of COVID-19 Victims
Abstract
1. Introduction
Literature Review
2. Methodology
2.1. Gathering of Data
2.2. Ordinary Least Squares Estimates
3. Discussion of Results
3.1. Factors Affecting Number of Confirmed Cases from Coronavirus Disease 2019 (COVID-19)
3.2. Factors Affecting Number of Deaths from COVID-19
3.3. Cases and Deaths from COVID-19 in Countries with High and Low Population
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Qualls, N.; Levitt, A.; Kanade, N.; Wright-Jegede, N.; Dopson, S.; Biggerstaff, M.; Reed, C.; Uzicanin, A.; CDC Community Mitigation Guidelines Work Group. Community Mitigation Guidelines to Prevent Pandemic Infuenza—United States, 2017. MMWR Recomm. Rep. 2017, 66, 1–34. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837128/ (accessed on 10 December 2020). [CrossRef]
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.H.; Chen, B.; Kraemer, M.U.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. Available online: https://science.sciencemag.org/content/sci/368/6491/638.full.pdf (accessed on 10 December 2020). [CrossRef]
- World Health Organization 2020. COVID-19 Vaccines. Emergencies. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines (accessed on 10 December 2020).
- Worldometer. Reported Cases and Deaths by Country, Territory, or Conveyance. COVID-19 Coronavirus Pandemic. Available online: https://www.worldometers.info/coronavirus/ (accessed on 10 December 2020).
- Balilla, J. Assessment of COVID-19 Mass Testing: The Case of South Korea. SSRN 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3556346 (accessed on 1 June 2020).
- Facundo, P.; Shi, L. Optimal Covid-19 Quarantine and Testing Policies. CEPR Discussion Paper No.DP14613, 2020. SRRN. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3594243 (accessed on 29 May 2020).
- Reuters. Mass Testing Explains Germany’s Relatively Low Death Rate from Coronavirus: Virologist. Available online: https://www.reuters.com/article/us-health-coronavirus-germany-tests-idUSKBN21D1FL (accessed on 15 April 2020).
- Focus Taiwan. CORONAVIRUS/Taiwan’s COVID-19 infection Rate Does Not Justify Mass Testing: CECC. Available online: https://focustaiwan.tw/society/202004280019 (accessed on 15 May 2020).
- Morens, D.M.; Gregory, K.; Folkers, G.K.; Fauci, A.S. What Is a Pandemic? J. Infect. Dis. 2009, 200, 1018–1021. [Google Scholar] [CrossRef]
- Chu, Y.T.; Shih, F.Y.; Hsu, H.S.; Shu, T.; Wu, J.; Hu, F.C.; Lin, H.; King, C.C. A Retrospective Review on the 2003 Multinational Outbreaks of SARS and the Preventive Measures of Its Nosocomial Infections. Epidemiol. Bull. 2005, 21, 164–197. Available online: https://www.cdc.gov.tw/En/File/Get/ViwUSQjXJthrC5SyO1RlWA (accessed on 15 May 2020).
- Oh, M.D.; Park, W.B.; Park, S.W.; Choe, P.G.; Bang, J.H.; Song, K.H.; Kim, E.S.; Kim, H.B.; Kim, N.J. Middle East respiratory syndrome: What we learned from the 2015 outbreak in the Republic of Korea. Korean J. Intern. Med. 2018, 33, 233–246. Available online: https://pubmed.ncbi.nlm.nih.gov/29506344/ (accessed on 1 June 2020). [CrossRef] [PubMed]
- World Health Organization. Prevention and Control of Severe Acute Respiratory Syndrome (SARS). In Proceedings of the 21st Meeting of Ministers of Health, New Delhi, India, 8–9 September 2003; Available online: https://apps.who.int/iris/bitstream/handle/10665/127601/WP_21HMM-SARS-WorkPap-17-7-2003.pdf (accessed on 28 May 2020).
- Ng, E. Is thermal scanner losing its bite in mass screening of fever due to SARS? Int. J. Med Phys. Res. Pract. 2004, 32, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Tandi, T.E.; Choi, J.W.; Moon, J.M.; Kim, M.S. Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications. J. Hosp. Infect. 2017, 95, 207–213. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0195670116304431 (accessed on 5 June 2020). [CrossRef] [PubMed]
- Li, A.Y.; Hannah, T.C.; Durbin, J.; Dreher, N.; McAuley, F.M.; Marayati, N.F.; Spiera, Z.; Ali, M.; Gometz, A.; Kostman, J.T.; et al. Multivariate Analysis of Factors Affecting COVID-19 Case and Death Rate in U.S. Counties: The Significant Effects of Black Race and Temperature. Am J. Med. Sci. 2020, 360, 348–356. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0002962920302573?via%3Dihub (accessed on 1 January 2021). [CrossRef]
- Ma, Y.; Zhao, Y.; Liu, J.; He, X.; Wang, B.; Fu, S.; Yan, J.; Niu, J.; Zhou, J.; Luo, B. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Sci. Total Environ. 2020, 724, 138226. Available online: https://www.sciencedirect.com/science/article/pii/S0048969720317393 (accessed on 31 May 2020). [CrossRef]
- Xie, J.; Zhuc, Y. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total Environ. 2020, 724, 138201. Available online: https://www.sciencedirect.com/science/article/pii/S0048969720317149 (accessed on 15 July 2020). [CrossRef]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. Available online: https://www.sciencedirect.com/science/article/pii/S004896972032221X (accessed on 30 July 2020). [CrossRef] [PubMed]
- Lu, J.; Gu, J.; Li, K.; Xu, C.; Su, W.; Lai, Z.; Zhou, D.; Yu, C.; Xu, B.; Yang, Z. COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China. Emerg. Infect. Dis. 2020, 26, 1628. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323555/ (accessed on 30 July 2020). [CrossRef] [PubMed]
- Yaylali, A. Factors Affecting the Number of COVID-19 Cases and the Death Rate: Empirical Evidence from the German State. SSRN 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3617986 (accessed on 20 July 2020).
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. J. Am. Med. Assoc. 2020, 323, 1775–1776. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Peng, F.; Xu, B.; Zhao, J.; Liu, H.; Peng, J.; Li, Q.; Jiang, C.; Zhou, Y.; Liu, S.; et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J. Infect. Vol. 2020, 81, e16–e25. [Google Scholar]
- Goh, H.P.; Mahari, W.I.; Ahad, N.I.; Chaw, L.; Kifli, N.; Goh, B.H.; Yeoh, S.F.; Ming, L.C. Risk factors affecting COVID-19 case fatality rate: A quantitative analysis of top 50 affected countries. medRxiv 2020. [Google Scholar] [CrossRef]
- Rod, J.E.; Oviedo-Trespalacios, O.; Cortes-Ramirez, J. A brief-review of the risk factors for covid-19 severity. Rev. Saúde Pública 2020, 54, 60. [Google Scholar] [CrossRef]
- Alberca, R.W.; Oliveira, L.M.; Calvielli, A.C.; Branco, C.; Pereira, N.Z.; Sato, M.N. Obesity as a risk factor for COVID-19: An overview. Crit. Rev. Food Sci. Nutr. 2020, 1–15. [Google Scholar] [CrossRef]
- Cowger, T.L.; Davis, B.A.; Etkins, O.S.; Makofane, K.; Lawrence, J.A.; Bassett, M.T.; Krieger, N. Comparison of Weighted and Unweighted Population Data to Assess Inequities in Coronavirus Disease 2019 Deaths by Race/Ethnicity Reported by the US Centers for Disease Control and Prevention. JAMA Netw. Open 2020, 3, e2016933. [Google Scholar] [CrossRef]
- Rashed, E.A.; Kodera, S.; Gomez-Tames, J.; Hirata, A. Influence of Absolute Humidity, Temperature and Population Density on COVID-19 Spread and Decay Durations: Multi-Prefecture Study in Japan. Int. J. Environ. Res. Public Health 2020, 17, 5354. [Google Scholar] [CrossRef]
- Kadi, N.; Khelfaoui, M. Population density, a factor in the spread of COVID-19 in Algeria: Statistic study. Bull. Natl. Res. Cent. 2020, 44, 138. [Google Scholar] [CrossRef]
- Felipe, C. Urban Density and Covid-19. IZA Discussion Paper No. 13440. Available online: https://ssrn.com/abstract=3643204 (accessed on 10 December 2020).
- Sun, Z.; Zhang, H.; Yang, Y.; Wan, H.; Wang, Y. Impacts of geographic factors and population density on the COVID-19 spreading under the lockdown policies of China. Sci. Total Environ. 2020, 746, 141347. [Google Scholar] [CrossRef] [PubMed]
- Tantrakarnapa, K.; Bhopdhornangkul, B.; Nakhaapakorn, K. Influencing factors of COVID-19 spreading: A case study of Thailand. J. Public Health: Theory Pract. 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vinceti, M.; Filippini, T.; Rothman, K.J.; Ferrari, F.; Goffi, A.; Maffeis, G.; Orsini, N. Lockdown timing and efficacy in controlling COVID-19 using mobile phone tracking. EClinicalMedicine 2020, 25, 100457. [Google Scholar] [CrossRef] [PubMed]
- The BMJ Covid:19: Italy Has Wasted the Sacrifices of the First Wave, Say Experts. Br. Med. J. 2020, 12, 371. [CrossRef]
- Center for Disease Control and Prevention. Geographic Differences in COVID-19 Cases, Deaths, and Incidence—United States, 12 February–7 April 2020. Available online: https://www.cdc.gov/mmwr/volumes/69/wr/pdfs/mm6915e4-H.pdf (accessed on 1 May 2020).
- Yang, Y.; Peng, F.; Wang, R.; Guan, K.; Jiang, T.; Xu, G.; Sun, J.; Chang, C. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J. Autoimmun. 2020, 109, 102434. Available online: https://www.sciencedirect.com/science/article/pii/S0896841120300470?via%3Dihub (accessed on 5 June 2020). [CrossRef] [PubMed]
- Smyrlaki, I.; Ekman, M.; Vondracek, M.; Papanicoloau, N.; Lentini, A.; Aarum, J.; Muradrasoli, S.; Albert, J.; Högberg, B.; Reinius, B. Massive and rapid COVID-19 testing is feasible by extraction-free SARSCoV-2 RT-qPCR. medRxiv 2020. [Google Scholar] [CrossRef]
- Worldometer. Countries in the world by population. Population. Available online: https://www.worldometers.info/world-population/population-by-country/ (accessed on 10 December 2020).
- Worldometer. GDP by Country. GDP. Available online: https://www.worldometers.info/gdp/gdp-by-country (accessed on 10 December 2020).
- WeatherBase. Asia Travel Weather Averages. Weatherbase. Available online: https://www.weatherbase.com/weather/country.php3?r=ASI®ionname=Asia (accessed on 10 December 2020).
- Wooldridge, J. Introductory Econometrics A Modern Approach, 5th ed.; Cengage Learning: Boston, MA, USA, 2013. [Google Scholar]
- Bhadra, A.; Mukherjee, A.; Sarkar, K. Impact of population density on Covid 19 infected and mortality rate in India. Modeling Earth Syst. Environ. 2020, 14, 1–7. [Google Scholar] [CrossRef]
- Dowd, J.B.; Andriano, L.; Brazel, D.M.; Rotondi, V.; Block, P.; Ding, X.; Liu, Y.; Mills, M.C. Demographic science aids in understanding the spread and fatality rates of COVID-19 2020. Proc. Natl. Acad. Sci. USA 2020, 117, 9696–9698. [Google Scholar] [CrossRef]
- Menebo, M.M. Temperature and precipitation associate with Covid-19 new daily cases: A correlation study between weather and Covid-19 pandemic in Oslo, Norway 2020. Sci. Total Environ. 2020, 737, 139659. [Google Scholar] [CrossRef]
- Sil, A.; Kumar, V.N. Does weather affect the growth rate of COVID-19, a study to comprehend transmission dynamics on human health. J. Saf. Sci. Resil. 2020, 1, 3–11. [Google Scholar] [CrossRef]
Variables | Source |
---|---|
Total Case per country; Total Death per country; Total Test conducted | Worldometer [4] |
Population Density; Median Age of the country; Urban Population | Worldometer [37] |
Gross Domestic Product | Worldometer [38] |
Average Temperature; Average Rainfall | WeatherBase [39] |
Variables | Mean | Median | Maximum | Minimum |
---|---|---|---|---|
Total Case/Million | 18,670.46 | 14,030.00 | 63,947.00 | 86.00 |
Tests/Million | 22,0626.70 | 14,1031.00 | 1,423,225.00 | 2054.00 |
Total Tests | 9,533,267.00 | 2,063,450.00 | 2.15 × 108 | 50,488.00 |
Tests/Case | 16.17 | 10.57 | 82.16 | 2.46 |
Deaths/Million | 379.91 | 308.00 | 1516.00 | 3.00 |
Population Density | 139.65 | 87.00 | 1380.00 | 3.00 |
Age | 33.52 | 33.00 | 48.00 | 15.00 |
Rural Population | 0.33 | 0.31 | 0.83 | 0.02 |
GDP/Capita | 16,779.46 | 9881.00 | 80,296.00 | 376.00 |
Temperature | 16.39 | 17.00 | 40.00 | −0.6 |
Precipitation | 874.18 | 773.10 | 2667.10 | 49.50 |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
Constant | −670,837.4 | 405074.2 | −1.656 | 0.100 |
Tests/Million | −0.57 | 0.21 | −2.661 | 0.009 *** |
Total Tests | 0.06 | 0.007 | 8.471 | <0.001 *** |
Tests/Case | −3374.81 | 1300.57 | −2.595 | 0.011 *** |
Deaths/Million | 22,659.64 | 158,355.8 | 0.143 | 0.886 ns |
Population Density | 8.39 | 97.98 | 0.086 | 0.932 ns |
Age | 5801.06 | 6527.42 | 0.889 | 0.376 ns |
Rural Population | −240,669.9 | 39,8913 | −0.603 | 0.547 ns |
GDP/Capita | 8.65 | 5.35 | 1.617 | 0.108 ns |
Raw Mortality Rate | −22,056,641 | 158,000,000 | −0.139 | 0.890 ns |
Temperature | 30,667.33 | 13,586.81 | 2.257 | 0.026 ** |
Rainfall | 76.80 | 82.28 | 0.933 | 0.352 ns |
R-squared | 0.829 | F-statistic | 56.806 | |
Adjusted R-squared | 0.814 | Prob(F-statistic) | <0.001 |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
Constant | −4989.98 | 9446.07 | −0.528 | 0.598 |
Test/Million | −0.016 | 0.007 | −2.446 | 0.016 *** |
Total Test | 0.001 | 0.00 | 7.105 | <0.001 *** |
Test/Case | −68.44 | 22.62 | −3.025 | 0.003 *** |
Population Density | −3.10 | 3.38 | −0.918 | 0.361 ns |
Age | 365.04 | 208.84 | 1.748 | 0.083 * |
Rural Population | −23,696.37 | 13,939.86 | −1.700 | 0.092 * |
GDP/Capita | 0.10 | 0.11 | 0.862 | 0.391 ns |
Temperature | 648.08 | 356.77 | 1.817 | 0.072 * |
Rainfall | 0.17 | 1.85 | 0.092 | 0.927 ns |
R-squared | 0.690 | F-statistic | 32.370 | |
Adjusted R-squared | 0.669 | Prob(F-statistic) | <0.001 |
High Population Areas | Low Population Areas | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Coeff. | S. E. | t-Stat. | Prob. | Coeff. | S. E. | t-Stat. | Prob. |
Constant | −1,527,543 | 786,425.2 | −1.942 | 0.056 ns | 97,110.06 | 48,850.86 | 1.988 | 0.052 |
Test /Million | −2.434 | 1.38 | −1.760 | 0.083 ** | −0.22 | 0.07 | −3.048 | 0.004 *** |
Total Test | 0.065 | 0.007 | 9.779 | 0.00 *** | 0.03 | 0.008 | 3.781 | <0.001 *** |
Test/Case | −4275.8 | 1515.14 | −2.822 | 0.006 *** | −87.79 | 55.52 | −1.581 | 0.120 ns |
Death/Million | 65,324.64 | 29,6146.5 | 0.221 | 0.826 ns | 4171.76 | 23,887.39 | 0.175 | 0.862 ns |
Pop. Density | −257.49 | 333.54 | −0.772 | 0.443 ns | 75.60 | 28.84 | 2.622 | 0.011 ** |
Age | 16,555.06 | 11,249.27 | 1.472 | 0.146 ns | 108.29 | 1231 | 0.088 | 0.930 ns |
Rural Population | 202,975.9 | 577,967.10 | 0.351 | 0.727 ns | −77,901.50 | 37,918.24 | −2.054 | 0.045 ** |
GDP/Capita | 17.33 | 10.84 | 1.599 | 0.115 ns | 1.22 | 0.73 | 1.665 | 0.102 ns |
R M R | −64,046,492 | 296,000,000 | −0.216 | 0.830 ns | −4,024,853 | 2,390,6984 | −0.168 | 0.867 ns |
Temperature | 52,773.07 | 25,077.25 | 2.104 | 0.039 ** | −1532.85 | 1365.54 | −1.123 | 0.267 ns |
Rainfall | 45.37 | 120.20 | 0.377 | 0.707 ns | −11.95 | 8.98 | −1.331 | 0.189 ns |
R2 | 0.874 | F-stat. | 41.157 | R2 | 0.668 | F-statistic | 9.540 | |
Adj. R2 | 0.853 | Prob. | <0.001 | Adj. R2 | 0.598 | Prob(F-statistic) | <0.001 |
High Population Areas | Low Population Areas | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Coeff. | S.E. | t-stat. | Prob. | Coeff. | S. E. | t-stat. | Prob. |
Constant | −5375.87 | 15,519.28 | −0.346 | 0.730 | 180.55 | 898.98 | 0.201 | 0.842 |
Tests/M | −0.02 | 0.02 | −0.748 | 0.457 ns | −0.004 | 0.001 | −3.240 | 0.002 *** |
Total Tests | 0.001 | 0.00 | 8.519 | <0.001 *** | 0.0004 | 0.00 | 4.047 | <0.001 *** |
Tests/Case | −82.55 | 24.56 | −3.361 | <0.001 *** | −3.45 | 0.91 | −3.809 | <0.001 *** |
Pop. Density | −13.69 | 10.66 | −1.284 | 0.204 ns | 0.95 | 0.51 | 1.877 | 0.066 * |
Age | 373.21 | 382.80 | 0.975 | 0.333 ns | 72.95 | 24.35 | 2.996 | 0.004 *** |
Rural Pop. | −35,365.37 | 22,396.51 | −1.579 | 0.119 ns | −1294.06 | 733.14 | −1.765 | 0.083 * |
GDP/Capita | 0.20 | 0.28 | 0.718 | 0.475 ns | 0.008 | 0.01 | 0.548 | 0.586 ns |
Temperature | 1129.91 | 683.76 | 1.653 | 0.103 ns | −42.89 | 26.06 | −1.646 | 0.106 ns |
Rainfall | 0.21 | 4.20 | 0.052 | 0.959 ns | 0.17 | 0.16 | 1.081 | 0.285 ns |
R2 | 0.721 | F-stat. | 19.257 | R2 | 0.468 | F-stat. | 5.280 | |
Adj. R2 | 0.684 | Prob.(F-stat) | <0.001 | Adj. R2 | 0.379 | Prob (F-stat) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco, J.M.; Tseng, W.-C.; Chang, C.-L. Factors Affecting the Cases and Deaths of COVID-19 Victims. Int. J. Environ. Res. Public Health 2021, 18, 674. https://doi.org/10.3390/ijerph18020674
Velasco JM, Tseng W-C, Chang C-L. Factors Affecting the Cases and Deaths of COVID-19 Victims. International Journal of Environmental Research and Public Health. 2021; 18(2):674. https://doi.org/10.3390/ijerph18020674
Chicago/Turabian StyleVelasco, Jerald M., Wei-Chun Tseng, and Chia-Lin Chang. 2021. "Factors Affecting the Cases and Deaths of COVID-19 Victims" International Journal of Environmental Research and Public Health 18, no. 2: 674. https://doi.org/10.3390/ijerph18020674
APA StyleVelasco, J. M., Tseng, W.-C., & Chang, C.-L. (2021). Factors Affecting the Cases and Deaths of COVID-19 Victims. International Journal of Environmental Research and Public Health, 18(2), 674. https://doi.org/10.3390/ijerph18020674