Factors Affecting the Cases and Deaths of COVID-19 Victims
Abstract
:1. Introduction
Literature Review
2. Methodology
2.1. Gathering of Data
2.2. Ordinary Least Squares Estimates
3. Discussion of Results
3.1. Factors Affecting Number of Confirmed Cases from Coronavirus Disease 2019 (COVID-19)
3.2. Factors Affecting Number of Deaths from COVID-19
3.3. Cases and Deaths from COVID-19 in Countries with High and Low Population
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Qualls, N.; Levitt, A.; Kanade, N.; Wright-Jegede, N.; Dopson, S.; Biggerstaff, M.; Reed, C.; Uzicanin, A.; CDC Community Mitigation Guidelines Work Group. Community Mitigation Guidelines to Prevent Pandemic Infuenza—United States, 2017. MMWR Recomm. Rep. 2017, 66, 1–34. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837128/ (accessed on 10 December 2020). [CrossRef]
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.H.; Chen, B.; Kraemer, M.U.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. Available online: https://science.sciencemag.org/content/sci/368/6491/638.full.pdf (accessed on 10 December 2020). [CrossRef] [Green Version]
- World Health Organization 2020. COVID-19 Vaccines. Emergencies. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines (accessed on 10 December 2020).
- Worldometer. Reported Cases and Deaths by Country, Territory, or Conveyance. COVID-19 Coronavirus Pandemic. Available online: https://www.worldometers.info/coronavirus/ (accessed on 10 December 2020).
- Balilla, J. Assessment of COVID-19 Mass Testing: The Case of South Korea. SSRN 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3556346 (accessed on 1 June 2020).
- Facundo, P.; Shi, L. Optimal Covid-19 Quarantine and Testing Policies. CEPR Discussion Paper No.DP14613, 2020. SRRN. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3594243 (accessed on 29 May 2020).
- Reuters. Mass Testing Explains Germany’s Relatively Low Death Rate from Coronavirus: Virologist. Available online: https://www.reuters.com/article/us-health-coronavirus-germany-tests-idUSKBN21D1FL (accessed on 15 April 2020).
- Focus Taiwan. CORONAVIRUS/Taiwan’s COVID-19 infection Rate Does Not Justify Mass Testing: CECC. Available online: https://focustaiwan.tw/society/202004280019 (accessed on 15 May 2020).
- Morens, D.M.; Gregory, K.; Folkers, G.K.; Fauci, A.S. What Is a Pandemic? J. Infect. Dis. 2009, 200, 1018–1021. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.T.; Shih, F.Y.; Hsu, H.S.; Shu, T.; Wu, J.; Hu, F.C.; Lin, H.; King, C.C. A Retrospective Review on the 2003 Multinational Outbreaks of SARS and the Preventive Measures of Its Nosocomial Infections. Epidemiol. Bull. 2005, 21, 164–197. Available online: https://www.cdc.gov.tw/En/File/Get/ViwUSQjXJthrC5SyO1RlWA (accessed on 15 May 2020).
- Oh, M.D.; Park, W.B.; Park, S.W.; Choe, P.G.; Bang, J.H.; Song, K.H.; Kim, E.S.; Kim, H.B.; Kim, N.J. Middle East respiratory syndrome: What we learned from the 2015 outbreak in the Republic of Korea. Korean J. Intern. Med. 2018, 33, 233–246. Available online: https://pubmed.ncbi.nlm.nih.gov/29506344/ (accessed on 1 June 2020). [CrossRef] [PubMed]
- World Health Organization. Prevention and Control of Severe Acute Respiratory Syndrome (SARS). In Proceedings of the 21st Meeting of Ministers of Health, New Delhi, India, 8–9 September 2003; Available online: https://apps.who.int/iris/bitstream/handle/10665/127601/WP_21HMM-SARS-WorkPap-17-7-2003.pdf (accessed on 28 May 2020).
- Ng, E. Is thermal scanner losing its bite in mass screening of fever due to SARS? Int. J. Med Phys. Res. Pract. 2004, 32, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Tandi, T.E.; Choi, J.W.; Moon, J.M.; Kim, M.S. Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications. J. Hosp. Infect. 2017, 95, 207–213. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0195670116304431 (accessed on 5 June 2020). [CrossRef] [PubMed] [Green Version]
- Li, A.Y.; Hannah, T.C.; Durbin, J.; Dreher, N.; McAuley, F.M.; Marayati, N.F.; Spiera, Z.; Ali, M.; Gometz, A.; Kostman, J.T.; et al. Multivariate Analysis of Factors Affecting COVID-19 Case and Death Rate in U.S. Counties: The Significant Effects of Black Race and Temperature. Am J. Med. Sci. 2020, 360, 348–356. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0002962920302573?via%3Dihub (accessed on 1 January 2021). [CrossRef]
- Ma, Y.; Zhao, Y.; Liu, J.; He, X.; Wang, B.; Fu, S.; Yan, J.; Niu, J.; Zhou, J.; Luo, B. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Sci. Total Environ. 2020, 724, 138226. Available online: https://www.sciencedirect.com/science/article/pii/S0048969720317393 (accessed on 31 May 2020). [CrossRef]
- Xie, J.; Zhuc, Y. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total Environ. 2020, 724, 138201. Available online: https://www.sciencedirect.com/science/article/pii/S0048969720317149 (accessed on 15 July 2020). [CrossRef]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. Available online: https://www.sciencedirect.com/science/article/pii/S004896972032221X (accessed on 30 July 2020). [CrossRef] [PubMed]
- Lu, J.; Gu, J.; Li, K.; Xu, C.; Su, W.; Lai, Z.; Zhou, D.; Yu, C.; Xu, B.; Yang, Z. COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China. Emerg. Infect. Dis. 2020, 26, 1628. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323555/ (accessed on 30 July 2020). [CrossRef] [PubMed]
- Yaylali, A. Factors Affecting the Number of COVID-19 Cases and the Death Rate: Empirical Evidence from the German State. SSRN 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3617986 (accessed on 20 July 2020).
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. J. Am. Med. Assoc. 2020, 323, 1775–1776. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Peng, F.; Xu, B.; Zhao, J.; Liu, H.; Peng, J.; Li, Q.; Jiang, C.; Zhou, Y.; Liu, S.; et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J. Infect. Vol. 2020, 81, e16–e25. [Google Scholar]
- Goh, H.P.; Mahari, W.I.; Ahad, N.I.; Chaw, L.; Kifli, N.; Goh, B.H.; Yeoh, S.F.; Ming, L.C. Risk factors affecting COVID-19 case fatality rate: A quantitative analysis of top 50 affected countries. medRxiv 2020. [Google Scholar] [CrossRef]
- Rod, J.E.; Oviedo-Trespalacios, O.; Cortes-Ramirez, J. A brief-review of the risk factors for covid-19 severity. Rev. Saúde Pública 2020, 54, 60. [Google Scholar] [CrossRef]
- Alberca, R.W.; Oliveira, L.M.; Calvielli, A.C.; Branco, C.; Pereira, N.Z.; Sato, M.N. Obesity as a risk factor for COVID-19: An overview. Crit. Rev. Food Sci. Nutr. 2020, 1–15. [Google Scholar] [CrossRef]
- Cowger, T.L.; Davis, B.A.; Etkins, O.S.; Makofane, K.; Lawrence, J.A.; Bassett, M.T.; Krieger, N. Comparison of Weighted and Unweighted Population Data to Assess Inequities in Coronavirus Disease 2019 Deaths by Race/Ethnicity Reported by the US Centers for Disease Control and Prevention. JAMA Netw. Open 2020, 3, e2016933. [Google Scholar] [CrossRef]
- Rashed, E.A.; Kodera, S.; Gomez-Tames, J.; Hirata, A. Influence of Absolute Humidity, Temperature and Population Density on COVID-19 Spread and Decay Durations: Multi-Prefecture Study in Japan. Int. J. Environ. Res. Public Health 2020, 17, 5354. [Google Scholar] [CrossRef]
- Kadi, N.; Khelfaoui, M. Population density, a factor in the spread of COVID-19 in Algeria: Statistic study. Bull. Natl. Res. Cent. 2020, 44, 138. [Google Scholar] [CrossRef]
- Felipe, C. Urban Density and Covid-19. IZA Discussion Paper No. 13440. Available online: https://ssrn.com/abstract=3643204 (accessed on 10 December 2020).
- Sun, Z.; Zhang, H.; Yang, Y.; Wan, H.; Wang, Y. Impacts of geographic factors and population density on the COVID-19 spreading under the lockdown policies of China. Sci. Total Environ. 2020, 746, 141347. [Google Scholar] [CrossRef] [PubMed]
- Tantrakarnapa, K.; Bhopdhornangkul, B.; Nakhaapakorn, K. Influencing factors of COVID-19 spreading: A case study of Thailand. J. Public Health: Theory Pract. 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vinceti, M.; Filippini, T.; Rothman, K.J.; Ferrari, F.; Goffi, A.; Maffeis, G.; Orsini, N. Lockdown timing and efficacy in controlling COVID-19 using mobile phone tracking. EClinicalMedicine 2020, 25, 100457. [Google Scholar] [CrossRef] [PubMed]
- The BMJ Covid:19: Italy Has Wasted the Sacrifices of the First Wave, Say Experts. Br. Med. J. 2020, 12, 371. [CrossRef]
- Center for Disease Control and Prevention. Geographic Differences in COVID-19 Cases, Deaths, and Incidence—United States, 12 February–7 April 2020. Available online: https://www.cdc.gov/mmwr/volumes/69/wr/pdfs/mm6915e4-H.pdf (accessed on 1 May 2020).
- Yang, Y.; Peng, F.; Wang, R.; Guan, K.; Jiang, T.; Xu, G.; Sun, J.; Chang, C. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J. Autoimmun. 2020, 109, 102434. Available online: https://www.sciencedirect.com/science/article/pii/S0896841120300470?via%3Dihub (accessed on 5 June 2020). [CrossRef] [PubMed]
- Smyrlaki, I.; Ekman, M.; Vondracek, M.; Papanicoloau, N.; Lentini, A.; Aarum, J.; Muradrasoli, S.; Albert, J.; Högberg, B.; Reinius, B. Massive and rapid COVID-19 testing is feasible by extraction-free SARSCoV-2 RT-qPCR. medRxiv 2020. [Google Scholar] [CrossRef]
- Worldometer. Countries in the world by population. Population. Available online: https://www.worldometers.info/world-population/population-by-country/ (accessed on 10 December 2020).
- Worldometer. GDP by Country. GDP. Available online: https://www.worldometers.info/gdp/gdp-by-country (accessed on 10 December 2020).
- WeatherBase. Asia Travel Weather Averages. Weatherbase. Available online: https://www.weatherbase.com/weather/country.php3?r=ASI®ionname=Asia (accessed on 10 December 2020).
- Wooldridge, J. Introductory Econometrics A Modern Approach, 5th ed.; Cengage Learning: Boston, MA, USA, 2013. [Google Scholar]
- Bhadra, A.; Mukherjee, A.; Sarkar, K. Impact of population density on Covid 19 infected and mortality rate in India. Modeling Earth Syst. Environ. 2020, 14, 1–7. [Google Scholar] [CrossRef]
- Dowd, J.B.; Andriano, L.; Brazel, D.M.; Rotondi, V.; Block, P.; Ding, X.; Liu, Y.; Mills, M.C. Demographic science aids in understanding the spread and fatality rates of COVID-19 2020. Proc. Natl. Acad. Sci. USA 2020, 117, 9696–9698. [Google Scholar] [CrossRef] [Green Version]
- Menebo, M.M. Temperature and precipitation associate with Covid-19 new daily cases: A correlation study between weather and Covid-19 pandemic in Oslo, Norway 2020. Sci. Total Environ. 2020, 737, 139659. [Google Scholar] [CrossRef]
- Sil, A.; Kumar, V.N. Does weather affect the growth rate of COVID-19, a study to comprehend transmission dynamics on human health. J. Saf. Sci. Resil. 2020, 1, 3–11. [Google Scholar] [CrossRef]
Variables | Source |
---|---|
Total Case per country; Total Death per country; Total Test conducted | Worldometer [4] |
Population Density; Median Age of the country; Urban Population | Worldometer [37] |
Gross Domestic Product | Worldometer [38] |
Average Temperature; Average Rainfall | WeatherBase [39] |
Variables | Mean | Median | Maximum | Minimum |
---|---|---|---|---|
Total Case/Million | 18,670.46 | 14,030.00 | 63,947.00 | 86.00 |
Tests/Million | 22,0626.70 | 14,1031.00 | 1,423,225.00 | 2054.00 |
Total Tests | 9,533,267.00 | 2,063,450.00 | 2.15 × 108 | 50,488.00 |
Tests/Case | 16.17 | 10.57 | 82.16 | 2.46 |
Deaths/Million | 379.91 | 308.00 | 1516.00 | 3.00 |
Population Density | 139.65 | 87.00 | 1380.00 | 3.00 |
Age | 33.52 | 33.00 | 48.00 | 15.00 |
Rural Population | 0.33 | 0.31 | 0.83 | 0.02 |
GDP/Capita | 16,779.46 | 9881.00 | 80,296.00 | 376.00 |
Temperature | 16.39 | 17.00 | 40.00 | −0.6 |
Precipitation | 874.18 | 773.10 | 2667.10 | 49.50 |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
Constant | −670,837.4 | 405074.2 | −1.656 | 0.100 |
Tests/Million | −0.57 | 0.21 | −2.661 | 0.009 *** |
Total Tests | 0.06 | 0.007 | 8.471 | <0.001 *** |
Tests/Case | −3374.81 | 1300.57 | −2.595 | 0.011 *** |
Deaths/Million | 22,659.64 | 158,355.8 | 0.143 | 0.886 ns |
Population Density | 8.39 | 97.98 | 0.086 | 0.932 ns |
Age | 5801.06 | 6527.42 | 0.889 | 0.376 ns |
Rural Population | −240,669.9 | 39,8913 | −0.603 | 0.547 ns |
GDP/Capita | 8.65 | 5.35 | 1.617 | 0.108 ns |
Raw Mortality Rate | −22,056,641 | 158,000,000 | −0.139 | 0.890 ns |
Temperature | 30,667.33 | 13,586.81 | 2.257 | 0.026 ** |
Rainfall | 76.80 | 82.28 | 0.933 | 0.352 ns |
R-squared | 0.829 | F-statistic | 56.806 | |
Adjusted R-squared | 0.814 | Prob(F-statistic) | <0.001 |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
Constant | −4989.98 | 9446.07 | −0.528 | 0.598 |
Test/Million | −0.016 | 0.007 | −2.446 | 0.016 *** |
Total Test | 0.001 | 0.00 | 7.105 | <0.001 *** |
Test/Case | −68.44 | 22.62 | −3.025 | 0.003 *** |
Population Density | −3.10 | 3.38 | −0.918 | 0.361 ns |
Age | 365.04 | 208.84 | 1.748 | 0.083 * |
Rural Population | −23,696.37 | 13,939.86 | −1.700 | 0.092 * |
GDP/Capita | 0.10 | 0.11 | 0.862 | 0.391 ns |
Temperature | 648.08 | 356.77 | 1.817 | 0.072 * |
Rainfall | 0.17 | 1.85 | 0.092 | 0.927 ns |
R-squared | 0.690 | F-statistic | 32.370 | |
Adjusted R-squared | 0.669 | Prob(F-statistic) | <0.001 |
High Population Areas | Low Population Areas | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Coeff. | S. E. | t-Stat. | Prob. | Coeff. | S. E. | t-Stat. | Prob. |
Constant | −1,527,543 | 786,425.2 | −1.942 | 0.056 ns | 97,110.06 | 48,850.86 | 1.988 | 0.052 |
Test /Million | −2.434 | 1.38 | −1.760 | 0.083 ** | −0.22 | 0.07 | −3.048 | 0.004 *** |
Total Test | 0.065 | 0.007 | 9.779 | 0.00 *** | 0.03 | 0.008 | 3.781 | <0.001 *** |
Test/Case | −4275.8 | 1515.14 | −2.822 | 0.006 *** | −87.79 | 55.52 | −1.581 | 0.120 ns |
Death/Million | 65,324.64 | 29,6146.5 | 0.221 | 0.826 ns | 4171.76 | 23,887.39 | 0.175 | 0.862 ns |
Pop. Density | −257.49 | 333.54 | −0.772 | 0.443 ns | 75.60 | 28.84 | 2.622 | 0.011 ** |
Age | 16,555.06 | 11,249.27 | 1.472 | 0.146 ns | 108.29 | 1231 | 0.088 | 0.930 ns |
Rural Population | 202,975.9 | 577,967.10 | 0.351 | 0.727 ns | −77,901.50 | 37,918.24 | −2.054 | 0.045 ** |
GDP/Capita | 17.33 | 10.84 | 1.599 | 0.115 ns | 1.22 | 0.73 | 1.665 | 0.102 ns |
R M R | −64,046,492 | 296,000,000 | −0.216 | 0.830 ns | −4,024,853 | 2,390,6984 | −0.168 | 0.867 ns |
Temperature | 52,773.07 | 25,077.25 | 2.104 | 0.039 ** | −1532.85 | 1365.54 | −1.123 | 0.267 ns |
Rainfall | 45.37 | 120.20 | 0.377 | 0.707 ns | −11.95 | 8.98 | −1.331 | 0.189 ns |
R2 | 0.874 | F-stat. | 41.157 | R2 | 0.668 | F-statistic | 9.540 | |
Adj. R2 | 0.853 | Prob. | <0.001 | Adj. R2 | 0.598 | Prob(F-statistic) | <0.001 |
High Population Areas | Low Population Areas | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Coeff. | S.E. | t-stat. | Prob. | Coeff. | S. E. | t-stat. | Prob. |
Constant | −5375.87 | 15,519.28 | −0.346 | 0.730 | 180.55 | 898.98 | 0.201 | 0.842 |
Tests/M | −0.02 | 0.02 | −0.748 | 0.457 ns | −0.004 | 0.001 | −3.240 | 0.002 *** |
Total Tests | 0.001 | 0.00 | 8.519 | <0.001 *** | 0.0004 | 0.00 | 4.047 | <0.001 *** |
Tests/Case | −82.55 | 24.56 | −3.361 | <0.001 *** | −3.45 | 0.91 | −3.809 | <0.001 *** |
Pop. Density | −13.69 | 10.66 | −1.284 | 0.204 ns | 0.95 | 0.51 | 1.877 | 0.066 * |
Age | 373.21 | 382.80 | 0.975 | 0.333 ns | 72.95 | 24.35 | 2.996 | 0.004 *** |
Rural Pop. | −35,365.37 | 22,396.51 | −1.579 | 0.119 ns | −1294.06 | 733.14 | −1.765 | 0.083 * |
GDP/Capita | 0.20 | 0.28 | 0.718 | 0.475 ns | 0.008 | 0.01 | 0.548 | 0.586 ns |
Temperature | 1129.91 | 683.76 | 1.653 | 0.103 ns | −42.89 | 26.06 | −1.646 | 0.106 ns |
Rainfall | 0.21 | 4.20 | 0.052 | 0.959 ns | 0.17 | 0.16 | 1.081 | 0.285 ns |
R2 | 0.721 | F-stat. | 19.257 | R2 | 0.468 | F-stat. | 5.280 | |
Adj. R2 | 0.684 | Prob.(F-stat) | <0.001 | Adj. R2 | 0.379 | Prob (F-stat) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco, J.M.; Tseng, W.-C.; Chang, C.-L. Factors Affecting the Cases and Deaths of COVID-19 Victims. Int. J. Environ. Res. Public Health 2021, 18, 674. https://doi.org/10.3390/ijerph18020674
Velasco JM, Tseng W-C, Chang C-L. Factors Affecting the Cases and Deaths of COVID-19 Victims. International Journal of Environmental Research and Public Health. 2021; 18(2):674. https://doi.org/10.3390/ijerph18020674
Chicago/Turabian StyleVelasco, Jerald M., Wei-Chun Tseng, and Chia-Lin Chang. 2021. "Factors Affecting the Cases and Deaths of COVID-19 Victims" International Journal of Environmental Research and Public Health 18, no. 2: 674. https://doi.org/10.3390/ijerph18020674
APA StyleVelasco, J. M., Tseng, W.-C., & Chang, C.-L. (2021). Factors Affecting the Cases and Deaths of COVID-19 Victims. International Journal of Environmental Research and Public Health, 18(2), 674. https://doi.org/10.3390/ijerph18020674