Seasonal Variation, Chemical Composition, and PMF-Derived Sources Identification of Traffic-Related PM1, PM2.5, and PM2.5–10 in the Air Quality Management Region of Žilina, Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Measurements of PM
2.3. Chemical Analysis of PM
2.4. Data Analysis
- x and y are two vectors of length n;
- mx and my correspond to the means of x and y, respectively.
- −1 indicates a strong negative correlation: this means that every time x increases, y decreases;
- 0 means that there is no association between the two variables (x and y);
- 1 indicates a strong positive correlation: this means that y increases with x;
- The function chart.Correlation() in the package PerformanceAnalytics in R can be used to display a chart of a correlation matrix;
- The distribution of each variable is shown on the diagonal;
- At the bottom of the diagonal, the bivariate scatter plots are displayed with a fitted line;
- At the top of the diagonal, the value of the correlation plus the significance level are shown as stars;
- Each significance level is associated with a symbol: p-values (0, 0.001, 0.01, 0.05, 0.1, 1) <=> symbols (“***”, “**”, “*”, “.”, “ “)
- X: source matrix;
- T: matrix of the component score;
- PT: transposed matrix of the component loadings; and
- E: matrix of residues,
- xj: former character, input variable, j = 1, …, m;
- v1j: coefficients of eigenvectors.
3. Results
3.1. Time Variation Analysis
3.2. Elemental Correlation Analysis
3.3. PCA and PMF Analyses
- DISP results show that the solution is stable because no swaps are present;
- BS results—mapping over 80% of the factors indicates that the BS uncertainties can be interpreted and the number of factors may be appropriate;
- BS-DISP results—the number of swaps is one for two factors, which indicates some ambiguity between the factors. The number of swaps is low.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 9 July 2021).
- De Kok, T.M.; Driece, H.A.; Hogervorst, J.G.; Briedé, J. Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies. Mutat. Res. Mutat. Res. 2006, 613, 103–122. [Google Scholar] [CrossRef]
- Heinrich, J.; Slama, R. Fine particles, a major threat to children. Int. J. Hygen Environ. Health 2007, 210, 617–622. [Google Scholar] [CrossRef]
- Beelen, R.; Hoek, G.; van den Brandt, P.A.; Goldbohm, R.A.; Fischer, P.; Schouten, L.J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B. Long-term effects of traffic-related air pollution on mortality in a dutch cohort (NLCS-AIR Study). Environ. Health Perspect. 2008, 116, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, Z.-F.; Froines, J.; Zhao, J.; Wang, H.; Yu, S.-Z.; Detels, R. Air pollution and case fatality of SARS in the People’s Republic of China: An ecologic study. Environ. Health 2003, 2, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Nethery, R.C.; Sabath, B.; Braun, D.; Dominici, F.; James, C. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Scie. Adv. 2020, 6, eabd4049. [Google Scholar] [CrossRef] [PubMed]
- Cascetta, E.; Henke, I.; Di Francesco, L. The effects of air pollution, sea exposure and altitude on COVID-19 hospitalization rates in Italy. Int. J. Environ. Res. Public Health 2021, 18, 452. [Google Scholar] [CrossRef]
- Dragone, R.; Licciardi, G.; Grasso, G.; Del Gaudio, C.; Chanussot, J. Analysis of the chemical and physical environmental aspects that promoted the spread of SARS-CoV-2 in the Lombard area. Int. J. Environ. Res. Public Health 2021, 18, 1226. [Google Scholar] [CrossRef]
- Salgado, M.V.; Smith, P.; Opazo, M.A.; Huneeus, N. Long-term exposure to fine and coarse particulate matter and COVID-19 incidence and mortality rate in Chile during 2020. Int. J. Environ. Res. Public Health 2021, 18, 7409. [Google Scholar] [CrossRef]
- Hutter, H.-P.; Poteser, M.; Moshammer, H.; Lemmerer, K.; Mayer, M.; Weitensfelder, L.; Wallner, P.; Kundi, M. Air pollution is associated with COVID-19 incidence and mortality in Vienna, Austria. Int. J. Environ. Res. Public Health 2020, 17, 9275. [Google Scholar] [CrossRef] [PubMed]
- Bitta, J.; Svozilik, V.; Svozilikova Krakovska, A. Effect of the COVID-19 lockdown on air pollution in the Ostrava Region. Int. J. Environ. Res. Public Health 2021, 18, 8265. [Google Scholar] [CrossRef]
- Schiavon, M.; Antonacci, G.; Rada, E.C.; Ragazzi, M.; Zardi, D. Modelling human exposure to air pollutants in an urban area. Rev. Chim. 2014, 65, 61–64. [Google Scholar]
- Tiwari, S.; Bisht, D.S.; Srivastava, A.K.; Pipal, A.S.; Taneja, A.; Srivastava, M.K.; Attri, S.D. Variability in atmospheric particulates and meteorological effects on their mass concentrations over Delhi, India. Atmos. Res. 2014, 145–146, 45–56. [Google Scholar] [CrossRef]
- Bilos, C.; Colombo, J.C.; Skorupka, C.N.; Rodriguez Presa, M.J. Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environ. Pollut. 2001, 111, 149–158. [Google Scholar] [CrossRef]
- Morabito, E.; Gregoris, E.; Belosi, F.; Contini, D.; Cesari, D.; Gambaro, A. Multi-year concentrations, health risk, and source identification, of air toxics in the Venice Lagoon. Front. Environ. Sci. 2020, 8, 1–6. [Google Scholar] [CrossRef]
- Pio, C.A.; Cardoso, J.G.; Cerqueira, M.A.; Calvo, A.; Nunes, T.V.; Alves, C.A.; Custódio, D.; Almeida, S.M.; Almeida-Silva, M. Seasonal variability of aerosol concentration and size distribution in cape verde using a continuous aerosol optical spectrometer. Front. Environ. Sci. 2014, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Chan, L.Y.; Kwok, W.S. Roadside suspended particulates at heavily trafficked urban sites of Hong Kong—Seasonal variation and dependence on meteorological conditions. Atmos. Environ. 2001, 35, 3177–3182. [Google Scholar] [CrossRef]
- Sanderson, P.; Delgado-Saborit, J.M.; Harrison, R.M. A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmos. Environ. 2014, 94, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Filonchyk, M.; Yan, H.; Li, X. Temporal and spatial variation of particulate matter and its correlation with other criteria of air pollutants in Lanzhou, China, in spring-summer periods. Atmos. Pollut. Res. 2018, 9, 1100–1110. [Google Scholar] [CrossRef]
- Li, R.; Cui, L.; Li, J.; Zhao, A.; Fu, H.; Wu, Y.; Zhang, L.; Kong, L.; Chen, J. Spatial and temporal variation of particulate matter and gaseous pollutants in China during 2014–2016. Atmos. Environ. 2017, 161, 235–246. [Google Scholar] [CrossRef]
- Chan, L.Y.; Kwok, W.S.; Lee, S.C.; Chan, C.Y. Spatial variation of mass concentration of roadside suspended particulate matter in metropolitan Hong Kong. Atmos. Environ. 2001, 35, 3167–3176. [Google Scholar] [CrossRef]
- Fullová, D.; Jandačka, D.; Ďurčanská, D.; Eštoková, A.; Hegrová, J. The road surface as a source of particulate matter. In Proceedings of the Building Up Efficient and Sustainable Transport Infrastructure 2017 (BESTInfra2017), Prague, Czech Republic, 21–22 September 2017. [Google Scholar]
- Al-Khashman, O.A. The investigation of metal concentrations in street dust samples in Aqaba city, Jordan. Environ. Geochem. Health 2007, 29, 197–207. [Google Scholar] [CrossRef]
- Almeida, S.M.; Pio, C.A.; Freitas, M.C.; Reis, M.A.; Trancoso, M.A. Source apportionment of atmospheric urban aerosol based on weekdays/weekend variability: Evaluation of road re-suspended dust contribution. Atmos. Environ. 2006, 40, 2058–2067. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Holubcik, M.; Jandacka, J.; Nosek, R.; Baranski, J. Particulate matter production of small heat source depending on the bark content in wood pellets. Emiss. Control Sci. Technol. 2018, 4, 33–39. [Google Scholar] [CrossRef]
- De la Paz, D.; Borge, R.; Vedrenne, M.; Lumbreras, J.; Amato, F.; Karanasiou, A.; Boldo, E.; Moreno, T. Implementation of road dust resuspension in air quality simulations of particulate matter in Madrid (Spain). Front. Environ. Sci. 2015, 3, 1–6. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Henry, R.; Norris, G.A.; Vedantham, R.; Turner, J.R. Source region identification using kernel smoothing. Environ. Sci. Technol. 2009, 43, 4090–4097. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Zhang, J. Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere 2002, 49, 1045–1058. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Kaur, M.; Li, T.; Pan, F. Effect of different pollution parameters and chemical components of PM 2.5 on health of residents of Xinxiang City, China. China Int. J. Environ. Res. Public Health 2021, 18, 6821. [Google Scholar] [CrossRef]
- Schauer, J.J.; Lough, G.C.; Shafer, M.M.; Christensen, W.F.; Arndt, M.F.; DeMinter, J.T.; Park, J.S. Characterization of metals emitted from motor vehicles. Res. Rep. Health Eff. Inst. 2006, 133, 1–76. [Google Scholar]
- Leitner, B.; Decký, M.; Kováč, M. Road pavement longitudinal evenness quantification as stationary stochastic process. Transport 2019, 34, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Jandacka, D.; Kovalova, D.; Durcanska, D.; Decky, M. Chemical composition, morphology, and distribution of particulate matter produced by road pavement abrasion using different types of aggregates and asphalt binder. Cogent Eng. 2021, 8, 1–23. [Google Scholar] [CrossRef]
- Trojanová, M.; Decký, M.; Remišová, E. The Implication of climatic changes to asphalt pavement design. Procedia Eng. 2015, 111, 770–776. [Google Scholar] [CrossRef] [Green Version]
- Kovac, M.; Jandacka, D.; Durcanska, D.; Pepucha, L. Particulate matter production in term of different types of wearing course asphalt mixtures. In Proceedings of the International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, Albena, Bulgaria, 19–25 June 2014; pp. 475–480. [Google Scholar]
- Legret, M.; Pagotto, C. Evaluation of pollutant loadings in the runoff waters from a major rural highway. Sci. Total Environ. 1999, 235, 143–150. [Google Scholar] [CrossRef]
- Gustafsson, M. Review of road wear emissions. In Non-Exhaust Emissions; Elsevier: Amsterdam, The Netherlands, 2018; pp. 161–181. [Google Scholar]
- Penkała, M.; Ogrodnik, P.; Rogula-Kozłowska, W. Particulate matter from the road surface abrasion as a problem of non-exhaust emission control. Environments 2018, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- OECD. Non-Exhaust Particulate Emissions from Road Transport; OECD Publishing: Paris, France, 2020; ISBN 9789264452442. [Google Scholar] [CrossRef]
- Panko, J.; Kreider, M.; Unice, K. Review of tire wear emissions. In Non-Exhaust Emissions; Elsevier: Amsterdam, The Netherlands, 2018; pp. 147–160. [Google Scholar]
- World Health Organization. HealtH Effects of Particulate Matter; WHO—Regional Office for Europe: Copenhagen, Denmark, 2013; ISBN 978 92 890 0001 7. [Google Scholar]
- OECD. The Cost of Air Pollution; OECD Publishing: Paris, France, 2014; ISBN 9789264210424. [Google Scholar]
- Allen, A.; Nemitz, E.; Shi, J.; Harrison, R.; Greenwood, J. Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmos. Environ. 2001, 35, 4581–4591. [Google Scholar] [CrossRef]
- Chan, Y.C.; Simpson, R.W.; McTainsh, G.H.; Vowles, P.D.; Cohen, D.D.; Bailey, G.M. Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmos. Environ. 1997, 31, 3773–3785. [Google Scholar] [CrossRef]
- Gatari, M.J.; Boman, J.; Wagner, A.; Janhäll, S.; Isakson, J. Assessment of inorganic content of PM2.5 particles sampled in a rural area north-east of Hanoi, Vietnam. Sci. Total Environ. 2006, 368, 675–685. [Google Scholar] [CrossRef]
- Celis, J.E.; Morales, J.R.; Zaror, C.A.; Inzunza, J.C. A study of the particulate matter PM10 composition in the atmosphere of Chillán, Chile. Chemosphere 2004, 54, 541–550. [Google Scholar] [CrossRef]
- Ďurčanská, D.; Jandačka, D. Chemical Composition of PM10, PM2.5, PM1 and Influence of Meteorological Conditions on them in Zilina Selfgoverning Region, Slovakia; Trans Tech Publications Ltd.: Bäch, Switzerland, 2016; Volume 244, ISBN 9783038356325. [Google Scholar]
- Amato, F.; Pandolfi, M.; Viana, M.; Querol, X.; Alastuey, A.; Moreno, T. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Environ. 2009, 43, 1650–1659. [Google Scholar] [CrossRef]
- Wilson, W.E.; Chow, J.C.; Claiborn, C.; Fusheng, W.; Engelbrecht, J.; Watson, J.G. Monitoring of particulate matter outdoors. Chemosphere 2002, 49, 1009–1043. [Google Scholar] [CrossRef]
- Whitey, K.T. The physical characteristics of sulfur aerosols. Atmos. Environ. 2007, 41, 25–49. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, C.A.; Evtyugina, M.; Vicente, A.M.P.; Vicente, E.D.; Nunes, T.V.; Silva, P.M.A.; Duarte, M.A.C.; Pio, C.A.; Amato, F.; Querol, X. Chemical profiling of PM10 from urban road dust. Sci. Total Environ. 2018, 634, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.F.; Lee, S.C.; Chow, J.C.; Watson, J.G. Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmos. Environ. 2003, 37, 1023–1032. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D.; Bujdos, M. The contribution of road traffic to particulate matter and metals in air pollution in the vicinity of an urban road. Transp. Res. Part. D Transp. Environ. 2017, 50, 397–408. [Google Scholar] [CrossRef]
- Ayres, J.G.; Borm, P.; Cassee, F.R.; Castranova, V.; Donaldson, K.; Ghio, A.; Harrison, R.M.; Hider, R.; Kelly, F.; Kooter, I.M.; et al. Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—a workshop report and consensus statement. Inhal. Toxicol. 2008, 20, 75–99. [Google Scholar] [CrossRef]
- Borm, P.J.A.; Kelly, F.; Kunzli, N.; Schins, R.P.F.; Donaldson, K. Oxidant generation by particulate matter: From biologically effective dose to a promising, novel metric. Occup. Environ. Med. 2006, 64, 73–74. [Google Scholar] [CrossRef] [Green Version]
- Cassee, F.R.; Héroux, M.-E.; Gerlofs-Nijland, M.E.; Kelly, F.J. Particulate matter beyond mass: Recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal. Toxicol. 2013, 25, 802–812. [Google Scholar] [CrossRef]
- Kelly, F.J. Oxidative stress: Its role in air pollution and adverse health effects. Occup. Environ. Med. 2003, 60, 612–616. [Google Scholar] [CrossRef] [Green Version]
- Fedotov, P.S.; Ermolin, M.S.; Karandashev, V.K.; Ladonin, D.V. Characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of street dust separated using field-flow fractionation in a rotating coiled column. Talanta 2014, 130, 1–7. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Barratt, B.; Armstrong, B.; Anderson, H.R.; Beevers, S.D.; Mudway, I.S.; Green, D.; Derwent, R.G.; Wilkinson, P.; Tonne, C. The impact of the congestion charging scheme on ambient air pollution concentrations in London. Atmos. Environ. 2009, 43, 5493–5500. [Google Scholar] [CrossRef]
- Batalha, J.R.F.; Saldiva, P.H.N.; Clarke, R.W.; Coull, B.A.; Stearns, R.C.; Lawrence, J.; Murthy, G.G.K.; Koutrakis, P.; Godleski, J.J. Concentrated ambient air particles induce vasoconstriction of small pulmonary arteries in rats. Environ. Health Perspect. 2002, 110, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Rhoden, C.R.; Lawrence, J.; Godleski, J.J.; González-Flecha, B. N-acetylcysteine prevents lung inflammation after short-term inhalation exposure to concentrated ambient particles. Toxicol. Sci. 2004, 79, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Wellenius, G.A.; Coull, B.A.; Godleski, J.J.; Koutrakis, P.; Okabe, K.; Savage, S.T.; Lawrence, J.E.; Murthy, G.G.K.; Verrier, R.L. Inhalation of concentrated ambient air particles exacerbates myocardial ischemia in conscious dogs. Environ. Health Perspect. 2003, 111, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Gurgueira, S.A.; Lawrence, J.; Coull, B.; Murthy, G.G.K.; González-Flecha, B. Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ. Health Perspect. 2002, 110, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Kodavanti, U.P.; Schladweiler, M.C.; Ledbetter, A.D.; McGee, J.K.; Walsh, L.; Gilmour, P.S.; Highfill, J.W.; Davies, D.; Pinkerton, K.E.; Richards, J.H.; et al. Consistent pulmonary and systemic responses from inhalation of fine concentrated ambient particles: Roles of rat strains used and physicochemical properties. Environ. Health Perspect. 2005, 113, 1561–1568. [Google Scholar] [CrossRef] [Green Version]
- Rohr, A.C.; Kamal, A.; Morishita, M.; Mukherjee, B.; Keeler, G.J.; Harkema, J.R.; Wagner, J.G. Altered heart rate variability in spontaneously hypertensive rats is associated with specific particulate matter components in Detroit, Michigan. Environ. Health Perspect. 2011, 119, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Gottipolu, R.R.; Landa, E.R.; Schladweiler, M.C.; McGee, J.K.; Ledbetter, A.D.; Richards, J.H.; Wallenborn, G.J.; Kodavanti, U.P. Cardiopulmonary responses of intratracheally instilled tire particles and constituent metal components. Inhal. Toxicol. 2008, 20, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Khomenko, S.; Cirach, M.; Pereira-Barboza, E.; Mueller, N.; Barrera-Gómez, J.; Rojas-Rueda, D.; de Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M. Premature mortality due to air pollution in European cities: A health impact assessment. Lancet Planet. Health 2021, 5, e121–e134. [Google Scholar] [CrossRef]
- Spencer, N.H. Essentials of Multivariate Data Analysis; CRC Press: Boca Raton, FL, USA, 2013; ISBN 9781466584785. [Google Scholar]
- Varmuza, K.; Filzmoser, P. Introduction to Multivariate Statistical Analysis in Chemometrics; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9780429145049. [Google Scholar]
- Lu, X.; Wang, L.; Li, L.Y.; Lei, K.; Huang, L.; Kang, D. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J. Hazard. Mater. 2010, 173, 744–749. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, W.; Long, Y.; Bao, X.; Yang, Q. Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J. Geochem. Explor. 2011, 108, 27–38. [Google Scholar] [CrossRef]
- Manta, D.S.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef]
- Guo, H.; Wang, T.; Louie, P.K.K. Source apportionment of ambient non-methane hydrocarbons in Hong Kong. Environ. Pollut. 2004, 129, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xie, S.; Zhang, Y.; Zeng, L.; Salmon, L.G.; Zheng, M. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Sci. Total Environ. 2006, 372, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Norris, G.; Duvall, R. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; U.S. Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- Jain, S.; Sharma, S.K.; Mandal, T.K.; Saxena, M. Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology 2018, 37, 107–118. [Google Scholar] [CrossRef]
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D. Differentiation of particulate matter sources based on the chemical composition of PM10 in functional urban areas. Atmosphere 2019, 10, 583. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-Y.; Cao, J.J.; Li, L.M.; Arimoto, R.; Cheng, Y.; Huebert, B.; Wang, D. Characterization of atmospheric aerosol over XiAn in the South Margin of the Loess Plateau, China. Atmos. Environ. 2002, 36, 4189–4199. [Google Scholar] [CrossRef]
- Carslaw, D. The Openair Manual Open-Source Tools for Analysing Air Pollution Data; University of York: York, UK, 2019. [Google Scholar]
- Carslaw, D.C.; Ropkins, K. openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Tokalioǧlu, Ş.; Kartal, Ş. Multivariate analysis of the data and speciation of heavy metals in street dust samples from the Organized Industrial District in Kayseri (Turkey). Atmos. Environ. 2006, 40, 2797–2805. [Google Scholar] [CrossRef]
- Tahri, M.; Benyaïch, F.; Bounakhla, M.; Bilal, E.; Gruffat, J.J.; Moutte, J.; Garcia, D. Multivariate analysis of heavy metal contents in soils, sediments and water in the region of Meknes (Central Morocco). Environ. Monit. Assess. 2005, 102, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Platt, S.M.; El Haddad, I.; Pieber, S.M.; Zardini, A.A.; Suarez-Bertoa, R.; Clairotte, M.; Daellenbach, K.R.; Huang, R.-J.; Slowik, J.G.; Hellebust, S.; et al. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Sci. Rep. 2017, 7, 4926. [Google Scholar] [CrossRef]
- Samara, C.; Voutsa, D. Size distribution of airborne particulate matter and associated heavy metals in the roadside environment. Chemosphere 2005, 59, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhuang, G.; Cheng, S.; Wang, Y.; Li, J. Characteristics of re-suspended road dust and its impact on the atmospheric environment in Beijing. Atmos. Environ. 2007, 41, 7485–7499. [Google Scholar] [CrossRef]
- Li, X.; Poon, C.S.; Liu, P.S. Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl. Geochem. 2001, 16, 1361–1368. [Google Scholar] [CrossRef]
- Fullová, D.; Ďurčanská, D.; Jandačka, D. Comparison of asphalt mixtures in terms of abraded particulate matter in laboratory. In Proceedings of the International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, Albena, Bulgaria, 2–5 November 2016. [Google Scholar]
- Pospisil, J.; Huzlik, J.; Licbinsky, R.; Spilacek, M. Dispersion characteristics of PM10 particles identified by numerical simulation in the vicinity of roads passing through various types of urban areas. Atmosphere 2020, 11, 454. [Google Scholar] [CrossRef]
- Jandová, V.; Bucková, M.; Hegrová, J.; Dostál, I.; Huzlík, J.; Effenberger, K.; Ličbinský, R. The relationship among precipitation, application of salt in winter road maintenance and the quality of waterways and soil around motorway. Water 2020, 12, 2206. [Google Scholar] [CrossRef]
- Malaguti, A.; Mircea, M.; La Torretta, T.M.G.; Telloli, C.; Petralia, E.; Stracquadanio, M.; Berico, M. Chemical composition of fine and coarse aerosol particles in the Central Mediterranean area during dust and non-dust conditions. Aerosol Air Qual. Res. 2015, 15, 410–425. [Google Scholar] [CrossRef] [Green Version]
- Batterman, S.; Ganguly, R.; Harbin, P. High resolution spatial and temporal mapping of traffic-related air pollutants. Int. J. Environ. Res. Public Health 2015, 12, 3646–3666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, J.G.; Chow, J.C.; Lu, Z.; Fujita, E.M.; Lowenthal, D.H.; Lawson, D.R.; Ashbaugh, L.L. Chemical mass balance source apportionment of PM10 during the southern california air quality study. Aerosol Sci. Technol. 1994, 21, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Torretta, V.; Raboni, M.; Copelli, S.; Rada, E.C.; Ragazzi, M.; Ionescu, G.; Apostol, T.; Badea, A. Application of strategies for particulate matter reduction in urban areas: An italian case. UPB Sci. Bull. Ser. D. 2013, 75, 221–228. [Google Scholar]
Non-Exhaust Emissions Category | Main Components (>1% in Mass) * | Measurement Method |
---|---|---|
Brake wear | Iron, Copper, Barium, Antimony, Zinc, Aluminum, Chromium, Potassium, Titanium, and Magnesium [52] | Brake dynamometer |
Tire wear | Zinc, Silicon, and Sulfur [41] | Road simulator |
Road wear | Silicon, Calcium, Potassium, and Iron [34,38,39] | Road simulator |
Road dust resuspension | Silicon, Calcium, Aluminum, Iron, Potassium, Magnesium, Titanium, Copper, Zinc, and Barium [23,49,53] | Road dust sampling |
Measuring Station | Location | Measuring Periods | Characteristics of the Measuring Place |
---|---|---|---|
Vojtecha Spanyola Street (MS0) | 49°13′06.8″ N, 18°44′36.2″ E | 19–25 October 2010; 8–14 March 2011; 11–17 April 2011; 7–14 July 2011; 13–19 October 2011; 26 January–1 February 2012; 16–22 April 2012; 7–13 June 2012 | Placed in the vicinity of Vojtecha Spanyola Street near habitation, shopping centers, and a hospital. |
Univerzitná Street (MS1) | 49°12′6.61″ N, 18°45′14.24″ E | 14–20 November 2017 | Placed in the vicinity of the crossroads of Univerzitná Street and Veľký Diel Street near the University of Žilina campus. |
A. Hlinka Square (MS2) | 49°13′29.08″ N, 18°44′31.10″ E | 22‒28 February 2018 | Square, with pedestrian zone, connected to the streets by road traffic. |
Komenského Street (MS3) | 49°12′58.64″ N, 18°44′15.63″ E | 1‒7 March 2018 | Placed in the vicinity of the crossroads of Komenského Street, Suvorovova Street, and Juraja Fándlyho Street near residential buildings, educational buildings, and a public administration building. |
Košická Street (MS4) | 49°13′8.30″ N, 18°45′36.80″ E | 19–25 April 2018 | Important city traffic hub and the biggest city crossroads, near the city’s heating plant and shopping centers. |
Štrková Street (MS5) | 49°11′35.27″ N, 18°43′37.12″ E | 9–15 May 2018 | Placed in the vicinity of Štrková Street. High volume of heavy road traffic, including trucks. |
Vysokoškolákov Street (MS6) | 49°12′38.20″ N, 18°45′29.15″ E | 9–15 April 2019 | Placed in the vicinity of Vysokoškolákov Street, near habitation, shopping centers, and a hospital. |
Fraction of PM | ||||
---|---|---|---|---|
PM10 | PM2.5–10 | PM2.5 | PM1 | |
Values of descriptive statistics (µg/m3) | ||||
Min | 3.91 | 0.00 | 3.78 | 2.75 |
Max | 158.54 | 38.17 | 148.95 | 110.51 |
Median | 37.30 | 10.07 | 28.75 | 23.99 |
Mean | 47.87 | 11.16 | 36.80 | 29.81 |
Var | 1062.41 | 64.54 | 826.04 | 493.90 |
Std. dev | 32.59 | 8.03 | 28.74 | 22.22 |
Skewness | 1.75 | 1.05 | 2.17 | 1.82 |
Kurtosis | 5.75 | 4.33 | 7.67 | 6.25 |
PM Fraction | Percentage Change in the Concentrations of Elements during the Heating Season Compared to the Non-Heating Season (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mg | Al | Ca | Cr | Cu | Fe | Cd | Sb | Ba | Pb | Ni | Zn | |
PM2.5–10 | +7.3 | −14.6 | +10.9 | −49.0 | −8.4 | −28.9 | +12.1 | −43.4 | −5.7 | −16.0 | −8.6 | −17.0 |
PM2.5 | +204.5 | −22.8 | +122.2 | +22.9 | +54.2 | −29.9 | +192.4 | +20.4 | −8.1 | +127.8 | +3.8 | +239.2 |
PM1 | +246.6 | −51.5 | +48.9 | −27.2 | +61.1 | −48.6 | +152.5 | +8.0 | −31.0 | +113.9 | +15.3 | +262.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jandacka, D.; Durcanska, D. Seasonal Variation, Chemical Composition, and PMF-Derived Sources Identification of Traffic-Related PM1, PM2.5, and PM2.5–10 in the Air Quality Management Region of Žilina, Slovakia. Int. J. Environ. Res. Public Health 2021, 18, 10191. https://doi.org/10.3390/ijerph181910191
Jandacka D, Durcanska D. Seasonal Variation, Chemical Composition, and PMF-Derived Sources Identification of Traffic-Related PM1, PM2.5, and PM2.5–10 in the Air Quality Management Region of Žilina, Slovakia. International Journal of Environmental Research and Public Health. 2021; 18(19):10191. https://doi.org/10.3390/ijerph181910191
Chicago/Turabian StyleJandacka, Dusan, and Daniela Durcanska. 2021. "Seasonal Variation, Chemical Composition, and PMF-Derived Sources Identification of Traffic-Related PM1, PM2.5, and PM2.5–10 in the Air Quality Management Region of Žilina, Slovakia" International Journal of Environmental Research and Public Health 18, no. 19: 10191. https://doi.org/10.3390/ijerph181910191
APA StyleJandacka, D., & Durcanska, D. (2021). Seasonal Variation, Chemical Composition, and PMF-Derived Sources Identification of Traffic-Related PM1, PM2.5, and PM2.5–10 in the Air Quality Management Region of Žilina, Slovakia. International Journal of Environmental Research and Public Health, 18(19), 10191. https://doi.org/10.3390/ijerph181910191