Simulation and Analysis of Urban Production–Living–Ecological Space Evolution Based on a Macro–Micro Joint Decision Model
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Research Methods
3.1. Production-Living-Ecological Space Evolution Simulation Model Based on Macro-Micro Joint Decision
3.1.1. Simulation Method of Living Space Evolution
3.1.2. Simulation Method of Production and Ecological Space Evolution
3.2. Method of Factor Weight Determination
4. Experimental Results and Analysis
4.1. Simulation and Prediction Results of Production-Living-Ecological Space Evolution
4.2. Results of Factor Weight Determination
5. Discussions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eric, K.; Nikolas, C.; Brain, S. Global warming and the carbon balance of boreal forests. Ecol. Appl. 1995, 5, 437–451. [Google Scholar]
- Bryan, B.A.; Gao, L.; Ye, Y.Q.; Sun, X.F.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.G.; He, C.Y.; Yu, D.Y.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision; United Nation: New York, NY, USA, 2019; pp. 1–126. [Google Scholar]
- Liu, J.; Xu, X.; Zhuang, D.; Gao, Z. Impacts of LUCC processes on potential land productivity in China in the 1990s. Sci. China D 2005, 48, 1259–1269. [Google Scholar] [CrossRef]
- Allen, C.; Nejdawi, R.; El-Baba, J.; Hamati, K.; Metternicht, G.; Wiedmann, T. Indicator-based assessments of progress towards the sustainable development goals (sdgs): A case study from the arab region (special feature): Sustainability science and implementing the sustainable development goals). Sustain. Sci. 2017, 12, 975–989. [Google Scholar] [CrossRef]
- Chiara, C.; Dagmae, H.; Bruno, Z.; Davide, G. Is urban spatial development on the right track? Comparing strategies and trends in the European Union. Landsc. Urban Plan. 2019, 181, 22–37. [Google Scholar]
- Fullman, N.; Barber, R.M.; Abajobir, A.A. Measuring progress and projecting attainment on the basis of past trends of the health-related sustainable development goals in 188 countries: An analysis from the global burden of dis-ease study 2016. Lancet 2017, 390, 1423–1459. [Google Scholar] [CrossRef] [Green Version]
- Arbabi, H.; Punzo, G.; Meyers, G.; Tan, L.; Li, Q.; Tingley, D.; Mayfield, M. On the use of random graphs in analyzing resource utilization in urban systems. R. Soc. Open Sci. 2020, 7, 200087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, G.; Li, X.; Zhou, B.B.; Ma, Q.; Liu, X. How to minimize the impacts of urban expansion on farmland loss: Developing a few large or many small cities? Landsc. Ecol. 2020, 35, 2487–2499. [Google Scholar] [CrossRef]
- Berger, T. Agent-based spatial models applied to agriculture: A simulation tool for technology diffusion, resource use changes and policy analysis. Agric. Econ. 2015, 25, 245–260. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, X.; Ma, S.; Guo, X.; Liu, X. An empirical analysis of the system dynamics model of spatial coupling of wetland’s “Production-Living-Ecological Space”—Taking Xixi national wetland park as an example. Econ. Geogr. 2018, 38, 173–180. [Google Scholar]
- He, C.; Okada, N.; Zhang, Q.; Shi, P.; Li, J. Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landsc. Urban Plan. 2008, 86, 79–91. [Google Scholar] [CrossRef]
- Hu, Z.; Lo, C. Modeling urban growth in Atlanta using logistic regression. Compu. Environ. Urban Syst. 2007, 31, 667–688. [Google Scholar] [CrossRef]
- Yang, D.; Yin, C.; Long, Y. Urbanization and sustainability in China: An analysis based on the urbanization Kuznets-curve. Plan. Theory 2013, 12, 391–405. [Google Scholar]
- Jiang, L.; Zhang, Y. Modeling urban expansion and agricultural land conversion in Henan province, China: An integration of land use and socioeconomic data. Sustainability 2016, 8, 920. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.D.; Simmonds, D. Theory and application of an integrated land-use and transport modeling framework. Environ. Plan. B Plan. Des. 1993, 20, 221–224. [Google Scholar] [CrossRef]
- Wegener, M. Urban/regional models and planning cultures: Lessons from cross-national modelling projects. Environ. Plan. B Plan. Des. 1994, 21, 629–641. [Google Scholar] [CrossRef]
- Roger, L.M. LILT and MEPLAN: A comparative analysis of land-use and transport policies for Leeds. Trans. Rev. 1991, 11, 131–154. [Google Scholar]
- Chapin, F.S.; Weiss, S.F. A probabilistic model for residential growth. Trans. Res. 1968, 2, 375–390. [Google Scholar] [CrossRef]
- Clark, K.C.; Hoppen, S.; Gaydos, L. A self-modifying cellular automaton model of historical urbanization in the San Francisco bay area. Comput. Environ. Urban Syst. 1997, 24, 247–261. [Google Scholar] [CrossRef] [Green Version]
- He, C.Y.; Okada, N.; Zhang, Q.F.; Shi, P.J.; Zhang, J.S. Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China. Appl. Geogr. 2006, 26, 323–345. [Google Scholar] [CrossRef]
- Ward, D.; Murray, A.; Phinn, S. A stochastically constrained cellular model of urban growth. Comput. Environ. Urban Syst. 2000, 24, 538–559. [Google Scholar] [CrossRef]
- Wu, F. Polycentric urban development and land-use change in a transitional economy: The case of Guangzhou. Environ. Plan. A 1998, 30, 1077–1100. [Google Scholar] [CrossRef]
- Ligmann-Zielinska, A.; Wachowicz, M.; Bregt, A.K.; Beulens, A.; Kettenis, D.L. A design and application of a multi-agent system for simulation of multi-actor spatial planning. J. Environ. Manag. 2004, 72, 43–55. [Google Scholar]
- Torrens, P.M. Simulating sprawl. Ann. Assoc. Am. Geogr. 2006, 96, 248–275. [Google Scholar] [CrossRef]
- Zeng, Y.; Yu, M.; Li, S. Urban expansion modeling approach based on multi-agent system and cellular automata. ISPRS 2018, 42, 2213–2229. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Li, X.; Xie, H.; Lu, C. Urban land expansion and arable land loss in Chinas a case study of Beijing-Tianjin-Hebei region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Bone, C.; Dragicevic, S.; White, R. Modeling-in-the-middle: Bridging the garp between agent-based modeling and multi-objective decision-making for land use change. Int. J. Geogr. Inf. Sci. 2011, 25, 717–737. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Chen, L.; Zhou, X.; Cui, Y.; Liu, Y. Mapping and characterizing spatiotemporal dynamics of impervious surfaces using Landsat images: A case study of Xuzhou, east China from 1995 to 2018. Sustainability 2019, 11, 1224. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Ji, X.; Guo, N.; Meng, L. Assessment of urban heat islands for land use based on urban planning: A case study in the main urban area of Xuzhou city, China. Environ. Earth Sci. 2021, 80, 1–22. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Z.; Wang, X. Forms of urban expansion of Chinese municipalities and provincial capitals, 1970s–2013. Remote Sens. 2016, 8, 930. [Google Scholar] [CrossRef] [Green Version]
- Akodad, S.; Bombrun, L.; Xia, J.; Berthoumieu, Y.; Germain, C. Ensemble learning approaches Based on covariance pooling of CNN features for high resolution remote sensing scene classification. Remote Sens. 2020, 12, 3292. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Q. Quantitative Recognition and Characteristic Analysis of Production-Living-Ecological Space Evolution for Five Resource-Based Cities: Zululand, Xuzhou, Lota, Surf Coast and Ruhr. Remote Sens. 2021, 13, 1563. [Google Scholar] [CrossRef]
- Xu, X.; Min, X.; Tian, Z. Simulation and prediction of urban expansion in Shanghai city based on GIS and LTM model. China Population. Resour. Environ. 2010, 20, 136–139. [Google Scholar]
- Alva, J.A.V.; Estrada, E.G. A generalization of Shapiro-Wilk’s Test for multivariate normality. Commun. Stat. 2009, 38, 1870–1883. [Google Scholar] [CrossRef]
- He, C.; Shi, P.; Chen, J.; Pan, Y.; Li, X.; Li, J.; Li, Y.; Li, J. Research on land use scenario model based on system dynamics model and cellular automata model. Sci. China D 2005, 35, 463–474. (In Chinese) [Google Scholar]
- Ligtenberg, A.; Bregt, A.K.; Van Lammeren, R. Multi-actor-based land use modelling: Spatial planning using agents. Landsc. Urban Plan. 2001, 56, 21–33. [Google Scholar] [CrossRef]
- Zhu, J.; Tian, S. A dynamic urban lake area evolution model based on multilevel grid, cellular automata, and multiagent system. Complexity 2020, 2020, 1845090. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, D.; Fu, J.; Lin, G.; Zhang, J. Comprehensive assessment of Production–Living–Ecological space based on the coupling coordination degree model. Sustainability 2020, 12, 2009. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Lin, H.; Qi, X. Research progress of production–living–ecological space oriented to the optimization of national space. Adv. Geogr. Sci. 2017, 36, 378–391. [Google Scholar]
- Zhou, S.; Tao, H.; Zhou, L. Vector-based multi-agent simulation of urban expansion: A case study in Panyu District in Guangzhou City. Prog. Geogr. 2014, 33, 202–210. [Google Scholar]
- Zou, Y.; Zhang, S.; Min, Y. Exploring urban population forecasting and spatial distribution modeling with artificial intelligence technology. CMES 2019, 119, 295–310. [Google Scholar] [CrossRef] [Green Version]
Performance | ES (a) | SD (b) | CA (c) | MAS (d) |
---|---|---|---|---|
Scale changes simulation | Strong | Strong | Strong | Strong |
Spatial distribution simulation | Weak | Weak | Strong | Strong |
Time varying simulation | Weak | Normal | Strong | Strong |
Macro factors simulation | Strong | Strong | Weak | Strong |
Micro factors simulation | Weak | Weak | Normal | Strong |
Model operation mechanism | Top-down | Bottom-up |
Data Type | Content | Time | Source |
---|---|---|---|
RS image data | GF (a)-2 1m × 1m RS (b) image | 2000–2020 | Natural Resources Satellite RS Cloud Service Platform |
Urban GIS (c) data | Vector files of administrative division Road | 2018 | Geographical Information Monitoring Cloud |
Socioeconomic statistics | Population, industrial economy, natural resources | 2000–2020 | Literature, statistical yearbooks |
Evaluated Object | Scheme 1 | Scheme 2 | Scheme 3 |
---|---|---|---|
Model | CA | CA + MAS | CA + MAS + Correlation |
Kappa | 87.14 | 89.63 | 92.31 |
Evaluated Object | Scheme 1 | Scheme 2 | Scheme 3 |
---|---|---|---|
Model | CA | CA + MAS | CA + MAS + Correlation |
Kappa | 84.59 | 86.19 | 89.33 |
Elevation | Slope | Distance to Water | Distance to Road | Distance to Center | Government Planning | Type of Land | Neighborhood Influence |
---|---|---|---|---|---|---|---|
0.028 | 0.104 | 0.035 | 0.064 | 0.043 | 0.076 | 0.047 | 0.056 |
Influence of Micro factor | Protected land | House Price | Hospital | Mall | School | Distance to Ecological Space | Influence of Macro factor |
0.014 | 0.076 | 0.095 | 0.109 | 0.058 | 0.089 | 0.064 | 0.042 |
Elevation | Slope | Soil Quality | Distance to Water | Distance to Road | Distance to Center | Type of Land |
---|---|---|---|---|---|---|
0.042 | 0.046 | 0.052 | 0.059 | 0.106 | 0.043 | 0.109 |
Neighborhood Influence | Influence of Micro factor | Protected land | Land Price | Distance to living space | Distance to Ecological Space | Influence of Macro factor |
0.065 | 0.032 | 0.184 | 0.091 | 0.102 | 0.035 | 0.034 |
Elevation | Slope | Distance to Water | Distance to Woodland | Distance to Grassland | Type of Land | Neighborhood Influence |
---|---|---|---|---|---|---|
0.069 | 0.076 | 0.072 | 0.148 | 0.076 | 0.064 | 0.091 |
Influence of Micro factor | Protected land | Distance to production space | Distance to living space | Distance to Ecological Space | Influence of Macro factor | / |
0.081 | 0.037 | 0.056 | 0.057 | 0.149 | 0.024 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Wang, Q.; Zou, Y. Simulation and Analysis of Urban Production–Living–Ecological Space Evolution Based on a Macro–Micro Joint Decision Model. Int. J. Environ. Res. Public Health 2021, 18, 9832. https://doi.org/10.3390/ijerph18189832
Tao Y, Wang Q, Zou Y. Simulation and Analysis of Urban Production–Living–Ecological Space Evolution Based on a Macro–Micro Joint Decision Model. International Journal of Environmental Research and Public Health. 2021; 18(18):9832. https://doi.org/10.3390/ijerph18189832
Chicago/Turabian StyleTao, Yuanyuan, Qianxin Wang, and Yan Zou. 2021. "Simulation and Analysis of Urban Production–Living–Ecological Space Evolution Based on a Macro–Micro Joint Decision Model" International Journal of Environmental Research and Public Health 18, no. 18: 9832. https://doi.org/10.3390/ijerph18189832
APA StyleTao, Y., Wang, Q., & Zou, Y. (2021). Simulation and Analysis of Urban Production–Living–Ecological Space Evolution Based on a Macro–Micro Joint Decision Model. International Journal of Environmental Research and Public Health, 18(18), 9832. https://doi.org/10.3390/ijerph18189832