Food Safety in Local Farming of Fruits and Vegetables
Abstract
:1. Introduction
2. Food Hazards Regarding Vegetables and Fruits
2.1. Microbial Hazards
2.1.1. Microbial Foodborne Outbreaks Linked to Vegetables and Fruits
2.1.2. Microbial Hazards in Local Vegetables and Fruit Markets
2.2. Mycotoxins
2.3. Nitrate
2.4. Pesticides
2.5. Heavy Metals
3. Local Producers and Consumers Awareness for Food Safety
4. Food Safety and Sustainable Agriculture Methods Applied in Local Farming
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouzembrak, Y.; Marvin, H.J.P. Impact of drivers of change, including climatic factors, on the occurrence of chemical food safety hazards in fruits and vegetables: A Bayesian Network approach. Food Control 2019, 97, 67–76. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The Future of Food and Agriculture—Trends and Challenges, 1st ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; pp. 9–70. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO); International Fund for Agricultural Development (IFAD); UNICEF; World Food Programme (WFP); World Health Organization (WHO). The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Berry, E.M.; Dernini, S.; Burlingame, B.; Meybeck, A.; Conforti, P. Food security and sustainability: Can one exist without the other? Public Health Nutr. 2015, 18, 2293–2302. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, S.B.; Akoglu, A. Assessment of local food use in the context of sustainable food: A research in food and beverage enterprises in Izmir, Turkey. Int. J. Gastron. 2020, 20, 100194. [Google Scholar] [CrossRef]
- Lemaire, A.; Limbourg, S. How can food loss and waste management achieve sustainable development goals? J. Clean. Prod. 2019, 234, 1221–1234. [Google Scholar] [CrossRef]
- Schmitt, E.; Galli, F.; Menozzi, D.; Maye, D.; Touzard, J.; Marescotti, A.; Six, J.; Brunori, G. Comparing the sustainability of local and global food products in europe. J. Clean. Prod. 2017, 165, 346–359. [Google Scholar] [CrossRef]
- Mritunjay, S.K.; Kumar, V. Fresh farm produce as a source of pathogens: A review. Res. J. Environ. Toxicol. 2015, 9, 59–70. [Google Scholar]
- World Health Organization (WHO). WHO Estimates of the Global Burden of Foodborne Diseases. Foodborne Diseases Burden Epidemiology Reference Group 2007–2015. Available online: https://www.who.int/foodsafety/publications/foodborne_disease/fergreport/ (accessed on 23 May 2021).
- Mostafidi, M.; Sanjabi, M.R.; Shirkhan, F.; Zahedi, M.T. A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends Food Sci. Technol. 2020, 103, 321–332. [Google Scholar] [CrossRef]
- Augustin, M.A.; Sanguansri, L.; Fox, E.M.; Cobiac, L.; Cole, M.B. Recovery of wasted fruit and vegetables for improving sustainable diets. Trends Food Sci. Technol. 2020, 95, 75–85. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef]
- Paramithiotis, S.; Drosinos, E.H.; Skandamis, P.N. Food recalls and warnings due to the presence of foodborne pathogens—A focus on fresh fruits, vegetables, dairy and eggs. Curr. Opin. Food Sci. 2017, 18, 71–75. [Google Scholar] [CrossRef]
- Mathur, A.; Joshi, A.; Harwani, D. Microbial contamination of raw fruits and vegetables. J. Food Saf. 2014, 16, 26–28. [Google Scholar]
- Carletti, L.; Botondi, R.; Moscetti, R.; Stella, E.; Monarca, D.; Cecchini, M.; Massantini, R. Use of ozone in sanitation and storage of fresh fruits and vegetables. J. Food Agric. Environ. 2013, 11, 585–589. [Google Scholar]
- Melero, B.; Stessl, B.; Manso, B.; Wagner, M.; Esteban-Carbonero, O.J.; Hernandez, M.; Rovira, J.; Rodriguez-Lázaro, D. Listeria monocytogenes colonization in a newly established processing facility. Int. J. Food Microbiol. 2019, 289, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Muhterem-Uyar, M.; Dalmasso, M.; Bolocan, A.S.; Hernandez, M.; Kapetanakou, A.E.; Kuchta, T.; Manios, S.G.; Melero, B.; Minarovičová, J.; Nicolau, A.I.; et al. Environmental sampling for Listeria monocytogenes control in food processing facilities reveals three contamination scenarios. Food Control 2015, 51, 94–107. [Google Scholar] [CrossRef]
- Rotariu, O.; Thomas, J.I.; Goodburn, K.E.; Hutchinson, M.L.; Strachan, N.C. Smoked salmon industry practices and their association with Listeria monocytogenes. Food Control 2014, 35, 284–292. [Google Scholar] [CrossRef]
- Yaron, S.; Romling, U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol. 2014, 7, 496–516. [Google Scholar] [CrossRef]
- Ssemanda, J.N.; Reij, M.; Bagabe, M.C.; Muvunyi, C.M.; Joosten, H.; Zwietering, M.H. Indicator microorganisms in fresh vegetables from “farm to fork” in Rwanda. Food Control 2017, 75, 126–133. [Google Scholar] [CrossRef]
- Buck, J.W.; Walcott, R.R.; Beuchat, L.R. Recent trends in microbiological safety of fruits and vegetables. Plant Health Prog. 2003, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Callejón, R.M.; Rodríguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported foodborne outbreaks due to fresh produce in the United States and European Union: Trends and causes. Foodborne Pathog. Dis. 2015, 12, 32–38. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). List of Selected Multistate Foodborne Outbreak Investigations. Available online: https://www.cdc.gov/foodsafety/outbreaks/multistate-outbreaks/outbreaks-list.html (accessed on 25 May 2021).
- Murray, K.; Wu, F.; Shi, J.; Xue, S.J.; Warriner, K. Challenges in the microbiological food safety of fresh produce: Limitations of post-harvest washing and the need for alternative interventions. Food Qual. Saf. 2017, 1, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Painter, J.; Hoekstra, R.; Ayers, T.; Tauxe, R.; Braden, C.; Angulo, F. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 407–415. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Foodborne Zoonotic Diseases. Available online: https://www.efsa.europa.eu/en/topics/topic/foodborne-zoonotic-diseases (accessed on 16 August 2021).
- Aiyedun, S.O.; Onarinde, B.A.; Swainson, M.; Dixon, R.A. Foodborne outbreaks of microbial infection from fresh produce in Europe and North America: A systematic review of data from this millennium. Int. J. Food Sci. 2021, 56, 2215–2223. [Google Scholar] [CrossRef]
- McCollum, J.T.; Cronquist, A.B.; Silk, B.J.; Jackson, K.S.; O’Connor, K.A.; Cosgrove, S.; Gossack, J.P.; Parachini, S.S.; Jain, N.A.; Ettestad, P.; et al. Multistate outbreak of listeriosis associated with cantaloupe. N. Eng. J. Med. 2013, 369, 944–953. [Google Scholar] [CrossRef] [Green Version]
- US Food and Drug Administration. Environmental Assessment: Factors Potentially Contributing to the Contamination Offresh Whole Cantaloupe Implicated in a Multi-State Outbreak of Listeriosis. Available online: http://calcitrusquality.org/wp-content/uploads/FDA-Jensen-Farms-Environmental-Assessment-Final-Report.pdf (accessed on 25 May 2021).
- Soon, J.M.; Brazier, A.K.M.; Wallace, C.A. Determining common contributory factors in food safety incidents—A review of global outbreaks and recalls 2008–2018. Trends Food Sci. Technol. 2020, 97, 76–87. [Google Scholar] [CrossRef]
- Kase, J.A.; Zhang, G.; Chen, Y. Recent foodborne outbreaks in the United States linked to atypical vehicles—Lessons learned. Curr. Opin. Food Sci. 2017, 18, 56–63. [Google Scholar] [CrossRef]
- Luth, S.; Boone, I.; Kleta, S.; Al Dahouk, S. Analysis of RASFF notifications on food products contaminated with Listeria monocytogenes reveals options for improvement in the rapid alert system for food and feed. Food Control 2019, 96, 479–487. [Google Scholar] [CrossRef]
- Carpentier, B.; Cerf, O. Review—persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 2011, 145, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Public Health England (PHE). E. coli O157 National Outbreak Update. Available online: https://www.gov.uk/government/news/update-as-e-coli-o157-investigation-continues (accessed on 24 May 2021).
- Centers for Disease Control and Prevention (CDC). Multistate Outbreak of Shiga Toxin-Producing Escherichia coli O157 Infections Linked to Alfalfa Sprouts Produced by Jack & The Green Sprouts (Final Update). Available online: https://www.cdc.gov/ecoli/2016/o157-02-16/index.html (accessed on 24 May 2021).
- Alegbeleye, O.O.; Singleton, I.; Sant’Ana, A.S. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol. 2018, 73, 177–208. [Google Scholar] [CrossRef]
- Erikson, M.C.; Liao, J.-Y.; Payton, A.S.; Cook, P.W.; Den Bakker, H.C.; Bautista, J.; Pérez, J.C.D. Pre-harvest internalization and surface survival of Salmonella and Escherichia coli O157:H7 sprayed onto different lettuce cultivars under field and growth conditions. Int. J. Food Microbiol. 2019, 291, 197–204. [Google Scholar] [CrossRef]
- Flynn, D. How Did Salmonella Hvittingfoss Get on Aussie Rock Melons? Food Safety News. Available online: https://www.foodsafetynews.com/2016/08/130219/# (accessed on 25 May 2021).
- Behravesh, C.B.; Mody, R.K.; Jungk, J.; Gaul, L.; Redd, J.T.; Chen, S.; Cosgrove, S.; Hedican, E.; Sweat, D.; Chávez-Hauser, L.; et al. 2008 outbreak of Salmonella Saintpaul infections associated with raw produce. N. Eng. J. Med. 2011, 364, 918–927. [Google Scholar] [CrossRef] [Green Version]
- Bellemare, M.F.; Ngyen, N.J. Farmers market and food-borne illness. Am. J. Agric. Econ. 2018, 100, 676–690. [Google Scholar] [CrossRef]
- Park, C.E.; Sanders, G.W. Occurrence of thermotolerant campylobacters in fresh vegetables sold at farmers’ outdoor markets and supermarkets. Can. J. Microbiol. 1992, 38, 313–316. [Google Scholar] [CrossRef]
- Carolina Farm Stewardship Association. Food Safety at the Farmers Market. Available online: https://www.carolinafarmstewards.org/reality-of-food-safety-at-the-farmers-market/ (accessed on 20 August 2021).
- Bohaychuk, V.M.; Bradbury, R.W.; Dimock, R.M.; Fehr, G.E.; Gensler, R.K.; King, R.; Romero, B.P. A microbiological survey of selected Alberta-grown fresh produce from farmers’ markets in Alberta, Canada. J. Food Prot. 2009, 72, 415–420. [Google Scholar] [CrossRef]
- Wood, J.L.; Chen, J.C.; Friesen, E.; Delaquis, P.; Allen, K.J. Microbiological survey of locally grown lettuce sold at farmers’ markets in Vancouver, British Columbia. J. Food Prot. 2015, 78, 203–208. [Google Scholar] [CrossRef]
- Levy, D.J.; Beck, N.K.; Kossik, A.L.; Patti, T.; Meschke, J.S.; Calicchia, M.; Hellberg, R.S. Microbial safety and quality of fresh herbs from Los Angeles, Orange County 52 and Seattle farmers’ markets. J. Sci. Food Agric. 2015, 95, 2641–2645. [Google Scholar] [CrossRef] [Green Version]
- Roth, L.; Simonne, A.; House, L.; Ahn, S. Microbiological analysis of fresh produce sold at Florida farmers’ markets. Food Control 2018, 92, 444–449. [Google Scholar] [CrossRef]
- Scheinberg, J.A.; Dudley, E.G.; Campbell, J.; Roberts, B.; DiMarzio, M.; DebRoy, C.; Cutter, C.N. Prevalence and phylogenetic characterization of Escherichia coli and hygiene indicator bacteria isolated from leafy green produce, beef, and pork obtained from farmers’ markets in Pennsylvania. J. Food Prot. 2017, 80, 237–244. [Google Scholar] [CrossRef]
- Kim, C.; Almuqati, R.; Fatani, A.; Rahemi, A.; Kaseloo, P.; Wynn, C.; Nartea, T.; Ndegwa, E.; Rutto, L. Prevalence and antimicrobial resistance of foodborne pathogens in select fresh produce procured from farmers’ markets in Central Virginia. J. Food Saf. 2021, 41, e12895. [Google Scholar] [CrossRef]
- Hernández, F.; Monge, R.; Jiménez, C.; Taylor, L. Rotavirus and hepatitis A virus in market lettuce Latuca sativa in Costa Rica. Int. J. Food Microbiol. 1997, 37, 221–223. [Google Scholar] [CrossRef]
- Bianchini, A.; Bullerman, L.B. Mycotoxins—Classification. In Encyclopedia of Food Microbiology, 2nd ed.; Academic Press: London, UK, 2014; pp. 854–861. [Google Scholar]
- Ioi, J.D.; Zhou, T.; Tsao, R.F.; Marcone, M. Mitigation of patulin in fresh and processed foods and beverages. Toxins 2017, 9, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Errampalli, D. Penicillium expansum (Blue Mold). In Postharvest Decay: Control Strategies; Bautista-Baños, S., Ed.; Academic Press: London, UK, 2014; pp. 189–231. [Google Scholar]
- Ritieni, A. Patulin in Italian commercial apple products. J. Agric. Food Chem. 2003, 51, 6086–6090. [Google Scholar] [CrossRef]
- Hussain, S.; Asi, M.R.; Iqbal, M.; Khalid, N.; Wajih-ul-Hassan, S.; Ariño, A. Patulin mycotoxin in mango and orange fruits, juices, pulps, and jams marketed in pakistan. Toxins 2020, 12, 52. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Guo, L.; Jiang, G.; Song, Y.; Muminov, M.A. Advances of organics products over conventional production with respect to nutritional quality and food security. Sheng Tai Xue Bao 2018, 38, 53–60. [Google Scholar] [CrossRef]
- Hord, N.G.; Tang, Y.; Bryan, N.S. Food sources of nitrates and nitrites: The physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Quijano, L.; Yusà, V.; Font, G.; McAllister, C.; Torres, C.; Pardo, O. Risk assessment and monitoring programme of nitrates through vegetables in the Region of Valencia (Spain). Food Chem. Toxicol. 2017, 100, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Uddin, R.; Thakur, M.U.; Uddin, M.Z.; Islam, G.M.R. Study of nitrate levels in fruits and vegetables to assess the potential health risks in Bangladesh. Sci. Rep. 2021, 11, 4704. [Google Scholar] [CrossRef] [PubMed]
- Fenner, K.; Canonica, S.; Wackett, L.P.; Elsner, M. Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science 2013, 431, 752–758. [Google Scholar] [CrossRef] [Green Version]
- Juraske, R.; Mutel, C.; Stoessel, F.; Hellweg, S. Life cycle human toxicity assessment of pesticides: Comparing fruit and vegetable diets in Switzerland and the United States. Chemosphere 2009, 77, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, M.; Łozowicka, B.; Kaczyński, P. Comprehensive toxicological study over 160 processing factors of pesticides in selected fruit and vegetables after water, mechanical and thermal processing treatments and their application to human health risk assessment. Sci. Total Environ. 2019, 652, 1156–1167. [Google Scholar] [CrossRef] [PubMed]
- Bempah, C.K.; Agyekum, A.A.; Akuamoa, F.; Frimpong, S.; Buah-Kwofie, A. Dietary exposure to chlorinated pesticide residues in fruits and vegetables from Ghanaian markets. J. Food Compos. Anal. 2016, 46, 103–113. [Google Scholar] [CrossRef]
- Grewal, A.S.; Singla, A.; Kamboj, P.; Dua, J.S. Pesticide residues in food grains, vegetables and fruits: A hazard to human health. J. Med. Chem. Toxicol. 2017, 2, 40–46. [Google Scholar] [CrossRef]
- Bempah, C.K.; Donkor, A.K. Pesticide residues in fruits at the market level in Accra Metropolis, Ghana, a preliminary study. Environ. Monit. Assess. 2011, 175, 551–561. [Google Scholar] [CrossRef]
- Mostafalou, S.; Abdollahi, M. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 2013, 268, 157–177. [Google Scholar] [CrossRef]
- Dingha, B.N.; Jackai, L.E.N. Pesticide residues in fruits and vegetables from farmers’ markets. Int. J. Environ. Sci. Nat. Res. 2018, 16, 555927. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). 2015 Pesticide Data Program (PDP) Annual Summary Q & A. Available online: https://www.ams.usda.gov/press-release/usda-releases-2015-annual-pesticide-data-program-summary (accessed on 24 May 2021).
- Ziarati, P.; Mostafidi, M.; Shirkhan, F.; Zahedi, M.T. Analysis of removal methods of toxic heavy metals using bio-absorbs. Sci. Tech. J. 2018, 4, 62–76. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Mostafidi, M.; Moslehishad, M.; Piravivanak, Z.; Pouretedal, Z. Evaluation of mineral content and heavy metals of dromedary camel milk in Iran. Food Sci. Technol. 2016, 36, 717–723. [Google Scholar] [CrossRef] [Green Version]
- Guerra, F.; Trevizam, A.R.; Muraoka, T.; Marcante, N.C.; Canniatti-Brazaca, S.G. Heavy metals in vegetables and potential risk for human health. Sci. Agric. 2012, 60, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Stančić, Z.; Vujević, D.; Gomaz, A.; Bogdan, S.; Vincek, D. Detection of heavy metals in common vegetable at Varaždin City Market, Croatia. Arh. Hig. Rada. Toksikol. 2016, 67, 340–350. [Google Scholar] [CrossRef] [Green Version]
- Osaili, T.M.; Al Jamali, A.F.; Makhadmeh, I.M.; Taha, M.; Jarrar, S.K. Heavy metals in vegetables sold in the local market in Jordan. Surveillance 2016, 9, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Gravani, R.B. The role of Good Agricultural Practices in produce safety. In Microbial Safety of Fresh Produce; Xuetong, F., Ed.; Wiley-Blackwell: Ames, IA, USA, 2009; pp. 101–117. [Google Scholar]
- Worsfold, D.; Worsfold, P.M.; Griffith, C.J. An assessment of food hygiene and safety at farmers’ markets. Int. J. Environ. Health Res. 2004, 14, 109–119. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture/Agricultural Marketing Service (USDA/AMS). National Count of Farmers Market Directory Listings Graph: 1994–2017. 2018. Available online: https://www.ams.usda.gov/sites/default/files/media/NationalCountofFMDirectory17.JPG (accessed on 16 August 2021).
- Oregon Public Health Institute. A First Look at Produce Safety Practices and Costs on Oregon’s Small and Medium Sized Fresh Fruit and Vegetable Farms. Available online: https://ophi.org/download/PDF/producesafety_paper_final_OPHI.pdf (accessed on 16 August 2021).
- Pollard, S.; Boyer, R.; Chapman, B.; di Stefano, J.; Archibald, T.; Ponder, M.A.; Rideout, L.S. Identification of risky food safety practices at Southwest Virginia farmers’ markets. Food Prot. Trends 2016, 36, 168–175. [Google Scholar]
- Sirsat, S.A.; Gibson, K.E.; Neal, J.A. Food safety at farmers’ markets: Fact or fiction? In Food Safety—Emerging Issues, Technologies, and Systems; Riche, S.C., Donaldson, J.R., Phillips, C.A., Eds.; Academic Press: London, UK, 2015; pp. 319–329. [Google Scholar]
- Harrison, J.A.; Gaskin, J.W.; Harrison, M.A.; Cannon, J.L.; Boyer, R.R.; Zehnder, G.W. Survey of food safety practices on small to medium-sized farms and in farmers markets. J. Food Prot. 2013, 76, 1989–1993. [Google Scholar] [CrossRef]
- Norwood, H.E.; Sirsat, S.A.; Neal, J.A. Farmers’ Market Food Safety: Educating While Engaging; International Association of Food Protection: Indianapolis, IN, USA, 2014. [Google Scholar]
- El Sheikha, A.F. Tracing fruits and vegetables from farm to fork: Questions of novelty and efficiency. In Production and Management of Beverages, 1st ed.; Wolff, A.G., Ed.; Woodhead Publishing: Duxford, UK, 2019; pp. 179–209. [Google Scholar]
- Food Marketing Research and Information Center (FMRIC). Handbook for Introduction of Food Traceability Systems: Guidelines for Food Traceability; Second Print; Food Marketing Research and Information Center (FMRIC): Tokyo, Japan, 2008; pp. 1–67. Available online: https://www.maff.go.jp/j/syouan/seisaku/trace/pdf/handbook_en.pdf (accessed on 27 May 2021).
- Jin, S.; Zhang, Y.; Xu, Y. Amount of information and the willingness of consumers to pay for food traceability in China. Food Control 2017, 77, 163–170. [Google Scholar] [CrossRef]
- Yong, Y.; Xiuping, Z. Research of organic vegetables safety traceability system in agricultural enterprise based on RFID technology. Appl. Mech. Mater. 2014, 469, 473–476. [Google Scholar] [CrossRef]
- Yu, H.; Gibson, K.E.; Wright, K.G.; Neal, J.A.; Sirsat, S.A. Food safety and food quality perceptions of farmers’ market consumers in the United States. Food Control 2017, 79, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Khouryieh, M.; Khouryieh, H.; Daday, J.K.; Shen, C. Consumers’ perceptions of the safety of fresh produce sold at farmers’ markets. Food Control 2019, 105, 242–247. [Google Scholar] [CrossRef]
- Su, Y. Prevalence of Salmonella, Escherichia coli O157: H7 and Shigella in selected fresh produce from supermarkets, local markets and farmers’ markets. In Proceedings of the International Association for Food Protection, Indianapolis, IN, USA, 3–6 August 2014; Available online: https://iafp.confex.com/iafp/2014/webprogram/Paper6353.html (accessed on 27 May 2021).
- Wang, L.; Wang, J.; Huo, X. Consumer’s willingness to pay a premium for organic fruits in China: A double-hurdle analysis. Int. J. Environ. Res. Public Health 2019, 16, 126. [Google Scholar] [CrossRef] [Green Version]
- Riccioli, F.; Moruzzo, R.; Zhang, Z.; Zhao, J.; Tang, Y.; Tinacci, L.; Boncinelli, F.; De Martino, D.; Guidi, A. Willingness to pay in main cities of Zheijiang provice (China) for quality and safety in food market. Food Control 2020, 108, 106831. [Google Scholar] [CrossRef]
- Hedberg II, R.C.; Zimmerer, K.S. What’s the market got to do with it? Social-ecological embeddedness and environmental practices in a local food system initiative. Geoforum 2020, 110, 35–45. [Google Scholar] [CrossRef]
- Schoolman, E.D. Do direct market farms use fewer agricultural chemicals? Evidence from the US census of agriculture. Renew. Agric. Food Syst. 2019, 34, 415–429. [Google Scholar] [CrossRef]
- Behnke, C.; Seo, S.; Miller, K. Assessing food safety practices in farmers’ markets. Food Protect. Trends 2012, 32, 232–239. [Google Scholar]
- Charles, H.; Godfray, J.; Garnett, T. Food security and sustainable intensification. Phil. Trans. R. Soc. B 2014, 369, 20120273. [Google Scholar]
- Domènech, L. Improving irrigation access to combat food insecurity and undernutrition: A review. Glob. Food Sec. 2015, 6, 24–33. [Google Scholar] [CrossRef]
- Lori, M.; Symnaczik, S.; Mader, P.; Deyng, G.; Gattinger, A. Organic Farming enhances soil microbial abundance and activity A- meta analysis and meta-regression. PLoS ONE 2017, 12, e0180442. [Google Scholar] [CrossRef] [PubMed]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Mbili, N. Postharvest quality and composition of organically and conventionally produced fruits: A review. Sci. Hortic. 2017, 216, 148–159. [Google Scholar] [CrossRef]
- Vrcek, I.V.; Cepo, D.V.; Rasic, M.; Peraica, I.; Zuntar, I.; Bojic, M.; Mendas, G.; Medic-Saric, M. A comparison of the nutritional value and food safety of organically and convencionally produced wheat flours. Food Chem. 2014, 143, 522–529. [Google Scholar] [CrossRef]
- Araújo, D.F.S.; Silva, A.M.R.B.; Lima, L.L.D.A.; Vasconcelos, M.A.D.S.; Andrade, S.A.C.; Sarubbo, L.A. The concentration of minerals and physicochemical contaminants in conventional and organic vegetables. Food Control 2014, 44, 242–248. [Google Scholar] [CrossRef]
- Xu, M.J.; He, W.L. Effects of organic, special and conventional farming system on quality of vegetables. Acta Agric. Jiangxi 2009, 21, 68–70. [Google Scholar]
- Lombardo, S.; Pandino, G.; Mauromicale, G. Nutritional and sensory characteristics of “early” potato cultivars under organic and conventional cultivation systems. Food Chem. 2012, 133, 1249–1254. [Google Scholar] [CrossRef]
- Dorais, M.; Alsanius, B. Advances and Trends in Organic Fruit and Vegetable Farming Research. In Horticultural Reviews; Janick, J., Ed.; Wiley Blackwell: Lafayette, IN, USA, 2015; pp. 185–268. [Google Scholar]
- Ferretti, G.; Neri, D.; Borsari, B. Issues of Food Safety: Are “Organic” Apples Better? In Nutrition Guide for Physicians; Wilson, T., Bray, G.A., Temple, N.J., Struble, M.B., Eds.; Humana Press: Totowa, NJ, USA, 2009; pp. 115–124. [Google Scholar]
- McCarty, M.F. Are organically growing foodssafer and more healthful than conventionally grown foods? Br. J. Nutr. 2014, 112, 1589–1591. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.S.; Toepel, K.; Irish, R.; Fenske, R.A.; Barr, D.B.; Bravo, R. Organic diets significantly lower children’s dietary exposure to organophospohorus pesticides. Environ. Health Perspect. 2006, 114, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Gomiero, T. Food quality assessment in organic vs. conventional agricultural produce: Findings and issues. Appl. Soil Ecol. 2017, 123, 714–728. [Google Scholar] [CrossRef]
- Ferreira, C.; Lopes, F.; Costa, R.; Komora, N.; Ferreira, V.; Cruz Fernandes, V.; Delerue-Matos, C.; Teixeira, P. Microbiological and chemical quality of Portuguese lettuce—results of a case study. Foods 2020, 9, 1274. [Google Scholar] [CrossRef]
- Sobieralski, K.; Siwulski, M.; Sas-Golak, I. Nutritive and health-promoting value of organic vegetables. Acta Sci. Pol. Technol. Aliment. 2013, 12, 113–123. [Google Scholar]
- Lairon, D.; Lafont, H.; Léonardi, J.; Hauton, J.C.; Ribaud, P. Comparison de lintérêt nutritif de légumes produits par l’agriculture conventionnelle ou biologique. Sci. Aliment. 1982, 2, 203–205. [Google Scholar]
- Lima, G.P.P.; Borges, C.V.; Vianello, F.; Zevallos, L.C.; Minatel, I.O. Phytochemicals in Organic and Conventional Fruits and Vegetables. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; Yahia, E.M., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2017. [Google Scholar]
- Koh, E.; Kaffka, S.; Michell, A.E. A long-term comparison of the influence of organic and conventional crop management practices on the content of the glycoalkaloid α-tomatine in tomatoes. J. Sci. Food Agric. 2013, 93, 1537–1542. [Google Scholar] [CrossRef]
- Schulzová, V.; Hajšlová, J.; Botek, P.; Peroutka, R. Furanocoumarins in vegetables: Influence of farming system and other factors on levels of toxicants. J. Sci. Food Agric. 2007, 87, 2763–2767. [Google Scholar] [CrossRef]
- Deguine, J.P. Applying Agroecological Principles to Crop Protection. In Agroecological Crop Protection; Deguine, J.P., Gloanec, C., Laurent, P., Ratnadass, A., Aubertot, J.N., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 1–46. [Google Scholar]
- Snapp, S. Agroecology: Principles and Practice. In Agricultural Systems: Agroecology and Rural Innovation for Development, 2nd ed.; Snapp, S., Pound, B., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 33–72. [Google Scholar]
- Maffei, D.F.; Batalha, E.Y.; Landgraf, M.; Schaffner, D.W.; Franco, B.D.G.M. Microbiology of organic and conventionally grown fresh produce. Braz. J. Microbiol. 2016, 475, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefèvre, A.; Perrin, B.; Lesur-Dumoulin, C.; Salembier, C.; Navarrete, M. Challenges of complying with both food value chain specifications and agroecology principles in vegetable crop protection. Agric. Syst. 2020, 185, 102953. [Google Scholar] [CrossRef]
Year | Origin | Foodborne Pathogen | Matrix | Number of Illnesses | Hospitalizations | Deaths |
---|---|---|---|---|---|---|
2021 | Rochelle, Illinois | Salmonella Typhimurium | Pre-packaged Salads | 9 | 1 | 0 |
2020 | Non-defined source | E. coli O157:H7 | Leafy Greens | 40 | 20 | 0 |
Prima Wawona, California | Salmonella Enteritidis | Peaches | 101 | 28 | 0 | |
Thomson International, California | Salmonella Newport | Onions | 1127 | 167 | 0 | |
Streamwood, Illinois | Cyclospora | Bagged Salad Mix | 701 | 38 | 0 | |
2019 | Taylor Cut Produce, New Jersey | Salmonella Javiana | Cut Fruit | 165 | 73 | 0 |
Salinas Valley, California | E. coli O157:H7 | Romaine Lettuce | 167 | 85 | 0 | |
Caito Foods, Indiana | Salmonella Carrau | Pre-Cut Melon | 137 | 38 | 0 | |
2018 | Adam Bros. Farming, California | E. coli O157:H7 | Romaine Lettuce | 62 | 25 | 0 |
Caito Foods, Indiana | Salmonella Adelaide | Pre-Cut Melon | 77 | 36 | 0 | |
Yuma, Arizona | E. coli O157:H7 | Romaine Lettuce | 210 | 96 | 5 | |
2017 | Non-defined source | E. coli O157:H7 | Leafy Greens | 25 | 9 | 1 |
2016 | Tropical Smoothie Café, Maryland, North Carolina, Virginia, and West Virginia | Hepatitis A | Frozen Strawberries | 143 | 56 | 0 |
Springfield, Ohio | Listeria monocytogenes | Packaged Salads | 19 | 19 | 1 | |
CRF Frozen Foods, Pasco, Washington | Frozen Vegetables | 9 | 9 | 3 | ||
2015 | Imported from Mexico and distribution by Andrew & Williamson Fresh Produce | Salmonella Poona | Cucumbers | 907 | 204 | 6 |
2014 | Delmarva, Maryland and Virginia | Salmonella Newport | Cucumbers | 275 | 48 | 1 |
2013 | Imported from Daniel Cardenas Izabal and Miracle Greenhouse of Culiacán, Mexico and distributed by Tricar Sales of Rio Rico, Arizona | Salmonella Saintpaul | Cucumbers | 84 | 17 | 0 |
2012 | Chamberlain Farms, Massachusetts | Salmonella Typhimurium and Newport | Cantaloupe | 261 | 94 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macieira, A.; Barbosa, J.; Teixeira, P. Food Safety in Local Farming of Fruits and Vegetables. Int. J. Environ. Res. Public Health 2021, 18, 9733. https://doi.org/10.3390/ijerph18189733
Macieira A, Barbosa J, Teixeira P. Food Safety in Local Farming of Fruits and Vegetables. International Journal of Environmental Research and Public Health. 2021; 18(18):9733. https://doi.org/10.3390/ijerph18189733
Chicago/Turabian StyleMacieira, Ariana, Joana Barbosa, and Paula Teixeira. 2021. "Food Safety in Local Farming of Fruits and Vegetables" International Journal of Environmental Research and Public Health 18, no. 18: 9733. https://doi.org/10.3390/ijerph18189733
APA StyleMacieira, A., Barbosa, J., & Teixeira, P. (2021). Food Safety in Local Farming of Fruits and Vegetables. International Journal of Environmental Research and Public Health, 18(18), 9733. https://doi.org/10.3390/ijerph18189733