Fate of Functional Bacterial and Eukaryotic Community Regulated by Earthworms during Vermicomposting of Dewatered Sludge, Studies Based on the 16S rDNA and 18S rDNA Sequencing of Active Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Assay of Physicochemical Properties
2.3. PMA Treatment and DNA Extraction
2.4. PCR and Sequencing Methods
2.5. Statistical Analysis
3. Results and Discussion
3.1. Maturation Assessment of Vermicomposting
3.2. Changes in Active Bacterial and Eukaryotic Diversity
3.3. Changes in Active Bacterial and Eukaryotic Community Components
3.3.1. Active Bacterial Community
3.3.2. Active Eukaryotic Community
3.4. Correlation Analysis between Environmental Factors and Active Microbes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, X.H. Applications and perspectives of sludge treatment and disposal in China. Science 2021, 72, 30–34. [Google Scholar]
- Lin, L.; Li, R.H.; Li, X.Y. Recovery of organic resources from sewage sludge of Al-enhanced primary sedimentation by alkali pretreatment and acidogenic fermentation. J. Clean. Prod. 2018, 172, 3334–3341. [Google Scholar] [CrossRef]
- Zaharioiu, A.; Bucura, F.; Ionete, E.I.; Ionete, R.E.; Ebrasu, D.; Sandru, C.; Marin, F.; Oancea, S.; Niculescu, V.; Miricioiu, M.G.; et al. Thermochemical Decomposition of Sewage Sludge–An Eco-Friendly Solution for a Sustainable Energy Future by Using Wastes. Rev. Chim. 2020, 71, 171–181. [Google Scholar] [CrossRef]
- Fu, X.Y.; Cui, G.Y.; Huang, K.; Chen, X.M.; Li, F.S.; Zhang, X.Y.; Li, F. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community. Environ. Sci. Pollut. Res. 2016, 23, 4522–4530. [Google Scholar] [CrossRef]
- Bhat, S.A.; Singh, S.; Singh, J.; Kumar, S.; Vig, A.P. Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture. Bioresour. Technol. 2018, 252, 172–179. [Google Scholar] [CrossRef]
- Huang, K.; Xia, H.; Li, F.; Bhat, S.A. Recycling of Municipal Sludge by Vermicomposting. In Earthworm Assisted Remediation of Effluents and Wastes; Springer: Singapore, 2020; pp. 55–67. [Google Scholar]
- Malafaia, G.; Costa Estrela, D.; Guimarães, A.T.B.; Araújo, F.G.; Leandro, W.M.; Lima Rodrigues, A.S. Vermicomposting of different types of tanning sludge (liming and primary) mixed with cattle dung. Ecol. Eng. 2015, 85, 301–306. [Google Scholar] [CrossRef]
- Kızılkaya, R.; Türkay, F.Ş.H. Vermicomposting of Anaerobically Digested Sewage Sludge with Hazelnut Husk and Cow Manure by Earthworm Eisenia foetida. Compost Sci. Util. 2014, 22, 68–82. [Google Scholar] [CrossRef]
- Elissen, H.J.H.; Hendrickx, T.L.J.; Temmink, H.; Buisman, C.J.N. A new reactor concept for sludge reduction using aquatic worms. Water Res. 2006, 40, 3713–3718. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.Y.; Huang, K.; Cui, G.Y.; Chen, X.M.; Li, F.S.; Zhang, X.Y.; Li, F. Dynamics of bacterial and eukaryotic community associated with stability during vermicomposting of pelletized dewatered sludge. Int. Biodeterior. Biodegr. 2015, 104, 452–459. [Google Scholar] [CrossRef]
- Hu, X.R.; Zhang, T.; Tian, G.P.; Zhang, L.M.; Bian, B. Pilot-scale vermicomposting of sewage sludge mixed with mature vermicompost using earthworm reactor of frame composite structure. Sci. Total Environ. 2021, 767, 144217. [Google Scholar] [CrossRef]
- Huang, K.; Xia, H.; Wu, Y.; Chen, J.Y.; Cui, G.Y.; Li, F.S.; Chen, Y.Z.; Wu, N. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting. Bioresour. Technol. 2018, 259, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.Y.; Xing, M.Y.; Yang, J. Exploring the effects of earthworms on bacterial profiles during vermicomposting process of sewage sludge and cattle dung with high-throughput sequencing. Environ. Sci. Pollut. Res. 2018, 25, 12528–12537. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Xia, H.; Zhang, Y.Y.; Li, J.H.; Cui, G.Y.; Li, F.S.; Bai, W.; Jiang, Y.F.; Wu, N. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. Bioresour. Technol. 2020, 297, 122451. [Google Scholar] [CrossRef]
- Domínguez, J.; Aira, M.; Gómez-Brandón, M. Vermicomposting: Earthworms enhance the work of microbes. In Microbes at Work: From Wastes to Resources; Insam, H., Franke-Whittle, I., Goberna, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 93–114. [Google Scholar]
- Aira, M.; Sampedro, L.; Monroy, F.; Domínguez, J. Detritivorous earthworms directly modify the structure, thus altering the functioning of a microdecomposer food web. Soil Biol. Biochem. 2008, 40, 2511–2516. [Google Scholar] [CrossRef]
- Aira, M.; Monroy, F.; Domínguez, J. Changes in microbial biomass and microbial activity of pig slurry after the transit through the gut of the earthworm eudrilus eugeniae (kinberg, 1867). Biol. Fertil. Soils 2006, 42, 371–376. [Google Scholar] [CrossRef]
- Huang, K.; Li, F.S.F.; Wei, Y.; Chen, X.M.; Fu, X.Y. Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida. Bioresour. Technol. 2013, 150, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, B.; Contreras-Ramos, S.M.; Sekaran, G. Changes in earthworm gut associated enzymes and microbial diversity on the treatment of fermented tannery waste using epigeic earthworm Eudrilus eugeniae. Ecol. Eng. 2015, 74, 394–401. [Google Scholar] [CrossRef]
- Chen, Y.X.; Chang, S.K.C.; Chen, J.; Zhang, Q.; Yu, H.Y. Characterization of microbial community succession during vermicomposting of medicinal herbal residues. Bioresour. Technol. 2018, 249, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Blomstrom, A.L.; Lalander, C.; Komakech, A.J.; Vinneras, B.; Boqvist, S. A metagenomic analysis displays the diverse microbial community of a vermicomposting system in Uganda. Infect. Ecol. Epidemiol. 2016, 6, 32453. [Google Scholar] [CrossRef] [PubMed]
- Nocker, A.; Camper, A.K. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl. Environ. Microbiol. 2006, 72, 1997–2004. [Google Scholar] [CrossRef] [Green Version]
- Nocker, A.; Sossa-Fernandez, P.; Burr, M.D.; Camper, A.K. Use of Propidium Monoazide for Live/Dead Distinction in Microbial Ecology. Appl. Environ. Microbiol. 2007, 73, 5111–5117. [Google Scholar] [CrossRef] [Green Version]
- Van Frankenhuyzen, J.K.; Trevors, J.T.; Lee, H.; Flemming, C.A.; Habash, M.B. Molecular pathogen detection in biosolids with a focus on quantitative PCR using propidium monoazide for viable cell enumeration. J. Microbiol. Method 2011, 87, 263–272. [Google Scholar] [CrossRef]
- VSEARCH Binaries. Available online: https://github.com/torognes/vsearch/ (accessed on 10 August 2021).
- Silva132 Database. Available online: http://www.arb-silva.de/ (accessed on 10 August 2021).
- Wu, Z.; Yin, B.; Song, X.; Qiu, J.; Cao, L.; Zhao, Q. Effects of salinity on earthworms and the product during vermicomposting of kitchen wastes. Int. J. Environ. Res. Public Health 2019, 16, 4737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.; Wu, Y.; Chen, X.M.; Huang, K.; Chen, J.Y. Effects of antibiotic residuals in dewatered sludge on the behavior of ammonia oxidizers during vermicomposting maturation process. Chemosphere 2019, 218, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Zhang, D.; Chen, Q.; Cui, Y. Effects of earthworms on nitrogen transformation and the correspond genes (amoA and nirS) in vermicomposting of sewage sludge and rice straw. Bioresour. Technol. 2019, 287, 121428. [Google Scholar] [CrossRef] [PubMed]
- Hartenstein, R.; Hartenstein, F. Physicochemical changes effected in activated sludge by the earthworm Eisenia foetidal. J. Environ. Qual. 1981, 10, 377–382. [Google Scholar] [CrossRef]
- Zhao, C.H.; Wang, Y.; Wang, Y.; Wu, F.J.; Zhang, J.G.; Cui, R.Y.; Wang, L.G.; Mu, H. Insights into the role of earthworms on the optimization of microbial community structure during vermicomposting of sewage sludge by PLFA analysis. Waste Manag. 2018, 79, 700–708. [Google Scholar] [CrossRef]
- Drake, H.L.; Horn, M.A. As the worm turns: The earthworm gut as a transient habitat for soil microbial biomes. Annu. Rev. Microbiol. 2007, 61, 169–189. [Google Scholar] [CrossRef] [PubMed]
- Aira, M.; Olcina, J.; Pérez-Losada, M.; Domínguez, J. Characterization of the bacterial communities of casts from Eisenia andrei fed with different substrates. Appl. Soil Ecol. 2016, 98, 103–111. [Google Scholar] [CrossRef]
- Bonkowski, M.; Schaefer, M. Interactions between earthworms and soil protozoa: A trophic component in the soil food web. Soil Biol. Biochem. 1997, 29, 499–502. [Google Scholar] [CrossRef]
- Monroy, F.; Aira, M.; Domínguez, J. Changes in density of nematodes, protozoa and total coliforms after transit through the gut of four epigeic earthworms (oligochaeta). Appl. Soil Ecol. 2008, 39, 127–132. [Google Scholar] [CrossRef]
- Xia, Y.; Wen, X.H.; Zhang, B.; Yang, Y.F. Diversity and assembly patterns of activated sludge microbial communities: A review. Biotechnol. Adv. 2018, 36, 1038. [Google Scholar] [CrossRef]
- Wang, Y.; Han, W.; Wang, X.Y.; Chen, H.M.; Zhu, F.; Wang, X.P.; Lei, C.L. Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia Fetida. Bioresour. Technol. 2017, 245, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, J.; Aira, M.; Kolbe, A.R.; Gómez-Brandón, M.; Pérez-Losada, M. Changes in the composition and function of bacterial communities during vermicomposting may explain beneficial properties of vermicompost. Sci. Rep. 2019, 9, 9657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borker, S.S.; Thakur, A.; Kumar, S.; Kumari, S.; Kumar, R.; Kumar, S. Comparative genomics and physiological investigation supported safety, cold adaptation, efficient hydrolytic and plant growth-promoting potential of psychrotrophic Glutamicibacter arilaitensis LJH19, isolated from night-soil compost. BMC Genom. 2021, 22, 307. [Google Scholar]
- Hyun, D.W.; Sung, H.; Kim, P.S.; Yun, J.H.; Bae, J.W. Leucobacter coleopterorum sp. nov., Leucobacter insecticola sp. nov., and Leucobacter viscericola sp. nov., isolated from the intestine of the diving beetles, Cybister brevis and Cybister lewisianus, and emended description of the genus Leucobacter. J. Microbiol. 2021, 59, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, K.; Kubota, K.; Harada, H. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18s rRNA gene analysis. Microbes. Environ. 2014, 29, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Sapkota, R.; Santos, S.; Farias, P.; Krogh, P.H.; Winding, A. Insights into the earthworm gut multi-kingdom microbial communities. Sci. Total Environ. 2020, 727, 138301. [Google Scholar] [CrossRef]
- Monroy, F.; Aira, M.; Domínguez, J. Epigeic earthworms increase soil arthropod populations during first steps of decomposition of organic matter. Pedobiologia 2011, 54, 93–99. [Google Scholar] [CrossRef]
- Chouari, R.; Leonard, M.; Bouali, M.; Guermazi, S.; Rahli, N.; Zrafi, I.; Morin, L.; Sghir, A. Eukaryotic molecular diversity at different steps of the wastewater treatment plant process reveals more phylogenetic novel lineages. World J. Microbiol. Biotechnol. 2017, 33, 1–13. [Google Scholar] [CrossRef]
- Gleason, F.H.; Carney, L.T.; Lilje, O.; Glockling, S.L. Ecological potentials of species of rozella (Cryptomycota). Fungal Ecol. 2012, 5, 651–656. [Google Scholar] [CrossRef]
- Zhang, X.W.; Song, Z.J.; Tang, Q.D.; Wu, M.H.; Zhou, H.; Liu, L.F.; Qu, Y.U. Performance and microbial community analysis of bioaugmented activated sludge for nitrogen-containing organic pollutants removal. J. Environ. Sci. 2021, 101, 373–381. [Google Scholar] [CrossRef]
- Cai, H.B.; Feng, W.W.; Dong, Y.H.; Ma, Z.L.; Cao, H.J.; Sun, J.D.; Zhang, B.G. Microbial community succession in industrial composting with livestock manure and peach branches and relations with environmental factors. Environ. Sci. 2020, 41, 997–1004. [Google Scholar]
- Xia, H.; Huang, K. Effects of TiO2 and ZnO nanoparticles on vermicomposting of dewatered sludge: Studies based on the humification and microbial profiles of vermicompost. Environ. Sci. Pollut. Res. 2021, 28, 38718–38729. [Google Scholar]
Parameters | Initial Sludge | Control | Vermicompost |
---|---|---|---|
pH | 6.83 ± 0.01 a | 6.65 ± 0.04 b | 6.76 ± 0.01 c |
Electrical conductivity (μS/cm) | 200.00 ± 0.20 a | 426.33 ± 0.47 b | 778.00 ± 1.41 c |
Organic matter (%) | 37.64 ± 0.38 a | 26.67 ± 0.21 b | 25.27% ± 0.09 c |
Dissolved organic carbon (mg/g) | 16.09 ± 0.06 a | 3.94 ± 0.06 b | 3.53 ± 0.02 c |
Ammonium (mg/g) | 2.25 ± 0.05 | 1.95 ± 0.09 a | 2.49 ± 0.03 b |
Nitrate (mg/g) | 0.33 ± 0.01 a | 0.90 ± 0.02 b | 1.72 ± 0.04 c |
Parameters | Bacteria | Eukaryotes |
---|---|---|
pH | 0.994 ** | 0.928 |
Electrical conductivity | 0.976 * | 0.98 * |
Nitrate | 0.984 * | 0.976 * |
Ammonium | 0.969 * | 0.876 |
Total dissolved nitrogen | 0.694 | 0.924 |
Dissolved organic carbon | 0.988 * | 0.999 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Huang, K.; Peng, L.; Li, J.; Liu, A. Fate of Functional Bacterial and Eukaryotic Community Regulated by Earthworms during Vermicomposting of Dewatered Sludge, Studies Based on the 16S rDNA and 18S rDNA Sequencing of Active Cells. Int. J. Environ. Res. Public Health 2021, 18, 9713. https://doi.org/10.3390/ijerph18189713
Yang J, Huang K, Peng L, Li J, Liu A. Fate of Functional Bacterial and Eukaryotic Community Regulated by Earthworms during Vermicomposting of Dewatered Sludge, Studies Based on the 16S rDNA and 18S rDNA Sequencing of Active Cells. International Journal of Environmental Research and Public Health. 2021; 18(18):9713. https://doi.org/10.3390/ijerph18189713
Chicago/Turabian StyleYang, Jun, Kui Huang, Lansheng Peng, Jianhui Li, and Aozhan Liu. 2021. "Fate of Functional Bacterial and Eukaryotic Community Regulated by Earthworms during Vermicomposting of Dewatered Sludge, Studies Based on the 16S rDNA and 18S rDNA Sequencing of Active Cells" International Journal of Environmental Research and Public Health 18, no. 18: 9713. https://doi.org/10.3390/ijerph18189713