Effects of Combined Resistance and Aerobic Training on Arterial Stiffness in Postmenopausal Women: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Quality Assessment
2.4. Data Extraction
2.5. Studies Selected
2.6. Study Quality Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chung, T.H.; Shim, J.Y.; Kwon, Y.J.; Lee, Y.J. High triglyceride to high-density lipoprotein cholesterol ratio and arterial stiffness in postmenopausal Korean women. J. Clin. Hypertens. 2019, 21, 399–404. [Google Scholar] [CrossRef]
- Laurent, S.; Cockcroft, J.; Bortel, L.V.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [Green Version]
- Munakata, M. Brachial-Ankle Pulse Wave Velocity in the Measurement of Arterial Stiffness: Recent Evidence and Clinical Applications. Curr. Hypertens. Rev. 2014, 10, 49–57. [Google Scholar] [CrossRef]
- Jeon, K.; Lee, S.; Hwang, M.H. Effect of combined circuit exercise on arterial stiffness in hypertensive postmenopausal women: A local public health center-based pilot study. Menopause 2018, 25, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.F.; Hwang, S.J.; Vasan, R.S.; Larson, G.M.; Pencina, M.J.; Hamburg, N.M.; Vita, J.A.; Levy, D.; Benjamin, E.J. Arterial stiffness and cardiovascular events: The Framingham Heart Study. Circulation 2010, 121, 505–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebrun, C.E.I.; van der Schouwa, Y.T.; Baka, A.A.A.; de Jongb, F.H.; Polsb, H.A.P.; Grobbeea, D.E.; Lambertsb, S.W.J.; Botsa, M.L. Arterial stiffness in postmenopausal women: Determinants of pulse wave velocity. J. Hypertens. 2002, 20, 2165–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, S.K.; Cho, S.H.; Kim, H.Y.; Choi, Y.S.; Park, K.H.; Cho, D.J.; Lee, B.S. Bone mineral density, arterial stiffness, and coronary atherosclerosis in healthy postmenopausal women. Menopause 2009, 16, 937–943. [Google Scholar] [CrossRef]
- Sumino, H.; Ichikawa, S.; Kasama, S.; Takahashi, T.; Kumakura, H.; Takayama, Y.; Kanda, T.; Sakamaki, T.; Kurabayashi, M. Elevated arterial stiffness in postmenopausal women with osteoporosis. Maturitas 2006, 55, 212–218. [Google Scholar] [CrossRef]
- Tanaka, K.; Kanazawa, I.; Sugimoto, T. Reduced muscle mass and accumulation of visceral fat are independently associated with increased arterial stiffness in postmenopausal women with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2016, 122, 141–147. [Google Scholar] [CrossRef]
- Strasser, B.; Arvandi, M.; Pasha, E.P.; Haley, A.P.; Stanforth, P.; Tanaka, H. Abdominal obesity is associated with arterial stiffness in middle-aged adults. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 495–502. [Google Scholar] [CrossRef]
- Albin, E.E.; Brellenthin, A.G.; Lang, J.A.; Meyer, J.D.; Lee, D.C. Cardiorespiratory Fitness and Muscular Strength on Arterial Stiffness in Older Adults. Med. Sci. Sports Exerc. 2020, 52, 1737–1744. [Google Scholar] [CrossRef]
- Noortman, L.C.M.; Haapala, E.A.; Takken, T. Arterial Stiffness and Its Relationship to Cardiorespiratory Fitness in Children and Young Adults with a Fontan Circulation. Pediatr. Cardiol. 2019, 40, 784–791. [Google Scholar] [CrossRef] [Green Version]
- De Guevaraa, N.L.M.; Galvánb, C.D.T.; Sánchezc, A.C.; Izquierdo, D.G.; García, F.H.; Lapotkaa, M.; Cotof, P.L.; Marquetaf, P.M.; Amat, A.M.; Hernández, O.O.; et al. Benefits of physical exercise in postmenopausal women. Maturitas 2016, 93, 83–88. [Google Scholar]
- Stamatelopoulos, K.; Tsoltos, N.; Armeni, E.; Paschou, S.A.; Augoulea, A.; Kaparos, G.; Rizos, D.; Karagouni, I.; Delialis, D.; Ioannou, S.; et al. Physical activity is associated with lower arterial stiffness in normal-weight postmenopausal women. J. Clin. Hypertens. 2020, 22, 1682–1690. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, C.; Lithander, F.E.; Raftery, T.; Gormley, J.; Mahmud, A.; Hussey, J. Inverse Relationship Between Physical Activity and Arterial Stiffness in Adults With Hypertension. J. Phys. Act. Health 2014, 11, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Horta, B.L.; Schaan, B.D.; Bielemann, R.M.; Vianna, C.A.; Gigante, D.P.; Barros, F.C.; Ekelund, U.; Hallal, P.C. Objectively measured physical activity and sedentary-time are associated with arterial stiffness in Brazilian young adults. Atherosclerosis 2015, 243, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugawara, J.; Otsuki, T.; Tanabe, T.; Hayashi, K.; Maeda, S.; Matsuda, M. Physical Activity Duration, Intensity, and Arterial Stiffening in Postmenopausal Women. Am. J. Hypertens. 2006, 19, 1032–1036. [Google Scholar] [CrossRef] [Green Version]
- Cortez-Cooper, M.Y.; DeVan, A.E.; Anton, M.M.; Farrar, R.P.; Beckwith, K.A.; Todd, J.S.; Tanaka, H. Effects of High Intensity Resistance Training on Arterial Stiffness and Wave Reflection in Women. Am. J. Hypertens. 2005, 18, 930–934. [Google Scholar] [CrossRef] [Green Version]
- Casey, D.P.; Pierce, G.L.; Howe, K.S.; Mering, M.C.; Braith, R.W. Effect of resistance training on arterial wave reflection and brachial artery reactivity in normotensive postmenopausal women. Eur. J. Appl. Physiol. 2007, 100, 403–408. [Google Scholar] [CrossRef]
- Kang, S.J.; Kim, E.; Ko, K.J. Effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness of female patients with metabolic syndrome. J. Phys. Ther. Sci. 2016, 28, 1764–1768. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, T.; Miyaki, A.; Akazawa, N.; Choi, Y.; Ra, S.G.; Tanahashi, K.; Kumagai, H.; Oikawa, S.; Maeda, S. Aerobic exercise training increases plasma Klotho levels and reduces arterial stiffness in postmenopausal women. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, 348–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGavock, J.; Mandic, S.; Lewanczuk, R.; Koller, M.; Muhll, I.V.; Quinney, A.; Taylor, D.; Welsh, R.; Haykowsky, M. Cardiovascular adaptations to exercise training in postmenopausal women with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2004, 3, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, H.; Iemitsu, M.; Gando, Y.; Ishijima, T.; Asaka, M.; Aoyama, T.; Ando, T.; Tokizawa, K.; Miyachi, M.; Sakamoto, S.; et al. Habitual rowing exercise is associated with high physical fitness without affecting arterial stiffness in older men. J. Sports Sci. 2012, 30, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [Green Version]
- De Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Pekas, E.J.; Shin, J.; Son, W.M.; Headid, R.J.; Park, S.J. Habitual Combined Exercise Protects agains Age–Associated Decline in Vascular Function and Lipid Profiles in Elderly Postmenopausal Women. Int. J. Environ. Res. Public Health 2020, 17, 3893. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Figueroa, A.; Son, W.M.; Chernykh, O.; Park, S.Y. The effects of stair climbing on arterial stiffness, blood pressure, and leg strength in postmenopausal women with stage 2 hypertension. Menopause 2018, 25, 731–777. [Google Scholar] [CrossRef]
- Ho Lee, S.; Scott, S.D.; Pekas, E.J.; Lee, S.; Hoon Lee, S.; Young Park, S. Taekwondo training reduces blood catecholamine levels and arterial stiffness in postmenopausal women with stage–2 hypertension: Randomized clinical trial. Clin. Exp. Hypertens. 2018, 41, 675–681. [Google Scholar] [CrossRef]
- Son, W.M.; Sung, K.D.; Cho, J.M.; Park, S.Y. Combined exercise reduces arterial stiffness, blood pressure, and blood markers for cardiovascular risk in postmenopausal women with hypertension. Menopause 2017, 24, 262–268. [Google Scholar] [CrossRef]
- Ohta, M.; Hirao, N.; Mori, Y.; Takigami, C.; Eguchi, M.; Tanaka, H.; Ikeda, M.; Yamato, H. Effects of bench step exercise on arterial stiffness in post-menopausal women: Contribution of IGF-1 bioactivity and nitric oxide production. Growth. Horm. IGF Res. 2012, 22, 36–41. [Google Scholar] [CrossRef]
- Figueroa, A.; Park, S.Y.; Seo, D.Y.; Sanchez-Gonzalez, M.A.; Baek, Y.H. Combined resistance and endurance exercise training improves arterial stiffness, blood pressure, and muscle strength in postmenopausal women. Menopause 2011, 18, 980–984. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, C.; Terentes-Printzios, D.; Ioakeimidis, N.; Stefanadis, C. Prediction of Cardiovascular Events and All-Cause Mortality With Brachial-Ankle Elasticity Index A Systematic Review and Meta-Analysis. Hypertension 2012, 60, 556–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.Y.; Choi, D.H.; Choi, S.W.; Kim, B.B.; Ki, Y.J.; Chung, J.W.; Koh, Y.Y.; Chang, K.S.; Hong, S.P. Predictive Value of Brachial-Ankle Pulse Wave Velocity for Cardiovascular Events. Am. J. Med. Sci. 2013, 346, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Najjar, S.S.; Scuteri, A.; Shetty, V.; Wright, J.G.; Muller, D.C.; Fleg, J.L.; Spurgeon, H.P.; Ferrucci, L.; Lakatta, E.G. Pulse Wave Velocity Is an Independent Predictor of the Longitudinal Increase in Systolic Blood Pressure and of Incident Hypertension in the Baltimore Longitudinal Study of Aging. J. Am. Coll. Cardiol. 2008, 51, 1377–1383. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.L.; Kim, S.H. Pulse Wave Velocity in Atherosclerosis. Front. Cardiovasc. Med. 2019, 6, 41. [Google Scholar] [CrossRef]
- Van Popele, N.M.; Mattace-Rasoa, F.U.S.; Vliegentharta, R.; Grobbeed, D.E.; Asmare, R.; Deirdre van der Kuipa, A.M.; Hofmana, A.; de Feijterc, P.J.; Oudkerkf, M.; Wittemana, J.C.M. Aortic stiffness is associated with atherosclerosis of the coronary arteries in older adults: The Rotterdam Study. J. Hypertens. 2006, 24, 2371–2376. [Google Scholar] [CrossRef] [Green Version]
- Otsuki, T.; Namatame, H.; Yoshikawa, T.; Zempo-Miyaki, A. Combined aerobic and low-intensity resistance exercise training increases basal nitric oxide production and decreases arterial stiffness in healthy older adults. J. Clin. Biochem. Nutr. 2020, 66, 62–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiotsu, Y.; Watanabeb, Y.; Tujiia, S.; Yanagita, M. Effect of exercise order of combined aerobic and resistance training on arterial stiffness in older men. Exp. Gerontol. 2018, 111, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Jung, W.S.; Hong, K.; Kim, Y.Y.; Kim, S.W.; Park, H.Y. Effects of Moderate Combined Resistance- and Aerobic-Exercise for 12 Weeks on Body Composition, Cardiometabolic Risk Factors, Blood Pressure, Arterial Stiffness, and Physical Functions, among Obese Older Men: A Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 7233. [Google Scholar] [CrossRef]
- Son, W.M.; Sung, K.D.; Bharath, L.P.; Choi, K.J.; Park, S.Y. Combined exercise training reduces blood pressure, arterial stiffness, and insulin resistance in obese prehypertensive adolescent girls. Clin. Exp. Hypertens. 2017, 39, 546–552. [Google Scholar] [CrossRef]
- Jung, H.C.; Lee, S.; Kang, H.J.; Seo, M.W.; Kim, H.B.; Song, J.K. Taekwondo training improves CVD risk factors in obese male adolescents. Arch. Budo 2016, 12, 85–92. [Google Scholar]
- Cook, J.N.; DeVan, A.E.; Schleifer, J.L.; Anton, M.M.; Cortez-Cooper, M.Y.; Tanaka, H. Arterial compliance of rowers: Implications for combined aerobic and strength training on arterial elasticity. Am. J. Physio.l Heart Circ. Physiol. 2006, 290, 1596–1600. [Google Scholar] [CrossRef]
- Wong, A.; Kwak, Y.S.; Scott, S.; Pekas, E.J.; Son, W.M.; Kim, J.S.; Park, S.Y. The effects of swimming training on arterial function, muscular strength, and cardiorespiratory capacity in postmenopausal women with stage 2 hypertension. Menopause 2019, 26, 653–658. [Google Scholar] [CrossRef]
- Ho, T.Y.; Redmayne, G.P.; Tran, A.; Liu, D.; Butlin, M.; Avolio, A.; Boutcher, S.H.; Boutcher, Y.N. The effect of interval sprinting exercise on vascular function and aerobic fitness of postmenopausal women. Scand. J. Med. Sci. Sports 2020, 30, 312–321. [Google Scholar] [CrossRef]
- Figueroa, A.; Arjmandi, B.H.; Wong, A.; Sanchez-Gonzalez, M.A.; Simonavice, E.; Daggy, B. Effects of hypocaloric diet, low-intensity resistance exercise with slow movement, or both on aortic hemodynamics and muscle mass in obese postmenopausal women. Menopause 2013, 20, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, A.; Vicil, F.; Sanchez-Gonzalez, M.A.; Wong, A.; Ormsbee, M.J.; Hooshmand, S.; Daggy, B. Effects of Diet and/or Low-Intensity Resistance Exercise Training on Arterial Stiffness, Adiposity, and Lean Mass in Obese Postmenopausal Women. Am. J. Hypertens. 2013, 26, 416–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueroa, A.; Kalfon, R.; Wong, A. Whole-body vibration training decreases ankle systolic blood pressure and leg arterial stiffness in obese postmenopausal women with high blood pressure. Menopause 2014, 22, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, A.; Kalfon, R.; Madzima, T.A.; Wong, A. Whole-body vibration exercise training reduces arterial stiffness in postmenopausal women with prehypertension and hypertension. Menopause 2013, 21, 131–136. [Google Scholar] [CrossRef]
- Tanahashi, K.; Akazawa, N.; Miyaki, A.; Choi, Y.; Ra, S.G.; Matsubara, T.; Kumagai, H.; Oikawa, S.; Maeda, S. Aerobic Exercise Training Decreases Plasma Asymmetric Dimethylarginine Concentrations With Increase in Arterial Compliance in Postmenopausal Women. Am. J. Hypertens. 2014, 27, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Munakata, M.; Kawano, Y.; Ohishi, M.; Shoji, T.; Sugawara, J.; Tomiyama, H.; Yamashina, A.; Yasuda, H.; Sawayama, T.; et al. Comparasion between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J. Hypertens. 2009, 27, 2022–2027. [Google Scholar] [CrossRef] [Green Version]
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Score |
---|---|---|---|---|---|---|---|---|---|---|---|
Pekas et al. [26] | − | + | − | x | x | x | + | + | + | + | 5 |
Wong et al. [27] | + | + | + | x | x | x | − | − | + | + | 5 |
Ho Lee et al. [28] | + | + | + | x | x | x | + | + | + | + | 7 |
Jeon et al. [4] | − | − | + | x | x | x | − | − | + | + | 3 |
Son et al. [29] | + | + | + | x | x | x | + | + | + | + | 7 |
Ohta et al. [30] | + | − | + | x | x | x | − | − | + | + | 4 |
Figueroa et al. [31] | + | − | + | x | x | x | + | + | + | + | 6 |
Study | Participants | Age (Years) | Training Type | Outcomes | Training Effects on PWV |
---|---|---|---|---|---|
Pekas et al. [26] | Postmenopausal women with comorbidities and medication consumption, N = 101 | 77 ± 2 | Combined resistance and aerobic exercise | baPWV | Decreased by 0.7 m/s |
Wong et al. [27] | Postmenopausal women with stage 2 hypertension, N = 41 | 59 ± 1 | Stair climbing training program | baPWV | Decreased by 0.9 m/s |
Ho Lee et al. [28] | Postmenopausal women with stage 2 hypertension, N = 20 | 70 ± 4 | Taekwondo training | baPWV | Decreased by 0.6 m/s |
Jeon et al. [4] | Hypertensive postmenopausal women, N = 16 | 59 ± 1 | Combined circuit resistance and aerobic training | baPWV | Decreased by 0.7 m/s |
Son et al. [29] | Postmenopausal women with stage 1 hypertension, N = 20 | 75 ± 2 | Combined resistance and aerobic training | baPWV | Decreased by 1.2 m/s |
Ohta et al. [30] | Healthy postmenopausal women, N = 26 | 72 ± 1 | Bench step exercise | baPWV | Decreased by 2.1 m/s |
Figueroa et al. [31] | Healthy postmenopausal women, N = 24 | 54 ± 1 | Combined circuit resistance and endurance exercise | baPWV | Decreased by 0.8 m/s |
Study | Training Description | Weeks | Days per Week | Length of One Exercise Episode | Intensity |
---|---|---|---|---|---|
Pekas et al. [26] | Combined resistance and aerobic exercise; resistance (push up, seated row, leg press calf rises and others); aerobic (walking, jogging, cycling) | 52 | 3 | 60 min | 3 sets, 10–15 reps, RPE 12–14 for resistance training; 50–60% HRR, RPE 12–14 for aerobic exercise |
Wong et al. [27] | Stair climbing program: climbing 192 steps 2 to 5 times/day (increased climbing every three weeks) | 12 | 4 | - | 11–13 RPE on the 6–20 Borg scale |
Ho Lee et al. [28] | Taekwondo training program: kicks, punches, steps, step sparring, taekwondo forms, walking, jogging, running | 12 | 3 | 60 min | 30–40% HRR for the first four weeks, 40–50% HRR for the second four weeks, 50–60% for the third four weeks |
Jeon et al. [4] | Combined circuit resistance and aerobic training: 4 sets, 4 exercises: kettlebell exercise, squats and push- ups, core exercise, and step-box aerobic exercise | 12 | 3 | 60 min | Mass of the kettlebell was 2 kg, aerobic exercise was performed at 65–80% of age-predicted maximal HR |
Son et al. [29] | Combined resistance and aerobic training: various resistance band exercise (upper and lower), walking | 12 | 3 | 60 min | Gradually increased from 40–50% HRR in 1–4 weeks to 60–70% HRR in 9–12 weeks |
Ohta et al. [30] | Bench step exercise (home based): the height of the step bench was between 15 cm and 20 cm, and the step rhythm was initially set at 40 steps/min | 12 | 3 times daily | 10–20 min daily, 140 min/week | Level of LA and RPE: 6–20 Borg scale, end of exercise-LA > 4 mmol/L and/or RPE > 17 |
Figueroa et al. [31] | Combined circuit resistance and endurance exercise: one set of 12 repetitions for nine exercises on weight machines, and treadmill walking | 12 | 3 | 40 min | 60% of 1RM for resistance, and 60% of predicted HR maximum for aerobic component |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manojlović, M.; Protić-Gava, B.; Maksimović, N.; Šćepanović, T.; Poček, S.; Roklicer, R.; Drid, P. Effects of Combined Resistance and Aerobic Training on Arterial Stiffness in Postmenopausal Women: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 9450. https://doi.org/10.3390/ijerph18189450
Manojlović M, Protić-Gava B, Maksimović N, Šćepanović T, Poček S, Roklicer R, Drid P. Effects of Combined Resistance and Aerobic Training on Arterial Stiffness in Postmenopausal Women: A Systematic Review. International Journal of Environmental Research and Public Health. 2021; 18(18):9450. https://doi.org/10.3390/ijerph18189450
Chicago/Turabian StyleManojlović, Marko, Branka Protić-Gava, Nebojša Maksimović, Tijana Šćepanović, Sunčica Poček, Roberto Roklicer, and Patrik Drid. 2021. "Effects of Combined Resistance and Aerobic Training on Arterial Stiffness in Postmenopausal Women: A Systematic Review" International Journal of Environmental Research and Public Health 18, no. 18: 9450. https://doi.org/10.3390/ijerph18189450