Time-Series Assessment of Camp-Type Artisanal and Small-Scale Gold Mining Sectors with Large Influxes of Miners Using LANDSAT Imagery
Abstract
1. Introduction
2. Materials and Methods
2.1. Overall Methodological Workflow
2.2. Study Area
2.3. Satellite Imagery
2.4. Extraction and Calculation of Built-Up Areas
2.5. Investigation of ASGM Camps
3. Results
3.1. Expansion of Built-Up Areas in the Mining Camps
3.2. Investigation of ASGM Camps
3.3. Relationship between the Built-Up Areas and the Gold Price
4. Discussion and Limitations
4.1. Discussion
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme. Estimating Mercury Use and Documenting Practices in Artisanal and Small-Scale Gold Mining (ASGM); UN Environment: Geneva, Switzerland, 2017. [Google Scholar]
- Lobo, F.D.L.; Costa, M.; Novo, E.M.L.D.M.; Telmer, K. Distribution of Artisanal and Small-Scale Gold Mining in the Tapajós River Basin (Brazilian Amazon) over the Past 40 Years and Relationship with Water Siltation. Remote Sens. 2016, 8, 579. [Google Scholar] [CrossRef]
- Wilson, M.L.; Renne, E.; Roncoli, C.; Agyei-Baffour, P.; Tenkorang, E.Y. Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana—Part 3: Social Sciences and Economics. Int. J. Environ. Res. Public Health 2015, 12, 8133–8156. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Artisanal and Small-Scale Gold Mining and Health; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- United Nations Environment Programmet. Technical Background Report to the Global Mercury Assessment 2018; United Nations Environment Programme: Tromsø, Norway, 2018. [Google Scholar]
- Isaza, A.S.; Villegas-Palacio, C.; Arango, S. The public good dilemma of a non-renewable common resource: A look at the facts of artisanal gold mining. Resour. Policy 2013, 38, 224–232. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Global Mercury Assessment; United Nations Environment Programme: Geneva, Switzerland, 2018. [Google Scholar]
- Macháček, J. Typology of Environmental Impacts of Artisanal and Small-Scale Mining in African Great Lakes Region. Sustainability 2019, 11, 3027. [Google Scholar] [CrossRef]
- World Bank Group. Poverty Headcount Ratio at National Poverty Lines (% of Population)-Indonesia. Available online: https://data.worldbank.org/indicator/SI.POV.NAHC?locations=ID (accessed on 6 June 2021).
- BALIFOKUS. Mercury Contaminated Sites in ASGM Sites of Indonesia; BALIFOKUS: Bali, Indonesia, 2019. [Google Scholar]
- Ismawati, J.; Petrlik, Y.; DiGangi, J. Mercury Hotspots in Indonesia ASGM Sites: Poboya and Sekotong in Indonesia. Available online: https://ipen.org/hgmonitoring/pdfs/indonesia-report-en.pdf (accessed on 6 June 2021).
- United Nations Environment Programmet. Developing National ASGM Formalization Strategies within National Action Plans; United Nations Environment Programme: Geneva, Switzerland, 2018. [Google Scholar]
- United Nations Environment Programmet. Developing a National Action Plan to Reduce and, Where Feasible, Eliminate Mercury Use in Artisanal and Small-Scale Gold Mining; United Nations Environment Programme: Geneva, Switzerland, 2017. [Google Scholar]
- Hilson, G.; Zolnikov, T.R.; Ortiz, D.R.; Kumah, C. Formalizing artisanal gold mining under the Minamata convention: Previewing the challenge in Sub-Saharan Africa. Environ. Sci. Policy 2018, 85, 123–131. [Google Scholar] [CrossRef]
- Kinyondo, A.; Huggins, C. Promoting environmental sustainability in the artisanal and small-scale mining sector in Tanzania. WIDER Work. Pap. 2021, 119, 1–25. [Google Scholar]
- International Institute for Sustainable Development. Global Trends in Artisanal and Small-Scale Mining (Asm): A Review of Key Numbers and Issues; IISD: Winnipeg, Canada, 2018. [Google Scholar]
- Spiegel, S.J.; Agrawal, S.; Mikha, D.; Vitamerry, K.; Le Billon, P.; Veiga, M.; Konolius, K.; Paul, B. Phasing Out Mercury? Ecological Economics and Indonesia’s Small-Scale Gold Mining Sector. Ecol. Econ. 2018, 144, 1–11. [Google Scholar] [CrossRef]
- Ismawati, Y. ASGM: The Production of Social and Environmental Suffering Gold, mercury and the next Minamata tragedy. Bali Fokus. Denpasar. 2014, 2009, 1–14. [Google Scholar]
- World Gold Council. Gold Prices. Available online: https://www.gold.org/goldhub (accessed on 6 June 2021).
- Asner, G.P.; Llactayo, W.; Tupayachi, R.; Luna, E.R. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc. Natl. Acad. Sci. USA 2013, 110, 18454–18459. [Google Scholar] [CrossRef]
- Swenson, J.J.; Carter, C.E.; Domec, J.-C.; Delgado, C.I. Gold Mining in the Peruvian Amazon: Global Prices, Deforestation, and Mercury Imports. PLoS ONE 2011, 6, e18875. [Google Scholar] [CrossRef]
- Macháček, J. Alluvial Artisanal and Small-Scale Mining in a River Stream—Rutsiro Case Study (Rwanda). Forests 2020, 11, 762. [Google Scholar] [CrossRef]
- Kahhat, R.; Parodi, E.; Larrea-Gallegos, G.; Mesta, C.; Vázquez-Rowe, I. Environmental impacts of the life cycle of alluvial gold mining in the Peruvian Amazon rainforest. Sci. Total Environ. 2019, 662, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, K.; Nagafuchi, O.; Kawakami, T.; Inoue, T.; Yokota, K.; Serikawa, Y.; Cyio, B.; Elvince, R. Human health risk assessment of mercury vapor around artisanal small-scale gold mining area, Palu city, Central Sulawesi, Indonesia. Ecotoxicol. Environ. Saf. 2016, 124, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Bose-O’Reilly, S.; Drasch, G.; Beinhoff, C.; Rodrigues-Filho, S.; Roider, G.; Lettmeier, B.; Maydl, A.; Maydl, S.; Siebert, U. Health assessment of artisanal gold miners in Indonesia. Sci. Total Environ. 2010, 408, 713–725. [Google Scholar] [CrossRef]
- Wyatt, L.; Ortiz, E.J.; Feingold, B.; Berky, A.; Diringer, S.; Morales, A.M.; Jurado, E.R.; Hsu-Kim, H.; Pan, W. Spatial, Temporal, and Dietary Variables Associated with Elevated Mercury Exposure in Peruvian Riverine Communities Upstream and Downstream of Artisanal and Small-Scale Gold Mining. Int. J. Environ. Res. Public Health 2017, 14, 1582. [Google Scholar] [CrossRef]
- Schmid, T.; Rico, C.; Rodríguez-Rastrero, M.; Sierra, M.J.; Díaz-Puente, F.J.; Pelayo, M.; Millán, R. Monitoring of the mercury mining site Almadén implementing remote sensing technologies. Environ. Res. 2013, 125, 92–102. [Google Scholar] [CrossRef]
- Espejo, J.C.; Messinger, M.; Román-Dañobeytia, F.; Ascorra, C.; Fernandez, L.E.; Silman, M. Deforestation and Forest Degradation Due to Gold Mining in the Peruvian Amazon: A 34-Year Perspective. Remote Sens. 2018, 10, 1903. [Google Scholar] [CrossRef]
- Emel, J.; Plisinski, J.; Rogan, J. Monitoring geomorphic and hydrologic change at mine sites using satellite imagery: The Geita Gold Mine in Tanzania. Appl. Geogr. 2014, 54, 243–249. [Google Scholar] [CrossRef]
- Puluhulawa, F.; Harun, A.A. Policy formalization of Artisanal and Small-Scale Gold Mining (ASGM) post-ratification of Minamata Convention for Sustainability (case study of ASGM Gorontalo). E3S Web Conf. 2019, 125, 02006. [Google Scholar] [CrossRef]
- Kimijiama, S.; Nagai, M. Study of urbanization corresponding to socio-economic activities in Savannaket, Laos using satellite remote sensing. Malaysisan J. Remote Sens. GIS 2014, 3, 71–75. [Google Scholar]
- Kimijima, S.; Sakakibara, M.; Amin, A.; Nagai, M.; Arifin, Y.I. Mechanism of the Rapid Shrinkage of Limboto Lake in Gorontalo, Indonesia. Sustainability 2020, 12, 9598. [Google Scholar] [CrossRef]
- Alam, A.; Bhat, M.S.; Maheen, M. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal 2020, 85, 1529–1543. [Google Scholar] [CrossRef]
- Pericak, A.A.; Thomas, C.J.; Kroodsma, D.A.; Wasson, M.F.; Ross, M.R.; Clinton, N.E.; Campagna, D.J.; Franklin, Y.; Bernhardt, E.S.; Amos, J.F. Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine. PLoS ONE 2018, 13, e0197758. [Google Scholar] [CrossRef]
- Gallwey, J.; Robiati, C.; Coggan, J.; Vogt, D.; Eyre, M. A Sentinel-2 based multispectral convolutional neural network for detecting artisanal small-scale mining in Ghana: Applying deep learning to shallow mining. Remote Sens. Environ. 2020, 248, 111970. [Google Scholar] [CrossRef]
- Owusu-Nimo, F.; Mantey, J.; Nyarko, K.; Appiah-Effah, E.; Aubynn, A. Spatial distribution patterns of illegal artisanal small scale gold mining (Galamsey) operations in Ghana: A focus on the Western Region. Heliyon 2018, 4, e00534. [Google Scholar] [CrossRef] [PubMed]
- Lampost.co. Tambang Liar di Register 20 Gunung Bunder Tak Pernah Berakhir. Available online: https://www.lampost.co/berita-tambang-liar-di-register-20-gunung-bunder-tak-pernah-berakhir.html (accessed on 10 July 2021).
- Hatu, R.A. Socio-economic Conditions in The Illegal Gold Miners Tulabolo Village, Gorontalo-in Indonesian. Asian J. Appl. Sci. 2016, 9, 97–105. [Google Scholar] [CrossRef][Green Version]
- PT Bumi Resources Minerals Tbk. Laporan Tahunan 2019 Annual Report; PT Bumi Resources Minerals Tbk: Jakarta, Indonesia, 2019. [Google Scholar]
- Van Bemmelen, R.W. The Geology of Indonesia. General Geology of Indonesia and Adjacent Archipelagoes; Government Printing Office: The Hague, The Netherlands, 1949; pp. 545–547, 561–562.
- Kesatuan Pengelotaan Hutan. Rencana Pengelolaan Hutan Jangka Panjang Kphp Unit Vii Bone Bo-Lango Tahun 2016–2025; Bone Bolango Regency: Suwawa, Indonesia, 2016. [Google Scholar]
- Kimijima, S.; Nagai, M. Human Mobility Analysis for Extracting Local Interactions under Rapid Socio-Economic Transformation in Dawei, Myanmar. Sustainability 2017, 9, 1598. [Google Scholar] [CrossRef]
- Kawamura, Y.; Jayamana, M.; Tsujiko, S. Relation between social and environmental conditions in colombo sri lanka and the urban index estimated by satellite remote sensing data. Int. Arch. Photogramm. Remote Sens. 1996, 31, 321–326. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Bhatti, S.S.; Tripathi, N.K. Built-up area extraction using Landsat 8 OLI imagery. GIScience Remote Sens. 2014, 51, 445–467. [Google Scholar] [CrossRef]
- As-Syakur, A.R.; Adnyana, I.W.S.; Arthana, I.W.; Nuarsa, I.W. Enhanced Built-Up and Bareness Index (EBBI) for Mapping Built-Up and Bare Land in an Urban Area. Remote Sens. 2012, 4, 2957–2970. [Google Scholar] [CrossRef]
- Waqar, M.M.; Mirza, J.F.; Mumtaz, R.; Hussain, E. Development of New Indices for Extraction of Built-Up Area & Bare Soil. Open Access Sci. Rep. 2012, 1, 1–4. [Google Scholar]
- Kaimaris, D.; Patias, P. Identification and Area Measurement of the Built-up Area with the Built-up Index (BUI). Int. J. Adv. Remote Sens. GIS 2016, 5, 1844–1858. [Google Scholar]
- Firozjaei, M.K.; Sedighi, A.; Kiavarz, M.; Qureshi, S.; Haase, D.; Alavipanah, S.K. Automated Built-Up Extraction Index: A New Technique for Mapping Surface Built-Up Areas Using LANDSAT 8 OLI Imagery. Remote Sens. 2019, 11, 1966. [Google Scholar] [CrossRef]
- Villa, P.; Mousivand, A.; Bresciani, M. Aquatic vegetation indices assessment through radiative transfer modeling and linear mixture simulation. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 113–127. [Google Scholar] [CrossRef]
- Zhou, G.; Ma, Z.; Sathyendranath, S.; Platt, T.; Jiang, C.; Sun, K. Canopy Reflectance Modeling of Aquatic Vegetation for Algorithm Development: Global Sensitivity Analysis. Remote Sens. 2018, 10, 837. [Google Scholar] [CrossRef]
- Jaskuła, J.; Sojka, M. Assessing Spectral Indices for Detecting Vegetative Overgrowth of Reservoirs. Pol. J. Environ. Stud. 2019, 28, 4199–4211. [Google Scholar] [CrossRef]
- Villa, P.; Bresciani, M.; Braga, F.; Bolpagni, R. Comparative Assessment of Broadband Vegetation Indices Over Aquatic Vegetation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3117–3127. [Google Scholar] [CrossRef]
- Japan Association on Remote Sensing. Remote Sensing Note; Japan Association on Remote Sensing: Tokyo, Japan, 1993. [Google Scholar]
- Kogyo, T.K. Gold Price Change. Available online: https://gold.tanaka.co.jp/commodity/souba/m-gold.php (accessed on 11 June 2021).
- Bullion Rates. Gold Price History in Indonesian Rupiahs (IDR). Available online: https://www.bullion-rates.com/ (accessed on 11 June 2021).
- Statistics of Bone Bolango Regency. Bone Bolango Dalam Angka 2010; BPS- Statistics of Bone Bolango Regency: Suwawa, Indonesia, 2010. [Google Scholar]
- Statistics of Bone Bolango Regency. Bone Bolango Dalam Angka 2011; BPS- Statistics of Bone Bolango Regency: Suwawa, Indonesia, 2011. [Google Scholar]
- Statistics of Bone Bolango Regency. Bone Bolango Dalam Angka 2020; BPS- Statistics of Bone Bolango Regency: Suwawa, Indonesia, 2020. [Google Scholar]
- Statistics of Bone Bolango Regency. Bone Bolango Dalam Angka 2012; BPS- Statistics of Bone Bolango Regency: Suwawa, Indonesia, 2012. [Google Scholar]
- Statistics of Bone Bolango Regency. Bone Bolango Dalam Angka 2013; BPS- Statistics of Bone Bolango Regency: Suwawa, Indonesia, 2013. [Google Scholar]
- Statistics of Bone Bolango Regency. Bone Bolango Dalam Angka 2014; BPS- Statistics of Bone Bolango Regency: Suwawa, Indonesia, 2014. [Google Scholar]
- Statistics of Bone Bolango Regency. Bone Bolango Dalam Angka 2015; BPS- Statistics of Bone Bolango Regency: Suwawa, Indonesia, 2015. [Google Scholar]
- Statistics of Bone Bolango Regency. Bone Bolango Dalam Angka 2016; BPS- Statistics of Bone Bolango Regency: Suwawa, Indonesia, 2016. [Google Scholar]
- Statistics of Bone Bolango Regency. Bone Bolango Dalam Angka 2017; BPS- Statistics of Bone Bolango Regency: Suwawa, Indonesia, 2017. [Google Scholar]
- Statistics of Bone Bolango Regency. Bone Bolango Dalam Angka 2018; BPS- Statistics of Bone Bolango Regency: Suwawa, Indonesia, 2018. [Google Scholar]
- Statistics of Bone Bolango Regency. Bone Bolango Dalam Angka 2019; BPS- Statistics of Bone Bolango Regency: Suwawa, Indonesia, 2019. [Google Scholar]
- Sousa, R.N.; Veiga, M.M.; Meech, J.; Jokinen, J.; Sousa, A.J. A simplified matrix of environmental impacts to support an intervention program in a small-scale mining site. J. Clean. Prod. 2011, 19, 580–587. [Google Scholar] [CrossRef]
- Corbett, T.; O’Faircheallaigh, C.; Regan, A. ‘Designated areas’ and the regulation of artisanal and small-scale mining. Land Use Policy 2017, 68, 393–401. [Google Scholar] [CrossRef]
- Gafur, N.A.; Sakakibara, M.; Sano, S.; Sera, K. A Case Study of Heavy Metal Pollution in Water of Bone River by Artisanal Small-Scale Gold Mine Activities in Eastern Part of Gorontalo, Indonesia. Water 2018, 10, 1507. [Google Scholar] [CrossRef]
- Long, R.N.; Renne, E.P.; Basu, N. Understanding the Social Context of the ASGM Sector in Ghana: A Qualitative Description of the Demographic, Health, and Nutritional Characteristics of a Small-Scale Gold Mining Community in Ghana. Int. J. Environ. Res. Public Health 2015, 12, 12679–12696. [Google Scholar] [CrossRef] [PubMed]
- Basu, N.; Renne, E.P.; Long, R.N. An Integrated Assessment Approach to Address Artisanal and Small-Scale Gold Mining in Ghana. Int. J. Environ. Res. Public Health 2015, 12, 11683–11698. [Google Scholar] [CrossRef] [PubMed]
- Rajaee, M.; Obiri, S.; Green, A.; Long, R.; Cobbina, S.J.; Nartey, V.; Buck, D.; Antwi, E.; Basu, N. Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana—Part 2: Natural Sciences Review. Int. J. Environ. Res. Public Health 2015, 12, 8971–9011. [Google Scholar] [CrossRef] [PubMed]








| Acquisition Date | Sensor | NIR (μm) | Red (μm) | Green (μm) |
|---|---|---|---|---|
| 30 May 1995 26 May 1997 11 May 2000 4 April 2001 25 May 2002 | Landsat 5 TM | 0.70–0.80 | 0.60–0.70 | 0.50–0.60 |
| 27 March 2004 10 February 2005 17 March 2006, 25 September 2006 23 May 2007, 30 October 2007 26 April 2009 24 February 2010, 4 September 2010 10 January 2011, 26 November 2011 27 March 2013 24 April 2014 | Landsat 7 ETM+ | 0.76–0.90 | 0.63–0.69 | 0.52–0.60 |
| 8 July 2015 5 April 2016 24 April 2017 10 March 2018 4 August 2019 15 March 2020 | Landsat 8 OLI | 0.85–0.88 | 0.64–0.67 | 0.53–0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimijima, S.; Sakakibara, M.; Nagai, M.; Gafur, N.A. Time-Series Assessment of Camp-Type Artisanal and Small-Scale Gold Mining Sectors with Large Influxes of Miners Using LANDSAT Imagery. Int. J. Environ. Res. Public Health 2021, 18, 9441. https://doi.org/10.3390/ijerph18189441
Kimijima S, Sakakibara M, Nagai M, Gafur NA. Time-Series Assessment of Camp-Type Artisanal and Small-Scale Gold Mining Sectors with Large Influxes of Miners Using LANDSAT Imagery. International Journal of Environmental Research and Public Health. 2021; 18(18):9441. https://doi.org/10.3390/ijerph18189441
Chicago/Turabian StyleKimijima, Satomi, Masayuki Sakakibara, Masahiko Nagai, and Nurfitri Abdul Gafur. 2021. "Time-Series Assessment of Camp-Type Artisanal and Small-Scale Gold Mining Sectors with Large Influxes of Miners Using LANDSAT Imagery" International Journal of Environmental Research and Public Health 18, no. 18: 9441. https://doi.org/10.3390/ijerph18189441
APA StyleKimijima, S., Sakakibara, M., Nagai, M., & Gafur, N. A. (2021). Time-Series Assessment of Camp-Type Artisanal and Small-Scale Gold Mining Sectors with Large Influxes of Miners Using LANDSAT Imagery. International Journal of Environmental Research and Public Health, 18(18), 9441. https://doi.org/10.3390/ijerph18189441

