Postoperative Drip-Infusion of Remifentanil Reduces Postoperative Pain—A Retrospective Observative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Participants and Data Sources
2.4. Anesthesia and Perioperative Management
2.5. Variables
2.6. Study Sample Size
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Variables Associated with NRS and Use of Rescue Analgesics according to Univariate and Multivariable Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Egan, T.D. Remifentanil pharmacokinetics and pharmacodynamics. A preliminary appraisal. Clin. Pharm. 1995, 29, 80–94. [Google Scholar] [CrossRef]
- Al-Rifai, Z.; Mulvey, D. Principles of total intravenous anaesthesia: Practical aspects of using total intravenous anaesthesia. BJA Educ. 2016, 16, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Colvin, L.A.; Bull, F.; Hales, T.G. Perioperative opioid analgesia-when is enough too much? A review of opioid-induced tolerance and hyperalgesia. Lancet 2019, 393, 1558–1568. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Stoicea, N.; Soghomonyan, S.; Bergese, S.D. Remifentanil-acute opioid tolerance and opioid-induced hyperalgesia: A systematic review. Am. J. 2015, 22, e62–e74. [Google Scholar] [CrossRef]
- Santonocito, C.; Noto, A.; Crimi, C.; Sanfilippo, F. Remifentanil-induced postoperative hyperalgesia: Current perspectives on mechanisms and therapeutic strategies. Local Reg. Anesth. 2018, 11, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Comelon, M.; Raeder, J.; Stubhaug, A.; Nielsen, C.S.; Draegni, T.; Lenz, H. Gradual withdrawal of remifentanil infusion may prevent opioid-induced hyperalgesia. Br. J. Anaesth. 2016, 116, 524–530. [Google Scholar] [CrossRef] [Green Version]
- Saxena, S.; Gonsette, K.; Terram, W.; Huybrechts, I.; Nahrwold, D.A.; Cappello, M.; Barvais, L.; Engelman, E. Gradual withdrawal of remifentanil delays initial post-operative analgesic demand after thyroid surgery; double-blinded, randomized controlled trial. BMC Anesth. 2019, 19, 60. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-S.; Wu, H.-C.; Wu, Z.-F.; Huang, Y.-H. Nalbuphine sebacate interferes with the analgesic effect of fentanyl. J. Med. Sci. 2020, 40, 101–102. [Google Scholar]
- Lee, J.J.; Hwang, S.M.; Lee, J.S.; Hong, S.J.; Lee, S.K.; Lim, S.Y. Continuous infusion of two doses of remifentanil immediately after laparoscopic-assisted vaginal hysterectomy. Korean J. Anesth. 2010, 58, 537–541. [Google Scholar] [CrossRef]
- Sandkuhler, J.; Benrath, J.; Brechtel, C.; Ruscheweyh, R.; Heinke, B. Synaptic mechanisms of hyperalgesia. Prog. Brain Res. 2000, 129, 81–100. [Google Scholar]
- Sandkuhler, J. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 2009, 89, 707–758. [Google Scholar] [CrossRef]
- Chu, L.F.; Angst, M.S.; Clark, D. Opioid-induced hyperalgesia in humans: Molecular mechanisms and clinical considerations. Clin. J. Pain 2008, 24, 479–496. [Google Scholar] [CrossRef]
- Colvin, L.A.; Fallon, M.T. Opioid-induced hyperalgesia: A clinical challenge. Br. J. Anaesth. 2010, 104, 125–127. [Google Scholar] [CrossRef] [Green Version]
- Singler, B.; Troster, A.; Manering, N.; Schuttler, J.; Koppert, W. Modulation of remifentanil-induced postinfusion hyperalgesia by propofol. Anesth. Analg. 2007, 104, 1397–1403. [Google Scholar] [CrossRef]
- Wu, L.; Huang, X.; Sun, L. The efficacy of N-methyl-D-aspartate receptor antagonists on improving the postoperative pain intensity and satisfaction after remifentanil-based anesthesia in adults: A meta-analysis. J. Clin. Anesth. 2015, 27, 311–324. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, W.; Wu, X.; Lei, H.; Gong, C.; Xu, S. Protective effects of dexmedetomidine combined with flurbiprofen axetil on remifentanil-induced hyperalgesia: A randomized controlled trial. Exp. Med. 2016, 12, 2622–2628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echevarria, G.; Elgueta, F.; Fierro, C.; Bugedo, D.; Faba, G.; Iniguez-Cuadra, R.; Munoz, H.R.; Cortinez, L.I. Nitrous oxide (N(2)O) reduces postoperative opioid-induced hyperalgesia after remifentanil-propofol anaesthesia in humans. Br. J. Anaesth. 2011, 107, 959–965. [Google Scholar] [CrossRef] [Green Version]
- Lenz, H.; Raeder, J.; Draegni, T.; Heyerdahl, F.; Schmelz, M.; Stubhaug, A. Effects of COX inhibition on experimental pain and hyperalgesia during and after remifentanil infusion in humans. Pain 2011, 152, 1289–1297. [Google Scholar] [CrossRef]
- Kim, E.M.; Jeon, J.H.; Chung, M.H.; Choi, E.M.; Baek, S.H.; Jeon, P.H.; Lee, M.H. The Effect of Nefopam Infusion during Laparascopic Cholecystectomy on Postoperative Pain. Int. J. Med Sci. 2017, 14, 570–577. [Google Scholar] [CrossRef] [Green Version]
- Mercieri, M.; Palmisani, S.; De Blasi, R.A.; D’Andrilli, A.; Naccarato, A.; Silvestri, B.; Tigano, S.; Massullo, D.; Rocco, M.; Arcioni, R. Low-dose buprenorphine infusion to prevent postoperative hyperalgesia in patients undergoing major lung surgery and remifentanil infusion: A double-blind, randomized, active-controlled trial. Br. J. Anaesth. 2017, 119, 792–802. [Google Scholar] [CrossRef] [Green Version]
- Drdla, R.; Gassner, M.; Gingl, E.; Sandkuhler, J. Induction of synaptic long-term potentiation after opioid withdrawal. Science 2009, 325, 207–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandkuhler, J.; Gruber-Schoffnegger, D. Hyperalgesia by synaptic long-term potentiation (LTP): An update. Curr. Opin. Pharm. 2012, 12, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Schuttler, J.; Albrecht, S.; Breivik, H.; Osnes, S.; Prys-Roberts, C.; Holder, K.; Chauvin, M.; Viby-Mogensen, J.; Mogensen, T.; Gustafson, I.; et al. A comparison of remifentanil and alfentanil in patients undergoing major abdominal surgery. Anaesthesia 1997, 52, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Yarmush, J.; D’Angelo, R.; Kirkhart, B.; O’Leary, C.; Pitts, M.C., 2nd; Graf, G.; Sebel, P.; Watkins, W.D.; Miguel, R.; Streisand, J.; et al. A comparison of remifentanil and morphine sulfate for acute postoperative analgesia after total intravenous anesthesia with remifentanil and propofol. Anesthesiology 1997, 87, 235–243. [Google Scholar] [CrossRef]
- Motamed, C.; Weil, G.; Deschamps, F.; Billard, V. Remifentanil target-controlled infusion: A safe rescue protocol for unexpected severe postoperative pain. J. Opioid. Manag. 2014, 10, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, D.; Martinez, V. Opioid-induced hyperalgesia in patients after surgery: A systematic review and a meta-analysis. Br. J. Anaesth. 2014, 112, 991–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guignard, B.; Bossard, A.E.; Coste, C.; Sessler, D.I.; Lebrault, C.; Alfonsi, P.; Fletcher, D.; Chauvin, M. Acute opioid tolerance: Intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology 2000, 93, 409–417. [Google Scholar] [CrossRef]
- Angst, M.S. Intraoperative Use of Remifentanil for TIVA: Postoperative Pain, Acute Tolerance, and Opioid-Induced Hyperalgesia. J. Cardiothorac. Vasc. Anesth. 2015, 29 (Suppl. 1), S16–S22. [Google Scholar] [CrossRef]
- Rolke, R.; Magerl, W.; Andrews Campbell, K.; Schalber, C.; Caspari, S.; Birklein, F.; Treede, R.-D. Quantitative sensory testing: A comprehensive protocol for clinical trials. Eur. J. Pain 2006, 10, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Koppert, W.; Sittl, R.; Scheuber, K.; Alsheimer, M.; Schmelz, M.; Schüttler, J. Differential modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by S-ketamine and clonidine in humans. Anesthesiology 2003, 99, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Tröster, A.; Sittl, R.; Singler, B.; Schmelz, M.; Schüttler, J.; Koppert, W. Modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by parecoxib in humans. Anesthesiology 2006, 105, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
Group GWDR (n = 205) | Group GWR (n = 354) | p | |
---|---|---|---|
Baseline data | |||
Age (per year) | 52.7 ± 17.2 | 54.9 ± 16.4 | 0.254 |
Gender | 0.019 | ||
Male | 93 (45.4) | 124 (35.0) | |
Female | 112 (54.6) | 230 (65.0) | |
Weight (kg) | 64.8 ± 14.3 | 63.8 ± 14.1 | 0.633 |
BMI | 24.3 ± 4.7 | 24.9 ± 10.5 | 0.451 |
BMI | 0.152 | ||
Normal weight (18.5–24) | 102 (49.8) | 156 (44.1) | |
Underweight (<18.5) | 9 (4.4) | 29 (8.2) | |
Overweight (≥24) | 94 (45.9) | 169 (47.7) | |
Intraoperative data | |||
Type of Surgery | <0.001 | ||
Minor a | 104 (50.7) | 237 (66.9) | |
Major b | 101 (49.3) | 117 (33.1) | |
Surgical site | <0.001 | ||
Skin and connective tissue | 71 (34.6) | 66 (18.6) | |
Musculoskeletal | 14 (6.8) | 20 (5.6) | |
Chest | 72 (35.1) | 85 (24.0) | |
Abdominal | 48 (23.4) | 183 (51.7) | |
Prescription of postoperative rescue analgesic | 27 (13.2) | 126 (35.7) | <0.001 |
Anesthesia time (min) | 146 ± 94.8 | 131 ± 83.6 | 0.022 |
Surgical time (min) | 117 ± 86.1 | 103 ± 75.0 | 0.015 |
Propofol consumption (mL) | 85.1 ± 65.1 | 76.1 ± 47.8 | 0.008 |
Remifentanil consumption (mcg) | 529 ± 441 | 471 ± 363 | 0.433 |
Outcome | |||
NRS at the PACU | 2.03 ± 1.85 | 2.81 ± 1.91 | <0.001 |
NRS group at the PACU | <0.001 | ||
0 | 54 (26.3) | 62 (17.5) | |
1–3 | 118 (57.6) | 163 (46.0) | |
≥4 | 33 (16.1) | 129 (36.4) | |
NRS in the postoperative 2nd hour c | 2.72 ± 1.03 | 3.07 ± 1.25 | 0.001 |
NRS group in the postoperative 2nd hour c | <0.001 | ||
0 | 2 (1.0) | 4 (1.2) | |
1–3 | 149 (78.0) | 176 (53.2) | |
≥4 | 40 (20.9) | 151 (45.6) |
Mild Pain (NRS 1–3/10) (ref: NRS = 0) | Moderate to Severe Pain (NRS ≥ 4/10) (ref: NRS = 0) | |||||||
---|---|---|---|---|---|---|---|---|
Univariate Analysis | Multivariable Analysis | Univariate Analysis | Multivariable Analysis | |||||
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Drip-infusion of Remifentanil (ref: no) | 0.83 (0.54–1.28) | 0.405 | 0.30 (0.17–0.55) | <0.001 | 0.29 (0.17–0.50) | <0.001 | 0.11 (0.05–0.24) | <0.001 |
Type of surgery (ref: Major) | 0.26 (0.15–0.47) | <0.001 | 0.34 (0.15–0.79) | 0.012 | 0.11 (0.06–0.20) | <0.001 | 0.30 (0.11–0.80) | 0.016 |
Surgical site (ref: skin and connective tissue) | ||||||||
Musculoskeletal | 4.56 (2.38–8.75) | <0.001 | 5.09 (2.14–12.1) | <0.001 | 7.80 (3.75–16.2) | <0.001 | 10.9 (3.66–32.2) | <0.001 |
Chest | 1.33 (0.43–4.13) | 0.617 | 1.11 (0.26–4.74) | 0.883 | 9.22 (3.21–26.5) | <0.001 | 4.88 (1.01–23.5) | 0.048 |
Abdominal | 3.95 (2.13–7.35) | <0.001 | 5.03 (2.30–11.0) | <0.001 | 9.53 (4.80–18.9) | <0.001 | 10.9 (3.88–30.4) | <0.001 |
Age (per year) | 0.99 (0.98–1.01) | 0.592 | 1.00 (0.99–1.01) | 0.996 | ||||
Male | 0.75 (0.48–1.17) | 0.205 | 1.27 (0.78–2.05) | 0.339 | ||||
Weight (kg) | 1.00 (0.99–1.02) | 0.837 | 0.99 (0.98–1.01) | 0.611 | ||||
BMI (ref: normal weight) | ||||||||
Underweight | 0.73 (0.31–1.77) | 0.489 | 0.78 (0.31–1.94) | 0.592 | ||||
Overweight | 1.06 (0.68–1.67) | 0.793 | 0.84 (0.51–1.39) | 0.500 | ||||
Anesthesia time (per hour) | 1.31 (1.08–1.59) | 0.005 | 1.68 (1.32–2.12) | <0.001 | ||||
Surgical time (per hour) | 1.34 (1.08–1.65) | 0.008 | 1.71 (1.32–2.22) | <0.001 | ||||
Propofol consumption (per 100 mL) | 2.41 (1.34–4.34) | 0.003 | 5.04 (2.37–10.7) | <0.001 | ||||
Remifentanil consumption (per 100 mcg) | 1.11 (1.03–1.20) | 0.006 | 1.18 (1.08–1.28) | <0.001 |
NRS at the PACU | NRS in the Postoperative 2nd h | |||||||
---|---|---|---|---|---|---|---|---|
Univariate Analysis | Multivariable Analysis | Univariate Analysis | Multivariable Analysis | |||||
Beta (95% CI) | p | Beta (95% CI) | p | Beta (95% CI) | p | Beta (95% CI) | p | |
Drip infusion of remifentanil (ref: no) | −0.77 (−1.10–−0.45) | <0.001 | −1.20 (−1.51–−0.89) | <0.001 | −0.35 (−0.56–−0.14) | 0.001 | −0.31 (−0.52–−0.11) | 0.003 |
Type of Surgery (ref: major) | −1.17 (−1.48–−0.85) | <0.001 | −0.55 (−0.94–−0.16) | 0.006 | 0.06 (−0.15–0.27) | 0.555 | ||
Surgery site | ||||||||
skin and connective tissue | −1.26 (−1.57–−0.96) | <0.001 | −1.24 (−1.64–−0.85) | <0.001 | 0.19 (−0.02–0.40) | 0.073 | ||
Musculoskeletal | 0.39 (0.02–0.76) | 0.039 | −0.36 (−0.60–−0.13) | 0.003 | ||||
Chest | 1.07 (0.41–1.73) | 0.002 | −0.52 (−0.95–−0.09) | 0.018 | ||||
Abdominal | 0.86 (0.51–1.21) | <0.001 | 0.24 (0.02–0.47) | 0.035 | 0.27 (0.05–0.48) | 0.016 | ||
Age (per year) | −0.01 (−0.01–0.01) | 0.888 | 0.01 (−0.01–0.01) | 0.156 | ||||
Female | −0.22 (−0.55–0.11) | 0.183 | 0.74 (0.54–0.94) | <0.001 | 0.70 (0.50–0.90) | <0.001 | ||
Weight (kg) | −0.06 (−0.17–0.05) | 0.286 | −0.10 (−0.18–−0.03) | 0.004 | ||||
BMI (ref:) | ||||||||
Normal weight | 0.13 (−0.19–0.45) | 0.427 | −0.08 (−0.28–0.13) | 0.474 | ||||
Underweight | −0.01 (−0.65–0.63) | 0.974 | −0.19 (−0.22–0.59) | 0.370 | ||||
Overweight | −0.13 (−0.45–0.19) | 0.437 | 0.03 (−0.18–0.23) | 0.790 | ||||
Anesthesia time (per hour) | 0.21 (0.11–0.32) | <0.001 | −0.10 (−0.17–−0.03) | 0.004 | ||||
Surgical time (per hour) | 0.23 (0.11–0.35) | <0.001 | −0.10 (−0.17–−0.02) | 0.012 | ||||
Propofol consumption (per 100 mL) | 0.41 (0.12–0.70) | 0.006 | −0.17 (−0.36–0.01) | 0.063 | ||||
Remifentanil consumption (per 100 mcg) | 0.07 (0.03–0.11) | <0.001 | −0.03 (−0.06–−0.01) | 0.011 |
Univariate Analysis | Multivariable Analysis | |||
---|---|---|---|---|
OR (95% C.I.) | p | OR (95% C.I.) | p | |
Drip infusion of Remifentanil (ref: no) | 0.27 (0.17–0.43) | <0.001 | 0.14 (0.08–0.24) | <0.001 |
Type of surgery (ref: Major) | 0.26 (0.18–0.39) | <0.001 | 0.43 (0.24–0.75) | 0.003 |
Surgical site (ref: skin and connective tissue) | ||||
Musculoskeletal | 2.85 (1.69–4.82) | <0.001 | 3.24 (1.62–6.51) | 0.001 |
Chest | 10.4 (4.74–22.9) | <0.001 | 9.86 (3.41–28.5) | <0.001 |
Abdominal | 3.92 (2.39–6.46) | <0.001 | 4.27 (2.24–8.14) | <0.001 |
Age (per year) | 1.00 (0.99–1.01) | 0.648 | ||
Male | 1.37 (0.94–2.01) | 0.099 | ||
Weight (per 10 kg) | 0.90 (0.79–1.04) | 0.148 | 0.84 (0.72–0.99) | 0.035 |
BMI (ref: normal weight) | ||||
Underweight | 1.30 (0.63–2.68) | 0.483 | ||
Overweight | 0.77 (0.52–1.14) | 0.188 | ||
Anesthesia time (per hour) | 1.22 (1.08–1.37) | 0.001 | ||
Surgical time (per hour) | 1.24 (1.08–1.41) | 0.002 | ||
Propofol consumption (per 100 mL) | 1.35 (0.98–1.86) | 0.066 | ||
Remifentanil consumption (per 100 mcg) | 1.06 (1.01–1.11) | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-H.; Lee, M.-S.; Lin, Y.-T.; Huang, N.-C.; Kao, J.; Lai, H.-C.; Lin, B.-F.; Cheng, K.-I.; Wu, Z.-F. Postoperative Drip-Infusion of Remifentanil Reduces Postoperative Pain—A Retrospective Observative Study. Int. J. Environ. Res. Public Health 2021, 18, 9225. https://doi.org/10.3390/ijerph18179225
Huang Y-H, Lee M-S, Lin Y-T, Huang N-C, Kao J, Lai H-C, Lin B-F, Cheng K-I, Wu Z-F. Postoperative Drip-Infusion of Remifentanil Reduces Postoperative Pain—A Retrospective Observative Study. International Journal of Environmental Research and Public Health. 2021; 18(17):9225. https://doi.org/10.3390/ijerph18179225
Chicago/Turabian StyleHuang, Yi-Hsuan, Meei-Shyuan Lee, Yao-Tsung Lin, Nian-Cih Huang, Jing Kao, Hou-Chuan Lai, Bo-Feng Lin, Kuang-I Cheng, and Zhi-Fu Wu. 2021. "Postoperative Drip-Infusion of Remifentanil Reduces Postoperative Pain—A Retrospective Observative Study" International Journal of Environmental Research and Public Health 18, no. 17: 9225. https://doi.org/10.3390/ijerph18179225
APA StyleHuang, Y. -H., Lee, M. -S., Lin, Y. -T., Huang, N. -C., Kao, J., Lai, H. -C., Lin, B. -F., Cheng, K. -I., & Wu, Z. -F. (2021). Postoperative Drip-Infusion of Remifentanil Reduces Postoperative Pain—A Retrospective Observative Study. International Journal of Environmental Research and Public Health, 18(17), 9225. https://doi.org/10.3390/ijerph18179225