What Could Explain the Lower COVID-19 Burden in Africa despite Considerable Circulation of the SARS-CoV-2 Virus?
Abstract
:1. Background
2. On SARS-CoV-2 Spread
2.1. Early Government Measures and Messaging
2.2. Population Distribution and Structure of Social Networks
2.3. A Largely Outdoor Existence
3. Factors Mitigating COVID-19 Burden in Africa
3.1. Demographic Pyramid
3.2. Pre-Existing Conditions
3.3. Trained Immunity
3.4. Genetics
3.5. Broader Sociocultural Implications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coronavirus Disease 2019 (COVID-19) Dashboard. Africa Centres for Disease Control and Prevention. 2021. Available online: https://africacdc.org/covid-19/ (accessed on 4 August 2021).
- Johns Hopkins Coronavirus Resource Center. Global Map. 2021. Available online: https://coronavirus.jhu.edu/map.html (accessed on 6 October 2020).
- United Nations Population Division. World Population Prospects. 2019. Available online: https://population.un.org/wpp/ (accessed on 1 May 2021).
- El-Sadr, W.M.; Justman, J. Africa in the path of Covid-19. N. Engl. J. Med. 2020, 383, e11. [Google Scholar] [CrossRef]
- Pearson, A.C.; Van Schalkwyk, C.; Foss, A.M.; O’Reilly, K.M.; SACEMA Modelling and Analysis Response Team; CMMID COVID-19 Working Group; Pulliam, J.R. Projected early spread of COVID-19 in Africa through 1 June 2020. Eurosurveillance 2020, 25, 2000543. [Google Scholar] [CrossRef]
- Quaresima, V.; Naldini, M.M.; Cirillo, D.M. The prospects for the SARS -CoV-2 pandemic in Africa. EMBO Mol. Med. 2020, 12, e12488. [Google Scholar] [CrossRef]
- Mueller, V.; Sheriff, G.; Keeler, C.; Jehn, M. COVID-19 policy modeling in sub-Saharan Africa. Appl. Econ. Perspect. Policy 2020, 43, 24–38. [Google Scholar] [CrossRef]
- Gilbert, M.; Pullano, G.; Pinotti, F.; Valdano, E.; Poletto, C.; Boëlle, P.-Y.; D’Ortenzio, E.; Yazdanpanah, Y.; Eholie, S.P.; Altmann, M.; et al. Preparedness and vulnerability of African countries against importations of COVID-19: A modelling study. Lancet 2020, 395, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Walker, P.G.T.; Whittaker, C.; Watson, O.J.; Baguelin, M.; Winskill, P.; Hamlet, A.; Djafaara, B.A.; Cucunubá, Z.; Mesa, D.O.; Green, W.; et al. The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries. Science 2020, 369, 413–422. [Google Scholar] [CrossRef]
- Fokoua-Maxime, D.C.; Amor-Ndjabo, M.; Ankobil, A.; Victor-Kiyung, M.; Franck-Metomb, S.; Choukem, S.P. Does sub-Saharan Africa truly defy the forecasts of the COVID-19 pandemic? Response from population data. medRxiv 2020. [Google Scholar] [CrossRef]
- Dzinamarira, T.; Dzobo, M.; Chitungo, I. COVID-19: A perspective on Africa’s capacity and response. J. Med. Virol. 2020, 92, 2465–2472. [Google Scholar] [CrossRef] [PubMed]
- Ogunleye, O.O.; Basu, D.; Mueller, D.; Sneddon, J.; Seaton, R.A.; Yinka-Ogunleye, A.F.; Wamboga, J.; Miljković, N.; Mwita, J.C.; Rwegerera, G.M.; et al. Response to the Novel Corona Virus (COVID-19) Pandemic Across Africa: Successes, Challenges, and Implications for the future. Front. Pharmacol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Mulenga, L.B.; Hines, J.Z.; Fwoloshi, S.; Chirwa, L.; Siwingwa, M.; Yingst, S.; Wolkon, A.; Barradas, D.T.; Favaloro, J.; Zulu, J.E.; et al. Prevalence of SARS-CoV-2 in six districts in Zambia in July 2020: A cross-sectional cluster sample survey. Lancet Glob. Health 2021, 9, e773–e781. [Google Scholar] [CrossRef]
- Ndaye, A.N.; Hoxha, A.; Madinga, J.; Mariën, J.; Peeters, M.; Leendertz, F.H.; Mundeke, S.A.; Ariën, K.K.; Tanfumu, J.-J.M.; Kingebeni, P.M.; et al. Challenges in interpreting SARS-CoV-2 serological results in African countries. Lancet Glob. Health 2021, 9, e588–e589. [Google Scholar] [CrossRef]
- Olayanju, O.; Bamidele, O.; Edem, F.; Eseile, B.; Amoo, A.; Nwaokenye, J.; Udeh, C.; Oluwole, G.; Odok, G.; Awah, N. SARS-CoV-2 seropositivity in asymptomatic frontline health workers in Ibadan, Nigeria. Am. J. Trop. Med. Hyg. 2021, 104, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Chibwana, M.G.; Jere, K.C.; Kamn’gona, R.; Mandolo, J.; Katunga-Phiri, V.; Tembo, D.; Mitole, N.; Musasa, S.; Sichone, S.; Lakudzala, A.; et al. High SARS-CoV-2 seroprevalence in health care workers but relatively low numbers of deaths in urban Malawi. medRxiv 2020. [Google Scholar] [CrossRef]
- Uyoga, S.; Adetifa, I.M.O.; Karanja, H.K.; Nyagwange, J.; Tuju, J.; Wanjiku, P.; Aman, R.; Mwangangi, M.; Amoth, P.; Kasera, K.; et al. Seroprevalence of anti–SARS-CoV-2 IgG antibodies in Kenyan blood donors. Science 2020, 371, 79–82. [Google Scholar] [CrossRef]
- Sykes, W.; Mhlanga, L.; Swanevelder, R.; Glatt, T.N.; Grebe, E.; Coleman, C.; Pieterson, N.; Cable, R.; Welte, A.; van der Berg, K.; et al. Prevalence of anti-SARS-CoV-2 antibodies among blood donors in Northern Cape, KwaZulu-Natal, Eastern Cape, and Free State provinces of south Africa in January 2021. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Shaw, J.A.; Meiring, M.; Cummins, T.; Chegou, N.N.; Claassen, C.; Du Plessis, N.; Flinn, M.; Hiemstra, A.; Kleynhans, L.; Leukes, V.; et al. Higher SARS-CoV-2 seroprevalence in workers with lower socioeconomic status in Cape Town, South Africa. PLoS ONE 2021, 16, e0247852. [Google Scholar] [CrossRef] [PubMed]
- Milleliri, J.M.; Coulibaly, D.; Nyobe, B.; Rey, J.-L.; Lamontagne, F.; Hocqueloux, L.; Giaché, S.; Valery, A.; Prazuck, T. SARS-CoV-2 infection in Ivory Coast: A serosurveillance survey among gold mine workers. Am. J. Trop. Med. Hyg. 2021, 104, 1709–1712. [Google Scholar] [CrossRef]
- Salyer, S.J.; Maeda, J.; Sembuche, S.; Kebede, Y.; Tshangela, A.; Moussif, M.; Ihekweazu, C.; Mayet, N.; Abate, E.; Ouma, A.O.; et al. The first and second waves of the COVID-19 pandemic in Africa: A cross-sectional study. Lancet 2021, 397, 1265–1275. [Google Scholar] [CrossRef]
- Usuf, E.; Roca, A. Seroprevalence surveys in sub-Saharan Africa: What do they tell us? Lancet Glob. Health 2021, 9, e724–e725. [Google Scholar] [CrossRef]
- Tso, F.Y.; Lidenge, S.J.; Peña, P.B.; Clegg, A.A.; Ngowi, J.R.; Mwaiselage, J.; Ngalamika, O.; Julius, P.; West, J.T.; Wood, C. High prevalence of pre-existing serological cross-reactivity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in sub-Saharan Africa. Int. J. Infect. Dis. 2020, 102, 577–583. [Google Scholar] [CrossRef]
- Yadouleton, A.; Sander, A.-L.; Moreira-Soto, A.; Tchibozo, C.; Hounkanrin, G.; Badou, Y.; Fischer, C.; Krause, N.; Akogbeto, P.; Filho, E.F.D.O.; et al. Limited specificity of serologic tests for SARS-CoV-2 antibody detection, Benin. Emerg. Infect. Dis. 2021, 27, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Dong, S.; Zhao, Y.; Gao, Y.; Wang, J.; Yu, M.; Xu, F.; Chai, Y. Epidemic characteristics of COVID-19 in Africa. Front. Phys. 2020, 8. [Google Scholar] [CrossRef]
- Chanda-Kapata, P.; Kapata, N.; Zumla, A. COVID-19 and malaria: A symptom screening challenge for malaria endemic countries. Int. J. Infect. Dis. 2020, 94, 151–153. [Google Scholar] [CrossRef]
- Jacobs, J.; Kühne, V.; Lunguya, O.; Affolabi, D.; Hardy, L.; Vandenberg, O. Implementing COVID-19 (SARS-CoV-2) rapid diagnostic tests in sub-Saharan Africa: A review. Front. Med. 2020, 7, 557797. [Google Scholar] [CrossRef]
- Maclean, R. A continent where the dead are not counted. The New York Times, 1 February 2021. [Google Scholar]
- United Nations. Report on the Status of Civil Registration and Vital Statistics in Africa; Economic Commission for Africa: Addis Abeba, Ethiopia, 2017.
- Karlinsky, A.; Kobak, D. The world mortality dataset: Tracking excess mortality across countries during the COVID-19 pandemic. medRxiv 2021. [Google Scholar] [CrossRef]
- Cardoso, K. Measuring Africa’s Data Gap: The Cost of Not Counting the Dead. 2021. Available online: https://www.bbc.com/news/world-africa-55674139 (accessed on 22 February 2021).
- Roberton, T.; Carter, E.; Chou, V.B.; Stegmuller, A.R.; Jackson, B.D.; Tam, Y.; Sawadogo-Lewis, T.; Walker, N. Early estimates of the indirect effects of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries: A modelling study. Lancet Glob. Health 2020, 8, e901–e908. [Google Scholar] [CrossRef]
- Tembo, J.; Maluzi, K.; Egbe, F.; Bates, M. Covid-19 in Africa. BMJ 2021, 372, 457. [Google Scholar] [CrossRef] [PubMed]
- Mwananyanda, L.; Gill, C.J.; MacLeod, W.; Kwenda, G.; Pieciak, R.; Mupila, Z.; Lapidot, R.; Mupeta, F.; Forman, L.; Ziko, L.; et al. Covid-19 deaths in Africa: Prospective systematic postmortem surveillance study. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Africa Centres for Disease Control and Prevention. Revealing the Toll of COVID-19: A Technical Package for Member States. Available online: https://africacdc.org/download/revealing-the-toll-of-covid-19-a-technical-package-for-rapid-mortality-surveillance-and-epidemic-response/ (accessed on 22 June 2020).
- Setel, P.; AbouZahr, C.; Atuheire, E.B.; Bratschi, M.; Cercone, E.; Chinganya, O.; Clapham, B.; Clark, S.J.; Congdon, C.; De Savigny, D.; et al. Mortality surveillance during the COVID-19 pandemic. Bull. World Health Organ. 2020, 98, 374. [Google Scholar] [CrossRef] [PubMed]
- Post, L.A.; Argaw, S.T.; Jones, C.; Moss, C.B.; Resnick, D.; Singh, L.N.; Murphy, R.L.; Achenbach, C.J.; White, J.; Issa, T.Z.; et al. A SARS-CoV-2 surveillance system in sub-Saharan Africa: Modeling study for persistence and transmission to inform policy. J. Med. Internet Res. 2020, 22, e24248. [Google Scholar] [CrossRef]
- Rapid Mortality Surveillance for COVID-19 in West Africa. African Field Epidemiology Network (AFENET). Available online: http://www.afenet.net/index.php/news/news/849-rapid-mortality-surveillance-for-covid-19-in-west-africa (accessed on 8 April 2021).
- Biccard, B.M.; Gopalan, P.D.; Miller, M.; Michell, W.L.; Thomson, D.; Ademuyiwa, A.; Aniteye, E.; Calligaro, G.; Chaibou, M.S.; Dhufera, H.T.; et al. Patient care and clinical outcomes for patients with COVID-19 infection admitted to African high-care or intensive care units (ACCCOS): A multicentre, prospective, observational cohort study. Lancet 2021, 397, 1885–1894. [Google Scholar] [CrossRef]
- Mehtar, S.; Preiser, W.; Lakhe, N.A.; Bousso, A.; TamFum, J.-J.M.; Kallay, O.; Seydi, M.; Zumla, P.S.A.; Nachega, J.B. Limiting the spread of COVID-19 in Africa: One size mitigation strategies do not fit all countries. Lancet Glob. Health 2020, 8, e881–e883. [Google Scholar] [CrossRef]
- Ghosh, D.; Bernstein, J.A.; Mersha, T.B. COVID-19 pandemic: The African paradox. J. Glob. Health 2020, 10, 020348. [Google Scholar] [CrossRef] [PubMed]
- Maeda, J.M.; Nkengasong, J.N. The puzzle of the COVID-19 pandemic in Africa. Science 2020, 371, 27–28. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S. Why Does the Pandemic Seem to Be Hitting Some Countries Harder Than Others. 2021. Available online: https://www.newyorker.com/magazine/2021/03/01/why-does-the-pandemic-seem-to-be-hitting-some-countries-harder-than-others (accessed on 22 February 2021).
- Leonhardt, D. A Covid mystery. The New York Times, 8 March 2021. [Google Scholar]
- Van Damme, W.; Dahake, R.; Delamou, A.; Ingelbeen, B.; Wouters, E.; Vanham, G.; Van De Pas, R.; Dossou, J.-P.; Ir, P.; Abimbola, S.; et al. The COVID-19 pandemic: Diverse contexts; different epidemics—How and why? BMJ Glob. Health 2020, 5, e003098. [Google Scholar] [CrossRef]
- Van Damme, W.; Dahake, R.; van de Pas, R.; Vanham, G.; Assefa, Y. COVID-19: Does the infectious inoculum dose-response relationship contribute to understanding heterogeneity in disease severity and transmission dynamics? Med. Hypotheses 2020, 146, 110431. [Google Scholar] [CrossRef]
- Cabore, J.W.; Karamagi, H.C.; Kipruto, H.; Asamani, J.A.; Droti, B.; Seydi, A.B.W.; Titi-Ofei, R.; Impouma, B.; Yao, M.; Yoti, Z.; et al. The potential effects of widespread community transmission of SARS-CoV-2 infection in the World Health Organization African region: A predictive model. BMJ Glob. Health 2020, 5, e002647. [Google Scholar] [CrossRef]
- Achoki, T.; Alam, U.; Were, L.; Gebremedhin, T.; Senkubuge, F.; Lesego, A.; Liu, S.; Wamai, R.; Kinfu, Y. COVID-19 pandemic in the African continent: Forecasts of cumulative cases, new infections, and mortality. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Kuguyo, O.; Kengne, A.P.; Dandara, C. Singapore COVID-19 pandemic response as a successful model framework for low-resource health care settings in Africa? OMICS J. Integr. Biol. 2020, 24, 470–478. [Google Scholar] [CrossRef]
- Lone, S.A.; Ahmad, A. COVID-19 pandemic—An African perspective. Emerg. Microbes Infect. 2020, 9, 1300–1308. [Google Scholar] [CrossRef]
- Gaye, B.; Khoury, S.; Cene, C.W.; Kingue, S.; N’Guetta, R.; Lassale, C.; Baldé, D.; Diop, I.B.; Dowd, J.B.; Mills, M.C.; et al. Socio-demographic and epidemiological consideration of Africa’s COVID-19 response: What is the possible pandemic course? Nat. Med. 2020, 26, 996–999. [Google Scholar] [CrossRef] [PubMed]
- Moore, J. What African nations are teaching the west about fighting the coronavirus. The New Yorker, 15 May 2020. [Google Scholar]
- Chaudhry, R.; Dranitsaris, G.; Mubashir, T.; Bartoszko, J.; Riazi, S. A country level analysis measuring the impact of government actions, country preparedness and socioeconomic factors on COVID-19 mortality and related health outcomes. EClinicalMedicine 2020, 25, 100464. [Google Scholar] [CrossRef]
- Rice, B.L.; Annapragada, A.; Baker, R.E.; Bruijning, M.; Dotse-Gborgbortsi, W.; Mensah, K.; Miller, I.F.; Motaze, N.V.; Raherinandrasana, A.; Rajeev, M.; et al. Variation in SARS-CoV-2 outbreaks across sub-Saharan Africa. Nat. Med. 2021, 27, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Mboussou, F.; Ndumbi, P.; Ngom, R.; Kassamali, Z.; Ogundiran, O.; Van Beek, J.; Williams, G.; Okot, C.; Hamblion, E.L.; Impouma, B. Infectious disease outbreaks in the African region: Overview of events reported to the World Health Organization in 2018. Epidemiol. Infect. 2019, 147, e307. [Google Scholar] [CrossRef] [Green Version]
- Alam, U.; Nabyonga-Orem, J.; Mohammed, A.; Malac, D.R.; Nkengasong, J.N.; Moeti, M.R. Redesigning health systems for global heath security. Lancet Glob. Health 2021, 9, e393–e394. [Google Scholar] [CrossRef]
- Holst, C.; Sukums, F.; Radovanovic, D.; Ngowi, B.; Noll, J.; Winkler, A.S. Sub-Saharan Africa—The new breeding ground for global digital health. Lancet Digit. Health 2020, 2, e160–e162. [Google Scholar] [CrossRef]
- Wilkinson, A.; Parker, M.; Martineau, F.; Leach, M. Engaging “communities”: Anthropological insights from the west African Ebola epidemic. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160305. [Google Scholar] [CrossRef]
- Laverack, G.; Manoncourt, E. Key experiences of community engagement and social mobilization in the Ebola response. Glob. Health Promot. 2015, 23, 79–82. [Google Scholar] [CrossRef]
- Shuaib, F.; Gunnala, R.; Musa, E.O.; Mahoney, F.J.; Oguntimehin, O.; Nguku, P.M.; Nyanti, S.B.; Knight, N.; Gwarzo, N.S.; Idigbe, O.; et al. Ebola virus disease outbreak—Nigeria, July–September 2014. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 867–872. [Google Scholar]
- Slutkin, G.; Okware, S.; Naamara, W.; Sutherland, D.; Flanagan, D.; Carael, M.; Blas, E.; DeLay, P.; Tarantola, D. How Uganda reversed its HIV epidemic. AIDS Behav. 2006, 10, 351–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hasan, A.; Yim, D.; Khuntia, J. Citizens’ adherence to COVID-19 mitigation recommendations by the government: A 3-country comparative evaluation using web-based cross-sectional survey data. J. Med. Internet Res. 2020, 22, e20634. [Google Scholar] [CrossRef] [PubMed]
- Margraf, J.; Brailovskaia, J.; Schneider, S. Behavioral measures to fight COVID-19: An 8-country study of perceived usefulness, adherence and their predictors. PLoS ONE 2020, 15, e0243523. [Google Scholar] [CrossRef]
- SSRN. LSMS-Supported High-Frequency Phone Surveys on COVID-19. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3675884 (accessed on 8 April 2021).
- Isah, M.B.; Abdulsalam, M.; Bello, A.; Ibrahim, M.I.; Usman, A.; Nasir, A.; Abdulkadir, B.; Ibrahim, K.M.; Sani, A.; Aliu, M.; et al. Coronavirus disease 2019 (COVID-19): A cross-sectional survey of the knowledge, attitudes, practices (KAP) and misconceptions in the general population of Katsina State, Nigeria. UMYU J. Microbiol. Res. 2021, 6, 24–37. [Google Scholar] [CrossRef]
- Banda, J.; Dube, A.; Brumfield, S.; Amoah, A.; Crampin, A.; Reniers, G.; Helleringer, S. Knowledge, risk perceptions, and behaviors related to the COVID-19 pandemic in Malawi. Demogr. Res. 2021, 44, 459–480. [Google Scholar] [CrossRef]
- Defar, A.; Molla, G.; Abdella, S.; Tessema, M.; Ahmed, M.; Tadele, A.; Getachew, F.; Hailegiorgis, B.; Tigabu, E.; Ababor, S.; et al. Knowledge, practice and associated factors towards the prevention of COVID-19 among high-risk groups: A cross-sectional study in Addis Ababa, Ethiopia. PLoS ONE 2021, 16, e0248420. [Google Scholar] [CrossRef]
- Serwaa, D.; Lamptey, E.; Appiah, A.B.; Senkyire, E.K.; Ameyaw, J.K. Knowledge, risk perception and preparedness towards coronavirus disease-2019 (COVID-19) outbreak among Ghanaians: A quick online cross-sectional survey. Pan Afr. Med. J. 2020, 35. [Google Scholar] [CrossRef]
- Ditekemena, J.D.; Nkamba, D.M.; Muhindo, H.M.; Siewe, J.N.F.; Luhata, C.; Bergh, R.V.D.; Kitoto, A.T.; Van Damme, W.; Muyembe, J.J.; Colebunders, R. Factors associated with adherence to COVID-19 prevention measures in the Democratic Republic of the Congo (DRC): Results of an online survey. BMJ Open 2021, 11, e043356. [Google Scholar] [CrossRef] [PubMed]
- Hedima, E.W.; Michael, S.A.; David, E.A. Knowledge and risk perception of the novel coronavirus disease 2019 among adult Nigerians: A cross-sectional study. medRxiv 2020. [Google Scholar] [CrossRef]
- Olum, R.; Chekwech, G.; Wekha, G.; Nassozi, D.R.; Bongomin, F. Coronavirus disease-2019: Knowledge, attitude, and practices of health care workers at Makerere University Teaching Hospitals, Uganda. Front. Public Health 2020, 8, 181. [Google Scholar] [CrossRef]
- Rader, B.; Scarpino, S.V.; Nande, A.; Hill, A.L.; Adlam, B.; Reiner, R.C.; Pigott, D.M.; Gutierrez, B.; Zarebski, A.E.; Shrestha, M.; et al. Crowding and the shape of COVID-19 epidemics. Nat. Med. 2020, 26, 1829–1834. [Google Scholar] [CrossRef]
- Nadini, M.; Zino, L.; Rizzo, A.; Porfiri, M. A multi-agent model to study epidemic spreading and vaccination strategies in an urban-like environment. Appl. Netw. Sci. 2020, 5, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Nkalu, C.N.; Edeme, R.K.; Nchege, J.; Arazu, O.W. Rural-urban population growth, economic growth and urban agglomeration in sub-Saharan Africa: What does Williamson-Kuznets hypothesis say? J. Asian Afr. Stud. 2019, 54, 1247–1261. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. World Urbanization Prospects. 2018. Available online: https://population.un.org/wup/Country-Profiles/ (accessed on 8 April 2021).
- Diop, B.Z.; Ngom, M.; Biyong, C.P.; Biyong, J.N.P. The relatively young and rural population may limit the spread and severity of COVID-19 in Africa: A modelling study. BMJ Glob. Health 2020, 5, e002699. [Google Scholar] [CrossRef] [PubMed]
- Chirisa, I.; Mutambisi, T.; Chivenge, M.; Mabaso, E.; Matamanda, A.R.; Ncube, R. The urban penalty of COVID-19 lockdowns across the globe: Manifestations and lessons for anglophone sub-Saharan Africa. GeoJournal 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhang, W.; Kargbo, D.; Yang, R.; Chen, Y.; Chen, Z.; Kamara, A.; Kargbo, B.; Kandula, S.; Karspeck, A.; et al. Transmission network of the 2014–2015 Ebola epidemic in Sierra Leone. J. R. Soc. Interface 2015, 12, 20150536. [Google Scholar] [CrossRef]
- Kiti, M.C.; Kinyanjui, T.; Koech, D.; Munywoki, P.K.; Medley, G.; Nokes, D.J. Quantifying age-related rates of social contact using diaries in a rural coastal population of Kenya. PLoS ONE 2014, 9, e104786. [Google Scholar] [CrossRef] [Green Version]
- Mossong, J.; Hens, N.; Jit, M.; Beutels, P.; Auranen, K.; Mikolajczyk, R.; Massari, M.; Salmaso, S.; Tomba, G.S.; Wallinga, J.; et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008, 5, e74. [Google Scholar] [CrossRef]
- Fraser, T.; Aldrich, D.P. The dual effect of social ties on COVID-19 spread in Japan. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Fraser, T. Japanese social capital and social vulnerability indices: Measuring drivers of community resilience 2000–2017. Int. J. Disaster Risk Reduct. 2020, 52, 101965. [Google Scholar] [CrossRef]
- Arachchi, J.I.; Managi, S. The role of social capital in COVID-19 deaths. BMC Public Health 2021, 21, 1–9. [Google Scholar] [CrossRef]
- Cash, R.; Patel, V. Has COVID-19 subverted global health? Lancet 2020, 395, 1687–1688. [Google Scholar] [CrossRef]
- Sugg, M.M.; Spaulding, T.J.; Lane, S.J.; Runkle, J.D.; Harden, S.R.; Hege, A.; Iyer, L.S. Mapping community-level determinants of COVID-19 transmission in nursing homes: A multi-scale approach. Sci. Total Environ. 2020, 752, 141946. [Google Scholar] [CrossRef]
- Otieno, S. COVID-19: Africa’s Eldery May Benefit from Social Structures. 2021. Available online: https://www.scidev.net/sub-saharan-africa/news/covid-19-africa-s-elderly-may-benefit-from-social-structures/ (accessed on 8 April 2021).
- Lloyd-Sherlock, P.; Ebrahim, S.; Geffen, L.; McKee, M. Bearing the brunt of Covid-19: Older people in low and middle income countries. BMJ 2020, 368, 1052. [Google Scholar] [CrossRef] [Green Version]
- Cowper, B.; Jassat, W.; Pretorius, P.; Geffen, L.; Legodu, C.; Singh, S.; Blumberg, L. COVID-19 in long-term care facilities in South Africa: No time for complacency. S. Afr. Med. J. 2020, 110, 962. [Google Scholar] [CrossRef]
- Adamek, M.E.; Balaswamy, S. Long term care for elders in developing countries in Asia and Africa: A systematic review. Gerontology 2016, 56, 413. [Google Scholar] [CrossRef] [Green Version]
- Cafagna, G.A.; Aranco, N.; Ibarrarán, P.; Oliveri, M.L.; Medellín, N.; Stampini, M. Age with Care: Long-Term Care in Latin America and the Caribbean. 2019. Available online: https://publications.iadb.org/en/age-care-long-term-care-latin-america-and-caribbean (accessed on 2 May 2021).
- Caruso, M.; Galiani, S.; Ibarrarán, P. Long-Term Care in Latin America and the Caribbean? Theory Policy Considerations. 2017. Available online: https://www.nber.org/papers/w23797 (accessed on 2 May 2021).
- World Health Organization. Modes of Transmission of Virus Causing COVID-19: Implications for IPC Precaution Recommendations. Available online: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations (accessed on 8 April 2021).
- Dietz, L.; Horve, P.F.; Coil, D.A.; Fretz, M.; Eisen, J.A.; Wymelenberg, K.V.D. 2019 novel Coronavirus (COVID-19) pandemic: Built environment considerations to reduce transmission. mSystems 2020, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Torboli, V.; Fontana, F.; et al. SARS-Cov-2RNA found on particulate matter of Bergamo in northern Italy: First evidence. Environ. Res. 2020, 188, 109754. [Google Scholar] [CrossRef] [PubMed]
- Bulfone, T.C.; Malekinejad, M.; Rutherford, G.W.; Razani, N. Outdoor transmission of SARS-CoV-2 and other respiratory viruses: A systematic review. J. Infect. Dis. 2020, 223, 550–561. [Google Scholar] [CrossRef]
- Senatore, V.; Zarra, T.; Buonerba, A.; Choo, K.-H.; Hasan, S.W.; Korshin, G.; Li, C.-W.; Ksibi, M.; Belgiorno, V.; Naddeo, V. Indoor versus outdoor transmission of SARS-COV-2: Environmental factors in virus spread and underestimated sources of risk. Euro Mediterr. J. Environ. Integr. 2021, 6, 1–9. [Google Scholar] [CrossRef]
- Rowe, B.; Canosa, A.; Drouffe, J.; Mitchell, J. Simple quantitative assessment of the outdoor versus indoor airborne transmission of viruses and COVID-19. Environ. Res. 2021, 198, 111189. [Google Scholar] [CrossRef] [PubMed]
- Naddeo, V.; Liu, H. Editorial perspectives: 2019 novel coronavirus (SARS-CoV-2): What is its fate in urban water cycle and how can the water research community respond? Environ. Sci. Water Res. Technol. 2020, 6, 1213–1216. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The national human activity pattern survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Matz, C.J.; Stieb, D.M.; Brion, O. Urban-rural differences in daily time-activity patterns, occupational activity and housing characteristics. Environ. Health 2015, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Merow, C.; Urban, M.C. Seasonality and uncertainty in global COVID-19 growth rates. Proc. Natl. Acad. Sci. USA 2020, 117, 27456–27464. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tang, K.; Feng, K.; Lin, X.; Lv, W.; Chen, K.; Wang, F. Impact of temperature and relative humidity on the transmission of COVID-19: A modelling study in China and the United States. BMJ Open 2021, 11, e043863. [Google Scholar] [CrossRef]
- Kerr, G.H.; Badr, H.S.; Gardner, L.M.; Perez-Saez, J.; Zaitchik, B.F. Associations between meteorology and COVID-19 in early studies: Inconsistencies, uncertainties, and recommendations. One Health 2021, 12, 100225. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.M.; Subramanian, S.; Laird, E.; Kenny, R.A. Letter: Low population mortality from COVID-19 in countries south of latitude 35° North supports vitamin D as a factor determining severity. Authors’ reply. Aliment. Pharmacol. Ther. 2020, 52, 412–413. [Google Scholar] [CrossRef]
- Pereira, M.; Damascena, A.D.; Azevedo, L.M.G.; Oliveira, T.D.A.; Santana, J.D.M. Vitamin D deficiency aggravates COVID-19: Systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2020, 1–9. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. 2021. Available online: https://clinicaltrials.gov/ct2/results?recrs=&cond=Vitamin+D&term=Covid-19&cntry=&state=&city=&dist= (accessed on 8 April 2021).
- Levin, A.T.; Hanage, W.P.; Owusu-Boaitey, N.; Cochran, K.B.; Walsh, S.P.; Meyerowitz-Katz, G. Assessing the age specificity of infection fatality rates for COVID-19: Systematic review, meta-analysis, and public policy implications. Eur. J. Epidemiol. 2020, 35, 1123–1138. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Risk for COVID-19 Infection, Hospitalization, and Death by Age Group. 2019. Available online: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-age.html (accessed on 8 April 2021).
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nat. Cell Biol. 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Census of India. Office of the Registrar General and Census Commissioner, India. 2021. Available online: https://censusindia.gov.in (accessed on 8 April 2021).
- Brazil Institute of Geography and Statistics. Projections and Estimates of the Population of Brazil. 2021. Available online: https://www.ibge.gov.br/apps/populacao/projecao/index.html (accessed on 8 April 2021).
- United States Census Bureau. People and Population Data—United States of America. Available online: https://data.census.gov/cedsci/profile?g=0100000US (accessed on 8 April 2021).
- United Kingdom Office for National Statistics. United Kingdom 2011 Census Data. 2011. Available online: https://www.ons.gov.uk/census/2011census/2011censusdata (accessed on 8 April 2021).
- Lawal, Y. Africa’s low COVID-19 mortality rate: A paradox? Int. J. Infect. Dis. 2020, 102, 118–122. [Google Scholar] [CrossRef]
- COVID-19 Data Explorer. Oxford. 2020. Available online: https://ourworldindata.org/coronavirus (accessed on 19 February 2021).
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Chakafana, G.; Mutithu, D.; Hoevelmann, J.; Ntusi, N.; Sliwa, K. Interplay of COVID-19 and cardiovascular diseases in Africa: An observational snapshot. Clin. Res. Cardiol. 2020, 109, 1460–1468. [Google Scholar] [CrossRef]
- Hughes, G.D.; Mbamalu, O.N.; Okonji, C.O.; Puoane, T.R. The impact of health disparities on COVID-19 outcomes: Early findings from a high-income country and two middle-income countries. J. Racial Ethn. Health Disparities 2021, 1–8. [Google Scholar] [CrossRef]
- Gouda, H.N.; Charlson, F.; Sorsdahl, K.; Ahmadzada, S.; Ferrari, A.; Erskine, H.; Leung, J.; Santamauro, D.; Lund, C.; Aminde, L.N.; et al. Burden of non-communicable diseases in sub-Saharan Africa, 1990–2017: Results from the Global Burden of Disease Study 2017. Lancet Glob. Health 2019, 7, e1375–e1387. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Noncommunicable Diseases Country Profile 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Osetinsky, B.; Hontelez, J.A.C.; Lurie, M.N.; McGarvey, S.T.; Bloomfield, G.S.; Pastakia, S.D.; Wamai, R.; Bärnighausen, T.; de Vlas, S.J.; Galárraga, O. Epidemiological and health systems implications of evolving HIV and hypertension in south Africa and Kenya. Health Aff. 2019, 38, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.-A. HIV and risk of COVID-19 death: A population cohort study from the Western Cape province, south Africa. medRxiv 2020. [Google Scholar] [CrossRef]
- UNAIDS. HIV and AIDS Estimates. South Africa 2019 Country Factsheet. 2019. Available online: https://www.unaids.org/en/regionscountries/countries/southafrica (accessed on 8 April 2021).
- Lee, Y.J.; Jang, Y.H.; Seo, S.-U.; Chang, J.; Seong, B.L. Non-specific effect of vaccines: Immediate protection against respiratory syncytial virus infection by a live attenuated influenza vaccine. Front. Microbiol. 2018, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Uthayakumar, D.; Paris, S.; Chapat, L.; Freyburger, L.; Poulet, H.; De Luca, K. Non-specific effects of vaccines illustrated through the BCG example: From observations to demonstrations. Front. Immunol. 2018, 9, 2869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benn, C.S.; Netea, M.G.; Selin, L.; Aaby, P. A small jab—A big effect: Nonspecific immunomodulation by vaccines. Trends Immunol. 2013, 34, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Parmar, K.; Siddiqui, A.; Nugent, K. Bacillus Calmette-Guerin vaccine and nonspecific immunity. Am. J. Med. Sci. 2021, 361, 683–689. [Google Scholar] [CrossRef]
- Blok, B.A.; Arts, R.J.W.; Van Crevel, R.; Benn, C.S.; Netea, M.G. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J. Leukoc. Biol. 2015, 98, 347–356. [Google Scholar] [CrossRef]
- Clem, A.S. Fundamentals of vaccine immunology. J. Glob. Infect. Dis. 2011, 3, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Sehrawat, S.; Rouse, B.T. Does the hygiene hypothesis apply to COVID-19 susceptibility? Microbes Infect. 2020, 22, 400–402. [Google Scholar] [CrossRef]
- Gursel, M.; Gursel, I. Is global BCG vaccination-induced trained immunity relevant to the progression of SARS-CoV-2 pandemic? Allergy 2020, 75, 1815–1819. [Google Scholar] [CrossRef]
- O’Neill, L.A.J.; Netea, M.G. BCG-induced trained immunity: Can it offer protection against COVID-19? Nat. Rev. Immunol. 2020, 20, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Stensballe, L.G.; Nante, E.; Jensen, I.P.; Kofoed, P.-E.; Poulsen, A.; Jensen, H.; Newport, M.; Marchant, A.; Aaby, P. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: A beneficial effect of BCG vaccination for girls: Community based case-control study. Vaccine 2005, 23, 1251–1257. [Google Scholar] [CrossRef]
- Nemes, E.; Geldenhuys, H.; Rozot, V.; Rutkowski, K.T.; Ratangee, F.; Bilek, N.; Mabwe, S.; Makhethe, L.; Erasmus, M.; Toefy, A.; et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N. Engl. J. Med. 2018, 379, 138–149. [Google Scholar] [CrossRef]
- Spencer, J.C.; Ganguly, R.; Waldman, R.H. Nonspecific protection of mice against influenza virus infection by local or systemic immunization with Bacille Calmette-Guerin. J. Infect. Dis. 1977, 136, 171–175. [Google Scholar] [CrossRef]
- Starr, S.E.; Visintine, A.M.; Tomeh, M.O.; Nahmias, A.J. Effects of immunostimulants on resistance of newborn mice to herpes simplex type 2 infection. Exp. Biol. Med. 1976, 152, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Reandelar, M.J.; Fasciglione, K.; Roumenova, V.; Li, Y.; Otazu, G.H. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: An epidemiological study. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Manjili, R.H.; Zarei, M.; Habibi, M.; Manjili, M.H. COVID-19 as an acute inflammatory disease. J. Immunol. 2020, 205, 12–19. [Google Scholar] [CrossRef]
- Yeo, W.S.; Ng, Q.X. Distinguishing between typical Kawasaki disease and multisystem inflammatory syndrome in children (MIS-C) associated with SARS-CoV-2. Med. Hypotheses 2020, 144, 110263. [Google Scholar] [CrossRef]
- World Health Organization. Reported Estimates of BCG Coverage. Available online: https://apps.who.int/immunization_monitoring/globalsummary/timeseries/tscoveragebcg.html (accessed on 8 April 2021).
- Hadley, C. Should auld acquaintance be forgot…The “hygiene hypothesis” is less about cleanliness, and more about the changes that humans have made to their lifestyle. EMBO Rep. 2004, 5, 1122–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, B.; Karandikar, R.L.; Mande, S.C. Paradoxical case fatality rate dichotomy of Covid-19 among rich and poor nations points to the “hygiene hypothesis”. medRxiv 2020. [Google Scholar] [CrossRef]
- Chatterjee, B.; Karandikar, R.L.; Mande, S.C. The mortality due to COVID-19 in different nations is associated with the demographic character of nations and the prevalence of autoimmunity. medRxiv 2020. [Google Scholar] [CrossRef]
- Moore, M.; Gelfeld, B.; Okunogbe, A.; Paul, C. Identifying future disease hot spots: Infectious disease vulnerability index. Rand Health Q. 2016, 6. [Google Scholar] [CrossRef]
- Hotez, P.J.; Kamath, A. Neglected tropical diseases in sub-Saharan Africa: Review of their prevalence, distribution, and disease burden. PLoS Negl. Trop. Dis. 2009, 3, e412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rweyemamu, M.; Otim-Nape, W.; Serwadda, D. Foresight. Infectious Diseases: Preparing for the Future. Africa; Office of Science and Innovation: London, UK, 2006. [Google Scholar]
- Elton, L.; Thomason, M.J.; Tembo, J.; Velavan, T.P.; Pallerla, S.R.; Arruda, L.B.; Vairo, F.; Montaldo., C.; Ntoumi, F.; Hamid, M.M.A.; et al. Antimicrobial resistance preparedness in sub-Saharan African countries. Antimicrob. Resist. Infect. Control 2020, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Eisele, T.P. Mass drug administration can be a valuable addition to the malaria elimination toolbox. Malar. J. 2019, 18, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romani, L.; Marks, M.; Sokana, O.; Nasi, T.; Kamoriki, B.; Wand, H.; Whitfeld, M.J.; Engelman, D.; Solomon, A.; Steer, A.C.; et al. Feasibility and safety of mass drug coadministration with azithromycin and ivermectin for the control of neglected tropical diseases: A single-arm intervention trial. Lancet Glob. Health 2018, 6, e1132–e1138. [Google Scholar] [CrossRef] [Green Version]
- Macfarlane, C.; Dean, L.; Thomson, R.; Garner, P. Community drug distributors for mass drug administration in neglected tropical disease programmes: Systematic review and analysis of policy documents. J. Glob. Health 2019, 9, 020414. [Google Scholar] [CrossRef]
- Echeverría-Esnal, D.; Martin-Ontiyuelo, C.; Navarrete-Rouco, M.E.; Cuscó, M.D.-A.; Ferrández, O.; Horcajada, J.P.; Grau, S. Azithromycin in the treatment of COVID-19: A review. Expert Rev. Anti-Infect. Ther. 2020, 19, 147–163. [Google Scholar] [CrossRef]
- Wamae, C.N. Mass drug administration and worms experience in Africa: Envisage repurposing ivermectin for SARS-COV-2. Am. J. Trop. Med. Hyg. 2020, 103, 10–11. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, M.D.; Maia, A. A COVID-19 prophylaxis? Lower incidence associated with prophylactic administration of ivermectin. Int. J. Antimicrob. Agents 2020, 57, 106248. [Google Scholar] [CrossRef] [PubMed]
- Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 2020, 178, 104787. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health (NIH). COVID-19 Treatment Guidelines: Ivermectin. 2021. Available online: https://www.covid19treatmentguidelines.nih.gov/antiviral-therapy/ivermectin/ (accessed on 8 April 2021).
- World Health Organization. World Malaria Report 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Olesen, O.F.; Parker, M.I. Health research in Africa: Getting priorities right. Trop. Med. Int. Health 2012, 17, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Long, C.A.; Zavala, F. Immune responses in malaria. Cold Spring Harb. Perspect. Med. 2017, 7, a025577. [Google Scholar] [CrossRef]
- Artavanis-Tsakonas, K.; Tongren, J.E.; Riley, E.M. The war between the malaria parasite and the immune system: Immunity, immunoregulation and immunopathology. Clin. Exp. Immunol. 2003, 133, 145–152. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Where Malaria Occurs. 2020. Available online: https://www.cdc.gov/malaria/about/distribution.html (accessed on 8 April 2021).
- Oyebode, O.; Kandala, N.-B.; Chilton, P.J.; Lilford, R.J. Use of traditional medicine in middle-income countries: A WHO-SAGE study. Health Policy Plan. 2016, 31, 984–991. [Google Scholar] [CrossRef] [Green Version]
- Mahomoodally, M.F. Traditional medicines in Africa: An appraisal of ten potent African medicinal plants. Evid. Based Complement. Altern. Med. 2013, 2013, 617459. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. WHO Global Report on Traditional and Complementary Medicine 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- World Health Organization. Expert Panel Endorses Protocol for COVID-19 Herbal Medicine Clinical Trials. 2020. Available online: https://www.afro.who.int/news/expert-panel-endorses-protocol-covid-19-herbal-medicine-clinical-trials (accessed on 9 April 2021).
- Akindele, A.J.; Agunbiade, F.O.; Sofidiya, M.O.; Awodele, O.; Sowemimo, A.; Ade-Ademilua, O.; Akinleye, M.O.; Ishola, I.O.; Orabueze, I.; Salu, O.B.; et al. COVID-19 pandemic: A case for phytomedicines. Nat. Prod. Commun. 2020, 15. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. Available online: https://clinicaltrials.gov/ct2/results?recrs=&cond=herbal+medicine&term=COVID-19&cntry=&state=&city=&dist= (accessed on 9 April 2021).
- Pairo-Castineira, E.; Clohisey, S.; Klaric, L.; Bretherick, A.D.; Rawlik, K.; Pasko, D.; Walker, S.; Parkinson, N.; Fourman, M.H.; Russell, C.D.; et al. Genetic mechanisms of critical illness in COVID-19. Nat. Cell Biol. 2020, 591, 92–98. [Google Scholar] [CrossRef]
- Zeberg, H.; Pääbo, S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nat. Cell Biol. 2020, 587, 610–612. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Z.; Wang, Y.; Zhou, Y.; Ma, Y.; Zuo, W. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am. J. Respir. Crit. Care Med. 2020, 202, 756–759. [Google Scholar] [CrossRef]
- Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; Buti, M.; Albillos, A.; Invernizzi, P.; Fernández, J.; Prati, D.; Baselli, G.; Asselta, R.; et al. The severe Covid-19 GWAS group genomewide association study of severe Covid-19 with respiratory failure. N. Engl. J. Med. 2020, 383, 1522–1534. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, J. Blood group distribution in an urban population of patient targeted blood donors. East. Afr. Med. J. 1999, 76. [Google Scholar]
- Cheng, Y.; Mohammed, S.; Okoh, A.; Lee, K.; Raczek, C.; Krushna, A.; Cohen, A.J.; Nagarakanti, S. Association of Blood type on clinical outcomes in Black/African Americans hospitalized for COVID-19 infection. Blood 2020, 136, 14. [Google Scholar] [CrossRef]
- Rettner, R. What’s the Rarest Blood Type? Live Science. 2019. Available online: https://www.livescience.com/36559-common-blood-type-donation.html (accessed on 9 April 2021).
- Millett, G.A.; Jones, A.T.; Benkeser, D.; Baral, S.; Mercer, L.; Beyrer, C.; Honermann, B.; Lankiewicz, E.; Mena, L.; Crowley, J.S.; et al. Assessing differential impacts of COVID-19 on black communities. Ann. Epidemiol. 2020, 47, 37–44. [Google Scholar] [CrossRef]
- Tishkoff, S.A.; Reed, F.A.; Friedlaender, F.R.; Ehret, C.; Ranciaro, A.; Froment, A.; Hirbo, J.B.; Awomoyi, A.A.; Bodo, J.-M.; Doumbo, O.; et al. The genetic structure and history of Africans and African Americans. Science 2009, 324, 1035–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryc, K.; Auton, A.; Nelson, M.R.; Oksenberg, J.R.; Hauser, S.L.; Williams, S.; Froment, A.; Bodo, J.-M.; Wambebe, C.; Tishkoff, S.A.; et al. Genome-wide patterns of population structure and admixture in west Africans and African Americans. Proc. Natl. Acad. Sci. USA 2009, 107, 786–791. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.; Rotimi, C.; Ataman, S.; McGee, D.; Osotimehin, B.; Kadiri, S.; Muna, W.; Kingue, S.; Fraser, H.; Forrester, T.; et al. The prevalence of hypertension in seven populations of west African origin. Am. J. Public Health 1997, 87, 160–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carnethon, M.; Pu, J.; Howard, G.; Albert, M.A.; Anderson, C.A.; Bertoni, A.G.; Mujahid, M.S.; Palaniappan, L.; Taylor, H.A.; Willis, M.; et al. Cardiovascular health in African Americans: A scientific statement from the American heart association. Circulation 2017, 136, e393–e423. [Google Scholar] [CrossRef] [PubMed]
- United Nations Development Programme (UNDP). Income Gini Coefficient. 2020. Available online: http://hdr.undp.org/en/content/income-gini-coefficient (accessed on 9 April 2021).
- Yaya, S.; Yeboah, H.; Charles, C.H.; Otu, A.; LaBonte, R. Ethnic and racial disparities in COVID-19-related deaths: Counting the trees, hiding the forest. BMJ Glob. Health 2020, 5, e002913. [Google Scholar] [CrossRef]
- Sze, S.; Pan, D.; Nevill, C.R.; Gray, L.; Martin, C.A.; Nazareth, J.; Minhas, J.; Divall, P.; Khunti, K.; Abrams, K.R.; et al. Ethnicity and clinical outcomes in COVID-19: A systematic review and meta-analysis. EClinicalMedicine 2020, 29-30, 100630. [Google Scholar] [CrossRef] [PubMed]
- Andrews, G.R. Racial Inequality in Brazil and the United States: A statistical comparison. J. Soc. Hist. 1992, 26, 229–263. [Google Scholar] [CrossRef]
- Hamilton, C.V.; Huntley, L.; Alexander, N.; Guimardes, A.S.A.; James, W. Beyond Racism: Race and Inequality in Brazil, South Africa, and the United States; Lynne Rienner Publishers: Boulder, CO, USA, 2001. [Google Scholar]
- Finch, W.H.; Finch, M.E.H. Poverty and Covid-19: Rates of incidence and deaths in the United States during the first 10 weeks of the pandemic. Front. Sociol. 2020, 5, 47. [Google Scholar] [CrossRef]
- Viens, A.M.; Eyawo, O. COVID-19: The rude awakening for the political elite in low- and middle-income countries. BMJ Glob. Health 2020, 5, e002807. [Google Scholar] [CrossRef] [PubMed]
- Nwosu, C.O.; Oyenubi, A. Income-related health inequalities associated with the coronavirus pandemic in south Africa: A decomposition analysis. Int. J. Equity Health 2021, 20, 1–12. [Google Scholar] [CrossRef]
- Musa, H.H.; Musa, T.H.; Musa, I.H.; Musa, I.H.; Ranciaro, A.; Campbell, M.C. Addressing Africa’s pandemic puzzle: Perspectives on COVID-19 transmission and mortality in sub-Saharan Africa. Int. J. Infect. Dis. 2020, 102, 483–488. [Google Scholar] [CrossRef]
- Kuehn, B.M. Africa succeeded against COVID-19′s first wave, but the second wave brings new challenges. JAMA 2021, 325, 327. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Africa Faces Steepest COVID-19 Surge Yet. 2021. Available online: https://www.afro.who.int/news/africa-faces-steepest-covid-19-surge-yet (accessed on 29 June 2021).
- Callaway, E. Delta coronavirus variant: Scientists brace for impact. Nat. Cell Biol. 2021, 595, 17–18. [Google Scholar] [CrossRef]
- Fullman, N.; Yearwood, J.; Abay, S.M.; Abbafati, C.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abebe, Z.; Abebo, T.A.; Aboyans, V.; et al. Measuring performance on the healthcare access and quality index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global burden of disease study 2016. Lancet 2018, 391, 2236–2271. [Google Scholar] [CrossRef]
- Dente, M.G.; Resti, C.V.; Declich, S.; Putoto, G. The reported few cases and deaths of Covid-19 epidemic in Africa are still data too questionable to reassure about the future of this continent. Front. Public Health 2021, 9, 613484. [Google Scholar] [CrossRef]
- Headey, D.; Heidkamp, R.; Osendarp, S.; Ruel, M.; Scott, N.; Black, R.; Shekar, M.; Bouis, H.; Flory, A.; Haddad, L.; et al. Impacts of COVID-19 on childhood malnutrition and nutrition-related mortality. Lancet 2020, 396, 519–521. [Google Scholar] [CrossRef]
- Jewell, B.L.; Mudimu, E.; Stover, J.; Brink, D.T.; Phillips, A.N.; Smith, J.A.; Martin-Hughes, R.; Teng, Y.; Glaubius, R.; Mahiane, S.G.; et al. Potential effects of disruption to HIV programmes in sub-Saharan Africa caused by COVID-19: Results from multiple mathematical models. Lancet HIV 2020, 7, e629–e640. [Google Scholar] [CrossRef]
- Goalkeepers Report. COVID-19 A Global Perspective. 2020. Available online: https://www.gatesfoundation.org/goalkeepers/report/2020-report/#GlobalPerspective (accessed on 14 April 2021).
- World Health Organization Immunization, Vaccines and Biologicals Website. More than 117 Million Children at Risk of Missing Out on Measles Vaccines, as COVID-19 Surges. 2020. Available online: https://www.who.int/immunization/diseases/measles/statement_missing_measles_vaccines_covid-19/en/ (accessed on 14 April 2021).
- World Health Organization. Coronavirus Disease (COVID-19): Herd Immunity, Lockdowns and COVID-19. 2020. Available online: https://www.who.int/news-room/q-a-detail/herd-immunity-lockdowns-and-covid-19?gclid=CjwKCAjwr_uCBhAFEiwAX8YJgVKPC4VjiRuciYR8yx-ynYd_hzAOgVyRLNlUNTwEgnwPofTqdvR1wRoCxOgQAvD_BwE (accessed on 9 April 2021).
- World Health Organization Regional Office for Africa. HIV/AIDS. 2021. Available online: https://www.afro.who.int/health-topics/hivaids (accessed on 9 April 2021).
- Sankoh, O.; Dickson, K.E.; Faniran, S.; Lahai, J.I.; Forna, F.; Liyosi, E.; Kamara, M.K.; Jabbi, S.-M.B.-B.; Johnny, A.B.; Conteh-Khali, N.; et al. Births and deaths must be registered in Africa. Lancet Glob. Health 2020, 8, e33–e34. [Google Scholar] [CrossRef] [Green Version]
- Bedford, J.; Farrar, J.; Ihekweazu, C.; Kang, G.; Koopmans, M.; Nkengasong, J. A new twenty-first century science for effective epidemic response. Nat. Cell Biol. 2019, 575, 130–136. [Google Scholar] [CrossRef]
- Africa Union CDC. COVID-19 Vaccination. 2021. Available online: https://africacdc.org/covid-19-vaccination/ (accessed on 11 August 2021).
- Halperin, D.T.; Hodgins, S.; Bailey, R.C.; Klausner, J.D.; Jackson, H.; Wamai, R.; Ladapo, J.A.; Over, M.; Baral, S.; Escandón, K.; et al. Revisiting COVID-19 Policies: 10 Evidence-Based Recommendations for Where to Go from Here. Available online: https://osf.io/nrvtf/ (accessed on 6 July 2021).
- Njenga, M.K.; Dawa, J.; Nanyingi, M.; Gachohi, J.; Ngere, I.; Letko, M.; Otieno, C.F.; Gunn, B.M.; Osoro, E. Why is there low morbidity and mortality of COVID-19 in Africa? Am. J. Trop. Med. Hyg. 2020, 103, 564–569. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wamai, R.G.; Hirsch, J.L.; Van Damme, W.; Alnwick, D.; Bailey, R.C.; Hodgins, S.; Alam, U.; Anyona, M. What Could Explain the Lower COVID-19 Burden in Africa despite Considerable Circulation of the SARS-CoV-2 Virus? Int. J. Environ. Res. Public Health 2021, 18, 8638. https://doi.org/10.3390/ijerph18168638
Wamai RG, Hirsch JL, Van Damme W, Alnwick D, Bailey RC, Hodgins S, Alam U, Anyona M. What Could Explain the Lower COVID-19 Burden in Africa despite Considerable Circulation of the SARS-CoV-2 Virus? International Journal of Environmental Research and Public Health. 2021; 18(16):8638. https://doi.org/10.3390/ijerph18168638
Chicago/Turabian StyleWamai, Richard G., Jason L. Hirsch, Wim Van Damme, David Alnwick, Robert C. Bailey, Stephen Hodgins, Uzma Alam, and Mamka Anyona. 2021. "What Could Explain the Lower COVID-19 Burden in Africa despite Considerable Circulation of the SARS-CoV-2 Virus?" International Journal of Environmental Research and Public Health 18, no. 16: 8638. https://doi.org/10.3390/ijerph18168638