Estimated Artificial Neural Network Modeling of Maximal Oxygen Uptake Based on Multistage 10-m Shuttle Run Test in Healthy Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Blood Pressure
2.4. Waist Circumference, Hip Circumference, and WHR
2.5. Body Composition
2.6. Graded Exercise Test
2.7. Ten-Meter Shuttle Run Test
2.8. Statistical Analysis
2.9. Artificial Neural Network-Based Prediction Model
3. Results
3.1. Estimation Accuracy of Artificial Neural Network-Based Maximal Oxygen Uptake Prediction Model
3.2. Difference between Measured Maximal Oxygen Uptake and Artificial Neural Network-Based Predicted Maximal Oxygen Uptake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Przednowek, K.; Barabasz, Z.; Zadarko-Domaradzka, M.; Przednowek, K.H.; Nizioł-Babiarz, E.; Huzarski, M.; Sibiga, K.; Dziadek, B.; Zadarko, E. Predictive Modeling of VO2max Based on 20 m Shuttle Run Test for Young Healthy People. Appl. Sci. 2018, 8, 2213. [Google Scholar] [CrossRef]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Després, J.-P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J. Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign: A scientific statement from the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef]
- Chu, D.J.; Al Rifai, M.; Virani, S.S.; Brawner, C.A.; Nasir, K.; Al-Mallah, M.H. The relationship between cardiorespiratory fitness, cardiovascular risk factors and atherosclerosis. Atherosclerosis 2020, 304, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Barlow, C.E.; LaMonte, M.J.; Fitzgerald, S.J.; Kampert, J.B.; Perrin, J.L.; Blair, S.N. Cardiorespiratory fitness is an independent predictor of hypertension incidence among initially normotensive healthy women. Am. J. Epidemiol. 2006, 163, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Green, D.J. Exercise protects the cardiovascular system: Effects beyond traditional risk factors. J. Physiol. 2009, 587, 5551–5558. [Google Scholar] [CrossRef]
- Walsh, N.P.; Gleeson, M.; Shephard, R.J.; Gleeson, M.; Woods, J.A.; Bishop, N.C.; Fleshner, M.; Green, C.; Pedersen, B.K.; Hoffman-Goetz, L.; et al. Position statement. Part one: Immune function and exercise. Exerc. Immunol. Rev. 2011, 17, 6–63. [Google Scholar]
- Wilson, M.G.; Ellison, G.M.; Cable, N.T. Basic science behind the cardiovascular benefits of exercise. Postgrad. Med. J. 2015, 91, 704–711. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [PubMed]
- Gray, B.J.; Stephens, J.W.; Williams, S.P.; Davies, C.A.; Turner, D.; Bracken, R.M. Cardiorespiratory fitness is a stronger indicator of cardiometabolic risk factors and risk prediction than self-reported physical activity levels. Diabetes Vasc. Dis. Res. 2015, 12, 428–435. [Google Scholar] [CrossRef]
- Ling, J.C.; Mohamed, M.N.; Jalaludin, M.Y.; Rampal, S.; Zaharan, N.L.; Mohamed, Z. Determinants of High Fasting Insulin and Insulin Resistance among Overweight/Obese Adolescents. Sci. Rep. 2016, 6, 36270. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.R.; Werneck, A.O.; Collings, P.J.; Ohara, D.; Fernandes, R.A.; Barbosa, D.S.; Ronque, E.R.V.; Sardinha, L.B.; Cyrino, E.S. Cardiorespiratory fitness effect may be under-estimated in ‘fat but fit’ hypothesis studies. Ann. Hum. Biol. 2017, 44, 237–242. [Google Scholar] [CrossRef]
- Cao, Z.B.; Miyatake, N.; Higuchi, M.; Miyachi, M.; Ishikawa-Takata, K.; Tabata, I. Predicting VO2max with an objectively measured physical activity in Japanese women. Med. Sci. Sports Exerc. 2010, 42, 179–186. [Google Scholar] [CrossRef]
- Strasser, B.; Burtscher, M. Survival of the fittest: VO2max, a key predictor of longevity? Front. Biosci. 2018, 23, 1505–1516. [Google Scholar] [CrossRef]
- Wier, L.T.; Jackson, A.S.; Ayers, G.W.; Arenare, B. Nonexercise models for estimating VO2max with waist girth, percent fat, or BMI. Med. Sci. Sports Exerc. 2006, 38, 555–561. [Google Scholar] [CrossRef]
- Cao, Z.B.; Miyatake, N.; Higuchi, M.; Ishikawa-Takata, K.; Miyachi, M.; Tabata, I. Prediction of VO2max with daily step counts for Japanese adult women. Eur. J. Appl. Physiol. 2009, 105, 289–296. [Google Scholar] [CrossRef]
- Léger, L.A.; Lambert, J. A maximal multistage 20-m shuttle run test to predict VO2max. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 1–12. [Google Scholar] [CrossRef]
- Mahar, M.T.; Guerieri, A.M.; Hanna, M.S.; Kemble, C.D. Estimation of aerobic fitness from 20-m multistage shuttle run test performance. Am. J. Prev. Med. 2011, 41, S117–S123. [Google Scholar] [CrossRef] [PubMed]
- Paradisis, G.P.; Zacharogiannis, E.; Mandila, D.; Smirtiotou, A.; Argeitaki, P.; Cooke, C.B. Multi-Stage 20-m Shuttle Run Fitness Test, Maximal Oxygen Uptake and Velocity at Maximal Oxygen Uptake. J. Hum. Kinet. 2014, 41, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Mikawa, K.; Senjyu, H. Development of a field test for evaluating aerobic fitness in middle-aged adults: Validity of a 15-m incremental shuttle walk and run test. J. Sports Sci. Med. 2011, 10, 712–717. [Google Scholar] [PubMed]
- Matsuzaka, A.; Takahashi, Y.; Yamazoe, M.; Kumakura, N.; Ikeda, A.; Wilk, B.; Bar-Or, O. Validity of the multistage 20-m shuttle-run test for Japanese children, adolescents, and adults. Pediatr. Exerc. Sci. 2004, 16, 113–125. [Google Scholar] [CrossRef]
- Andersen, L.B.; Andersen, T.E.; Andersen, E.; Anderssen, S.A. An intermittent running test to estimate maximal oxygen uptake: The Andersen test. J. Sports Med. Phys. Fitness 2008, 48, 434–437. [Google Scholar] [PubMed]
- Cho, H.-L.; Park, H.-Y.; Nam, S.-S. Development of multistage 10-m shuttle run test for VO2max estimation in healthy adults. J. Men’s Health 2021, 17, 1–8. [Google Scholar] [CrossRef]
- Akay, M.; Özsert, G.; George, J. Prediction of maximal oxygen uptake using support vector machines from submaximal data. DEÜ Eng. Fac. Eng. Sci. J. 2014, 16, 42–48. [Google Scholar]
- Aktürk, E.; Akay, M. Prediction of maximal oxygen uptake using multilayer perceptron combined with feature selection. In Proceedings of the 7th Engineering and Technology Symposium, Ankara, Turkey, 15–16 May 2014; pp. 3–6. [Google Scholar]
- Abut, F.; Akay, M.F.; George, J. Developing new VO2max prediction models from maximal, submaximal and questionnaire variables using support vector machines combined with feature selection. Comput. Biol. Med. 2016, 79, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.H.; Park, H.Y.; Kim, Y.H.; Bae, S.K.; Ko, B.H.; Nam, S.S. Development of an anaerobic threshold (HRLT, HRVT) estimation equation using the heart rate threshold (HRT) during the treadmill incremental exercise test. J. Exerc. Nutr. Biochem. 2017, 21, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Sark, S.; Elshawi, R.; Ahmed, A.; Qureshi, W.T.; Brawner, C.; Keteyian, S.; Blaha, M.J.; Al-Mallah, M.H. Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project. PLoS ONE 2018, 13, e0195344. [Google Scholar] [CrossRef]
- Sakr, S.; Elshawi, R.; Ahmed, A.M.; Qureshi, W.T.; Brawner, C.A.; Keteyian, S.J.; Blaha, M.J.; Al-Mallah, M.H. Comparison of machine learning techniques to predict all-cause mortality using fitness data: The Henry ford exercIse testing (FIT) project. BMC Med. Inform. Decis. Mak. 2017, 17, 174. [Google Scholar] [CrossRef]
- Silva, G.; Oliveira, N.L.; Aires, L.; Mota, J.; Oliveira, J.; Ribeiro, J.C. Calculation and validation of models for estimating VO2max from the 20-m shuttle run test in children and adolescents. Arch. Exerc. Health Dis. 2012, 3, 145–152. [Google Scholar] [CrossRef]
- Takuro, K.; Kohei, S.; Kotarō, M.; Yoshiyasu, Y. The Reproducibility of the 15-m Shuttle Run Test, a Modified 20-m Shuttle Run Test, for the Assessment of Exercise Capacity. Rigakuryoho Kagaku 2015, 30, 81–84. [Google Scholar] [CrossRef][Green Version]
Both (n = 118) | Men (n = 59) | Women (n = 59) | |
---|---|---|---|
Age (yrs) | 38.29 ± 11.82 | 37.75 ± 12.09 | 38.83 ± 11.62 |
Height (cm) | 166.69 ± 8.16 | 172.69 ± 6.19 | 160.69 ± 4.77 |
Weight (kg) | 65.36 ± 10.72 | 72.99 ± 8.61 | 57.73 ± 6.26 |
BMI (kg/m2) | 23.41 ± 2.54 | 24.44 ± 2.24 | 22.37 ± 2.40 |
Percent skeletal muscle (%) | 29.86 ± 3.76 | 32.89 ± 2.42 | 26.84 ± 2.01 |
Percent body fat (%) | 24.42 ± 5.56 | 20.97 ± 4.51 | 27.87 ± 4.22 |
SBP (mmHg) | 121.89 ± 9.99 | 126.61 ± 7.07 | 117.17 ± 10.30 |
DBP (mmHg) | 79.14 ± 10.05 | 82.85 ± 9.32 | 75.44 ± 9.43 |
Waist circumference (cm) | 81.32 ± 7.66 | 84.38 ± 7.70 | 78.26 ± 6.33 |
Hip circumference (cm) | 96.04 ± 5.16 | 96.62 ± 5.52 | 95.47 ± 4.75 |
WHR | 0.85 ± 0.05 | 0.87 ± 0.05 | 0.82 ± 0.04 |
Numbers of round trips in 10 m SRT (n) | 115.61 ± 26.19 | 131.49 ± 24.08 | 99.73 ± 17.06 |
Final speed in 10 m SRT (km/h) | 10.03 ± 0.94 | 10.56 ± 0.89 | 9.50 ± 0.64 |
VO2max by GXT (mL/kg/min) | 44.27 ± 7.70 | 49.08 ± 6.70 | 39.46 ± 5.26 |
Start Time (min) | Finish Time (min) | Speed (km/h) | Moving Time Per 10 m (s) | Beats Per min | Number of Shuttles |
---|---|---|---|---|---|
0:00:00 | 0:01:00 | 3.6 | 10.00 | 54 | 6 |
0:01:00 | 0:02:00 | 4.8 | 7.50 | 72 | 8 |
0:02:00 | 0:03:00 | 6.0 | 6.00 | 90 | 10 |
0:03:00 | 0:04:00 | 6.0 | 6.00 | 90 | 10 |
0:04:00 | 0:05:00 | 7.2 | 5.00 | 108 | 12 |
0:05:00 | 0:06:00 | 7.2 | 5.00 | 108 | 12 |
0:06:00 | 0:07:00 | 8.4 | 4.29 | 126 | 14 |
0:07:00 | 0:08:00 | 8.4 | 4.29 | 126 | 14 |
0:08:00 | 0:09:00 | 9.6 | 3.75 | 144 | 16 |
0:09:00 | 0:10:00 | 9.6 | 3.75 | 144 | 16 |
0:10:00 | 0:11:00 | 10.8 | 3.33 | 162 | 18 |
0:11:00 | 0:12:00 | 10.8 | 3.33 | 162 | 18 |
0:12:00 | 0:13:00 | 12.0 | 3.00 | 180 | 20 |
0:13:00 | 0:14:00 | 12.0 | 3.00 | 180 | 20 |
0:14:00 | 0:15:00 | 13.2 | 2.73 | 198 | 22 |
0:15:00 | 0:16:00 | 13.2 | 2.73 | 198 | 22 |
0:16:00 | 0:17:00 | 14.4 | 2.50 | 216 | 24 |
0:17:00 | 0:18:00 | 14.4 | 2.50 | 216 | 24 |
0:18:00 | 0:19:00 | 15.6 | 2.31 | 234 | 26 |
0:19:00 | 0:20:00 | 15.6 | 2.31 | 234 | 26 |
0:20:00 | 0:21:00 | 16.8 | 2.14 | 252 | 28 |
0:21:00 | 0:22:00 | 16.8 | 2.14 | 252 | 28 |
VO2max by GXT | ||||
---|---|---|---|---|
Total | Men | Women | ||
Age (yrs) | Correlation | −0.339 * | −0.391 * | −0.412 * |
p-value | 0.000 | 0.002 | 0.001 | |
Height (cm) | Correlation | 0.412 * | −0.182 | 0.047 |
p-value | 0.000 | 0.167 | 0.724 | |
Weight (kg) | Correlation | 0.215 * | −0.440 * | −0.409 * |
p-value | 0.019 | 0.000 | 0.001 | |
BMI (kg/m2) | Correlation | −0.047 | −0.431 * | −0.437 * |
p-value | 0.617 | 0.001 | 0.001 | |
Percent skeletal muscle (%) | Correlation | 0.767 * | 0.593 * | 0.526 * |
p-value | 0.000 | 0.000 | 0.000 | |
Percent body fat (%) | Correlation | −0.783 * | −0.697 * | −0.577 * |
p-value | 0.000 | 0.000 | 0.000 | |
SBP (mmHg) | Correlation | 0.194 * | −0.198 | −0.125 |
p-value | 0.036 | 0.133 | 0.347 | |
DBP (mmHg) | Correlation | 0.066 | −0.300 * | −0.145 |
p-value | 0.477 | 0.021 | 0.275 | |
Waist circumference (cm) | Correlation | −0.151 | −0.642 * | −0.441 * |
p-value | 0.104 | 0.000 | 0.000 | |
Hip circumference (cm) | Correlation | −0.272 * | −0.457 * | −0.419 * |
p-value | 0.003 | 0.000 | 0.001 | |
WHR | Correlation | 0.003 | −0.561 * | −0.277 * |
p-value | 0.974 | 0.000 | 0.034 | |
Numbers of round trips in 10 m SRT (n) | Correlation | 0.837 * | 0.764 * | 0.688 * |
p-value | 0.000 | 0.000 | 0.000 | |
Final speed in 10 m SRT (km/h) | Correlation | 0.777 * | 0.683 * | 0.611 * |
p-value | 0.000 | 0.000 | 0.000 |
Measured VO2max by GXT | |||
---|---|---|---|
R2 | Adjust R2 | RMSE | |
Case 1 ANN-based estimation | 0.7765 | 0.7206 | 3.4940 |
Case 2 ANN-based estimation | 0.7909 | 0.7072 | 3.3798 |
Case 3 ANN-based estimation | 0.8206 | 0.7010 | 3.1301 |
Model | Mean ± S.D. | Bias | t-Value | p-Value | |
---|---|---|---|---|---|
Case1 | Predicted treadmill VO2max (mL/kg/min) | 43.73 ± 6.62 | −0.54 | 1.674 | 0.097 |
Measured treadmill VO2max (mL/kg/min) | 44.27 ± 7.70 | ||||
Case2 | Predicted treadmill VO2max (mL/kg/min) | 42.94 ± 5.55 | −1.32 | 3.753 | 0.000 |
Measured treadmill VO2max (mL/kg/min) | 44.27 ± 7.70 | ||||
Case3 | Predicted treadmill VO2max (mL/kg/min) | 43.33 ± 6.36 | −0.93 | 3.012 | 0.003 |
Measured treadmill VO2max (mL/kg/min) | 44.27 ± 7.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-Y.; Jung, H.; Lee, S.; Kim, J.-W.; Cho, H.-L.; Nam, S.-S. Estimated Artificial Neural Network Modeling of Maximal Oxygen Uptake Based on Multistage 10-m Shuttle Run Test in Healthy Adults. Int. J. Environ. Res. Public Health 2021, 18, 8510. https://doi.org/10.3390/ijerph18168510
Park H-Y, Jung H, Lee S, Kim J-W, Cho H-L, Nam S-S. Estimated Artificial Neural Network Modeling of Maximal Oxygen Uptake Based on Multistage 10-m Shuttle Run Test in Healthy Adults. International Journal of Environmental Research and Public Health. 2021; 18(16):8510. https://doi.org/10.3390/ijerph18168510
Chicago/Turabian StylePark, Hun-Young, Hoeryoung Jung, Seunghun Lee, Jeong-Weon Kim, Hong-Lae Cho, and Sang-Seok Nam. 2021. "Estimated Artificial Neural Network Modeling of Maximal Oxygen Uptake Based on Multistage 10-m Shuttle Run Test in Healthy Adults" International Journal of Environmental Research and Public Health 18, no. 16: 8510. https://doi.org/10.3390/ijerph18168510
APA StylePark, H.-Y., Jung, H., Lee, S., Kim, J.-W., Cho, H.-L., & Nam, S.-S. (2021). Estimated Artificial Neural Network Modeling of Maximal Oxygen Uptake Based on Multistage 10-m Shuttle Run Test in Healthy Adults. International Journal of Environmental Research and Public Health, 18(16), 8510. https://doi.org/10.3390/ijerph18168510