Janko, V.; Slapničar, G.; Dovgan, E.; Reščič, N.; Kolenik, T.; Gjoreski, M.; Smerkol, M.; Gams, M.; Luštrek, M.
Machine Learning for Analyzing Non-Countermeasure Factors Affecting Early Spread of COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 6750.
https://doi.org/10.3390/ijerph18136750
AMA Style
Janko V, Slapničar G, Dovgan E, Reščič N, Kolenik T, Gjoreski M, Smerkol M, Gams M, Luštrek M.
Machine Learning for Analyzing Non-Countermeasure Factors Affecting Early Spread of COVID-19. International Journal of Environmental Research and Public Health. 2021; 18(13):6750.
https://doi.org/10.3390/ijerph18136750
Chicago/Turabian Style
Janko, Vito, Gašper Slapničar, Erik Dovgan, Nina Reščič, Tine Kolenik, Martin Gjoreski, Maj Smerkol, Matjaž Gams, and Mitja Luštrek.
2021. "Machine Learning for Analyzing Non-Countermeasure Factors Affecting Early Spread of COVID-19" International Journal of Environmental Research and Public Health 18, no. 13: 6750.
https://doi.org/10.3390/ijerph18136750
APA Style
Janko, V., Slapničar, G., Dovgan, E., Reščič, N., Kolenik, T., Gjoreski, M., Smerkol, M., Gams, M., & Luštrek, M.
(2021). Machine Learning for Analyzing Non-Countermeasure Factors Affecting Early Spread of COVID-19. International Journal of Environmental Research and Public Health, 18(13), 6750.
https://doi.org/10.3390/ijerph18136750