Precision Health Care Elements, Definitions, and Strategies for Patients with Diabetes: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. First Stage
2.1.1. Primary Search Strategy
2.1.2. Secondary Search Strategy by Using Study Quality Review
Study Extraction of Elements on PHC for Patients with Diabetes
2.2. Second Stage
3. Results
3.1. Analysis and Compilation of the Derived Literature Search
3.2. Discovery of the Elements and Their Concept Description
3.2.1. Personalized Genetic or Lifestyle
3.2.2. Biodata- or Evidence-Based Requirement
3.2.3. Glycemic Target
3.2.4. Patient Preferences
3.2.5. Glycemic Control
3.2.6. Interdisciplinary Collaboration Practice
3.2.7. Self-Management
3.2.8. Patient Priority Direct Care
3.3. Definition of PHC
3.4. Strategies of PHC for Diabetes in Clinical Practice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IDF. International Diabetes Federation Diabetes Atlas, 9th ed.; Innis Communication: Brussels, Belgium, 2019; Available online: www.diabetesatlas.org (accessed on 11 January 2020).
- WHO. World Health Organization/International Society of Hypertension (WH0/ISH) Risk Prediction Charts; WHO: Geneva, Switzerland, 2014; pp. 1–40. Available online: https://www.who.int/ncds/management/WHO_ISH_Risk_Prediction_Charts.pdf?ua=1 (accessed on 13 March 2020).
- Parimbelli, E.; Marini, S.; Sacchi, L.; Bellazzi, R. Patient similarity for precision medicine: A systematic review. J. Biomed. Inform. 2018, 83, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Sherifali, D.; Viscardi, V.; Bai, J.W.; Ali, R.M.U. Evaluating the Effect of a Diabetes Health Coach in Individuals with Type 2 Diabetes. Can. J. Diabetes 2016, 40, 84–94. [Google Scholar] [CrossRef]
- Sherifali, D. Diabetes coaching for individuals with type 2 diabetes: A state-of-the-science review and rationale for a coaching model. J. Diabetes 2017, 9, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Weston, A.D.; Hood, L. Systems Biology, Proteomics, and the Future of Health Care: Toward Predictive, Preventative, and Personalized Medicine Introduction: Paradigm Changes in Health Care. J. Prot. Res. 2004, 3, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Hood, L.; Balling, R.; Auffray, C. Revolutionizing medicine in the 21st century through systems approaches. Biotechnol. J. 2012, 7, 992–1001. [Google Scholar] [CrossRef] [Green Version]
- Jameson, J.L.; Longo, D.L. Precision medicine—Personalized, problematic, and promising. N. Engl. J. Med. 2015, 372, 2229–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, M.; Glusman, G.; Brogaard, K.; Price, N.D.; Hood, L. P4 medicine: How systems medicine will transform the healthcare sector and society. Per. Med. 2013, 10, 565–576. [Google Scholar] [CrossRef] [Green Version]
- Bierman, A.S.; Tinetti, M.E. Precision medicine to precision care: Managing multimorbidity. Lancet 2016, 388, 2721–2723. [Google Scholar] [CrossRef]
- Corwin, E.; Redeker, N.S.; Richmond, T.S.; Docherty, S.L.; Pickler, R.H. Ways of knowing in precision health. Nurs. Outlook 2019, 67, 293–301. [Google Scholar] [CrossRef]
- Davies, A.K.; McGale, N.; Humphries, S.E.; Hirani, S.P.; Beaney, K.E.; Bappa, D.A.S.; McCabe, J.G.; Newman, S.P. Effectiveness of a self-management intervention with personalised genetic and lifestyle-related risk information on coronary heart disease and diabetes-related risk in type 2 diabetes (CoRDia): Study protocol for a randomised controlled trial. Trials 2015, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinetti, M.E.; Esterson, J.; Ferris, R.; Posner, P.; Blaum, C.S. Patient Priority-Directed Decision Making and Care for Older Adults with Multiple Chronic Conditions. Clin. Geriatr. Med. 2016, 32, 261–275. [Google Scholar] [CrossRef]
- Abbate, R.; Mannucci, E.; Cioni, G.; Fatini, C.; Marcucci, R. Diabetes and sex: From pathophysiology to personalized medicine. Intern. Emerg. Med. 2012, 7, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Meneghini, L.; Reid, T. Individualizing insulin therapy. J. Fam. Pract. 2012, 61, 13–27. [Google Scholar]
- Spiegel, A.M.; Hawkins, M. “Personalized medicine” to identify genetic risks for type 2 diabetes and focus prevention: Can it fulfill its promise? Health Aff. 2012, 31, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Paschou, S.A.; Leslie, R.D. Personalizing guidelines for diabetes management: Twilight or dawn of the expert? BMC Med. 2013, 11, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, S.; Hirsch, I.B. Personalized diabetes management: Moving from algorithmic to individualized therapy. Diabetes Spectr. 2014, 27, 87–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geboers, B.; de Winter, A.F.; Spoorenberg, S.L.W.; Wynia, K.; Reijneveld, S.A. The association between health literacy and self-management abilities in adults aged 75 and older, and its moderators. Qual. Life Res. 2016, 25, 2869–2877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groop, L. Genetics and neonatal diabetes: Towards precision medicine. Lancet 2015, 386, 934–935. [Google Scholar] [CrossRef] [Green Version]
- Sexton, M.; Baessler, M. Interprofessional Collaborative Practice. J. Contin. Educ. Nurs. 2016, 47, 156–157. [Google Scholar] [CrossRef]
- Sherifali, D. Diabetes Management in Older Adults: Seeing the Forest for the Trees. Can. J. Diabetes 2016, 40, 10–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krag, M.; Hasselbalch, L.; Siersma, V.; Nielsen, A.B.S.; Reventlow, S.; Malterud, K.; de Fine Olivarius, N. The impact of gender on the long-term morbidity and mortality of patients with type 2 diabetes receiving structured personal care: A 13 year follow-up study. Diabetologia 2016, 59, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Miñambres, I.; Mediavilla, J.J.; Sarroca, J.; Pérez, A. Meeting individualized glycemic targets in primary care patients with type 2 diabetes in Spain. BMC Endocr. Disord. 2016, 16, 10. [Google Scholar] [CrossRef] [Green Version]
- Pearson, E.R. Personalized medicine in diabetes: The role of “omics” and biomarkers. Diabet. Med. 2016, 33, 712–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fradkin, J.E.; Hanlon, M.C.; Rodgers, G.P. NIH precision medicine initiative: Implications for diabetes research. Diabetes Care 2016, 39, 1080–1084. [Google Scholar] [CrossRef] [Green Version]
- Holt, R.I.G. Personalized medicine for diabetes: A special issue. Diabet. Med. 2016, 33, 711. [Google Scholar] [CrossRef] [PubMed]
- Florez, J.C. Precision medicine in diabetes: Is it time? Diabetes Care 2016, 39, 1085–1088. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R.J. Precision medicine, diabetes, and the U.S. food and drug administration. Diabetes Care 2016, 39, 1874–1878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnett, D.K.; Claas, S.A. Precision medicine, genomics, and public health. Diabetes Care 2016, 39, 1870–1873. [Google Scholar] [CrossRef] [Green Version]
- Scheen, A.J. Precision medicine: The future in diabetes care? Diabetes Res. Clin. Pract. 2016, 117, 12–21. [Google Scholar] [CrossRef]
- Floyd, J.S.; Psaty, B.M. The application of genomics in diabetes: Barriers to discovery and implementation. Diabetes Care 2016, 39, 1858–1869. [Google Scholar] [CrossRef] [Green Version]
- Rich, S.S.; Cefalu, W.T. The impact of precision medicine in diabetes: A multidimensional perspective. Diabetes Care 2016, 39, 1854–1857. [Google Scholar] [CrossRef] [Green Version]
- Krinsley, J.S.; Preiser, J.C.; Hirsch, I.B. Safety and efficacy of personalized glycemic control in critically ill patients: A 2-year before and after interventional trial. Endocr. Pract. 2017, 23, 318–330. [Google Scholar] [CrossRef] [Green Version]
- Mahato, K.; Srivastava, A.; Chandra, P. Paper based diagnostics for personalized health care: Emerging technologies and commercial aspects. Biosens. Bioelectron. 2017, 96, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Mayor, S. Individualising treatment and care of patients with diabetes. Prescriber 2017, 28, 23–25. [Google Scholar] [CrossRef] [Green Version]
- Mutie, P.M.; Giordano, G.N.; Franks, P.W. Lifestyle precision medicine: The next generation in type 2 diabetes prevention? BMC Med. 2017, 15, 171. [Google Scholar] [CrossRef]
- Fitipaldi, H.; McCarthy, M.I.; Florez, J.C.; Franks, P.W. A global overview of precision medicine in type 2 diabetes. Diabetes 2018, 67, 1911–1922. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, R.I.; Charlson, M.E.; Singer, B.H. Medicine based evidence and personalized care of patients. Eur. J. Clin. Investig. 2018, 48, e12945. [Google Scholar] [CrossRef]
- Greener, M. Precision diabetes treatment comes a step closer. Prescriber 2018, 29, 28–31. [Google Scholar] [CrossRef]
- Burke, W.; Trinidad, S.B.; Schenck, D. Can precision medicine reduce the burden of diabetes? Ethn. Dis. 2019, 29, 669–674. [Google Scholar] [CrossRef] [Green Version]
- Mannino, G.C.; Andreozzi, F.; Sesti, G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab. Res. Rev. 2019, 35, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, V.; Radha, V. Precision Diabetes Is Slowly Becoming a Reality. Med. Princ. Pract. 2019, 28, 1–9. [Google Scholar] [CrossRef]
- Leggio, M.; Tiberti, C.; Armeni, M.; Limongelli, G.; Mazza, A. Precision medicine for diabetes management and primary cardiovascular prevention. J. Intern. Med. 2019, 286, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.B.; Groop, L. Precision medicine in type 2 diabetes. J. Intern. Med. 2019, 285, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Otgontuya, D.; Oum, S.; Buckley, B.S.; Bonita, R. Assessment of total cardiovascular risk using WHO/ISH risk prediction charts in three low and middle income countries in Asia. BMC Public Health 2013, 13, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickey, K.T.; Bakken, S.; Byrne, M.W.; Bailey, D.C.E.; Demiris, G.; Docherty, S.L.; Dorsey, S.G.; Guthrie, B.J.; Heitkemper, M.M.; Jacelon, C.S.; et al. Precision Health: Advancing Symptom and Self-Management Science [Internet]; Nursing Outlook; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 67, pp. 462–475. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.F.V.; Lee, M.C.; Liang, S.Y.; Lu, Y.Y.; Wang, T.J.; Tung, H.H. Effectiveness of a self-efficacy program for persons with diabetes: A randomized controlled trial. Nurs. Health Sci. 2011, 13, 335–343. [Google Scholar] [CrossRef]
- Agency for Healthcare Research Quality (AHRQ). The SHARE Approach Essential Steps of Shared Decision Making; Agency for Healthcare Research Quality: Rockville, MD, USA, 2016. [Google Scholar]
- Ginsburg, G.S.; Phillips, K.A. Precision medicine: From science to value. Health Aff. 2018, 37, 694–701. [Google Scholar] [CrossRef]
- Lai, P.C.; Wu, S.F.V.; Alizargar, J.; Pranata, S.; Tsai, J.M.; Hsieh, N.C. Factors influencing self-efficacy and self-management among patients with pre-end-stage renal disease (Pre-ESRD). Healthcare 2021, 9, 266. [Google Scholar] [CrossRef]
- Koliaki, C.; Tentolouris, A.; Eleftheriadou, I.; Melidonis, A.; Dimitriadis, G.; Tentolouris, N. Clinical Management of Diabetes Mellitus in the Era of COVID-19: Practical Issues, Peculiarities and Concerns. J. Clin. Med. 2020, 9, 2288. [Google Scholar] [CrossRef] [PubMed]
- Pariser, P.; Pham, T.-N.T.; Brown, J.B.; Stewart, M.; Charles, J. Connecting People with Multimorbidity to Interprofessional Teams Using Telemedicine. Ann. Fam. Med. 2019, 17, S57–S62. [Google Scholar] [CrossRef] [Green Version]
No | Method | Population | PG/LS | BB/EB | GT | PP | GC | ICP | SM | PRDC | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. | Abbate, Mannucci, Cioni, Fatini, and Marcucci (2012) [14] | LR | Type 1 and type 2 diabetes | × | |||||||
2. | Meneghini & Reid (2012) [15] | LR | Type 2 diabetes | × | × | × | |||||
3. | Spiegel and Hawkins (2012) [16] | LR | Type 2 diabetes | × | × | ||||||
4. | Paschou and Leslie (2013) [17] | LR | Type 2 diabetes | × | × | × | |||||
5. | Subramanian and Hirsch (2014) [18] | LR | Type 2 diabetes | × | × | × | |||||
6. | Davies et al. (2015) [19] | RCT | Type 2 diabetes | × | |||||||
7. | Groop, (2015) [20] | LR | Type 1 and type 2 diabetes | × | |||||||
8. | Jameson and Longo (2015) [8] | LR | Type 1 and type 2 diabetes | × | × | ||||||
9. | Sexton (2016) [21] | LR | Interdisciplinary teamwork care | × | |||||||
10. | Sherifali et al. (2016) [4] | LR | Type 2 diabetes | × | |||||||
11. | Sherifali (2016) [22] | LR | Type 2 diabetes | × | × | ||||||
12. | Krag et al. (2016) [23] | RCT | Type 2 diabetes | × | |||||||
13. | Miñambres, Mediavilla, Sarroca, and Pérez (2016) [24] | CSA | Type 2 diabetes | × | × | ||||||
14. | Pearson (2016) [25] | LR | Type 2 diabetes | × | × | ||||||
15. | Fradkin, Hanlon, and Rodgers (2016) [26] | LR | Type 1 and type 2 diabetes | × | × | ||||||
16. | Holt (2016) [27] | LR | Type 2 diabetes | × | × | × | |||||
17. | Florez (2016) [28] | LR | Type 1 and type 2 diabetes | × | |||||||
18. | Meyer (2016) [29] | LR | Type 2 diabetes | × | |||||||
19. | Arnett and Claas (2016) [30] | LR | Type 1 and type 2 diabetes | × | |||||||
20. | Scheen (2016) [31] | LR | Type 2 diabetes | × | |||||||
21. | Floyd and Psaty (2016) [32] | LR | Type 2 diabetes | × | |||||||
22. | Rich and Cefalu (2016) [33] | LR | Type 2 diabetes | × | × | ||||||
23. | Krinsley, Preiser, and Hirsch (2017) [34] | CHT | Type 2 diabetes | × | × | ||||||
24. | Sherifali (2017) [5] | LR | Type 2 diabetes | × | |||||||
25. | Mahato, Srivastava, and Chandra (2017) [35] | LR | Type 1 and type 2 diabetes | × | |||||||
26. | Mayor (2017) [36] | LR | Type 2 diabetes | × | × | × | × | × | |||
27. | Mutie, Giordano, and Franks (2017) [37] | LR | Type 2 diabetes | × | × | ||||||
28. | Fitipaldi, McCarthy, Florez, and Franks (2018) [38] | LR | Type 2 diabetes | × | × | ||||||
29. | Horwitz, Charlson, and Singer (2018) [39] | LR | Type 2 diabetes | × | |||||||
30. | Greener (2018) [40] | LR | Type 1 and type 2 diabetes | × | × | ||||||
31. | Burke, Trinidad, and Schenck (2019) [41] | LR | Type 2 diabetes | × | |||||||
32. | Mannino, Andreozzi, and Sesti (2019) [42] | LR | Type 2 diabetes | × | |||||||
33. | Mohan and Radha (2019) [43] | LR | Type 1 and type 2 diabetes | × | × | ||||||
34. | Leggio, Tiberti, Armeni, Limongelli, and Mazza (2019) [44] | LR | Type 2 diabetes | × | × | ||||||
35. | Prasad and Groop (2019) [45] | LR | Type 2 diabetes | × | × |
No | Elements | Concept Description | Clinical Strategies |
---|---|---|---|
1. | Personalized genetic or lifestyle | - Genetic or lifestyle analysis; genomic test screening for diabetes autoantibodies that remain after a drug or insulin dose, gene encoding glucokinase, presence of HNF1A and HNF4A that are associated with forms of diabetes onset; C-peptide is a biomarker that can be used as a guide to treatment choice (insulin deficiency); single-nucleotide polymorphisms provide information regarding drug toxicity | - Assessment of risk of complication by using risk prediction charts, genotype, or electronic health records |
2. | Biodata-or evidence-based | - Genetic examination to detect various potential health problems, cardiovascular disease, a person’s metabolic ability to a nutrient, and HbA1c target | - Electronic health records and ADA guidelines |
3. | Glycemic target | - Based on ADA guidelines, target and therapy differ based on the features and responses of each individual (including HbA1c, blood pressure, and cholesterol) | - Shared decision-making assessment tool |
4. | Patient preferences | - Identification of whether the patient needs additional medication and their concern regarding hyper/hypoglycemia, further expressing their decision | - Shared decision-making assessment tool |
5. | Glycemic control | - Supporting the use of a potent drug to achieve a reduction in HbA1c to <6.5%. | - HbA1c based on ADA guidelines |
6. | Interdisciplinary collaboration practice | - Teamwork entails discussion of the most appropriate treatment for patients | - Shared decision-making among patients, nurses, physicians, etc. |
7. | Self-management | - Individualizing therapy so that patients can effectively self-manage their disease through increasing self-efficacy | - Diabetes SM education, self-efficacy enhancing intervention program |
8. | Patient priority direct care | - Assess the individual as a whole including the complex interplay of comorbid conditions, psychosocial, functional status, and individual need | - Shared decision-making assessment tool |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pranata, S.; Wu, S.-F.V.; Alizargar, J.; Liu, J.-H.; Liang, S.-Y.; Lu, Y.-Y. Precision Health Care Elements, Definitions, and Strategies for Patients with Diabetes: A Literature Review. Int. J. Environ. Res. Public Health 2021, 18, 6535. https://doi.org/10.3390/ijerph18126535
Pranata S, Wu S-FV, Alizargar J, Liu J-H, Liang S-Y, Lu Y-Y. Precision Health Care Elements, Definitions, and Strategies for Patients with Diabetes: A Literature Review. International Journal of Environmental Research and Public Health. 2021; 18(12):6535. https://doi.org/10.3390/ijerph18126535
Chicago/Turabian StylePranata, Satriya, Shu-Fang Vivienne Wu, Javad Alizargar, Ju-Han Liu, Shu-Yuan Liang, and Yu-Ying Lu. 2021. "Precision Health Care Elements, Definitions, and Strategies for Patients with Diabetes: A Literature Review" International Journal of Environmental Research and Public Health 18, no. 12: 6535. https://doi.org/10.3390/ijerph18126535