Bayesian Spatial Modeling of Anemia among Children under 5 Years in Guinea
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Data
2.2. Variables of Interest
2.2.1. Response Variable
2.2.2. Independent Variables
2.3. Statistical Analysis
2.4. Statistical Modeling
2.4.1. Models Specification
2.4.2. Parameters Estimation
2.4.3. Diagnostics of Model
3. Results
3.1. Description of the Study Population
3.2. Model without Spatial and Non-Spatial Components
3.3. Model Assessment and Comparison
3.4. Factors Associated with Anemia in Children from the Spatial Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CI | Credibility Intervals |
DIC | Deviance Information Criterion |
OR | Odds ratio |
MCMC | Markov chain Monte Carlo |
MICS | Multiple Indicator Cluster Survey |
DHS | Demographic and Health Survey |
WinBUGS | Windows Version of Bayesian Inference Using Gibbs Sampling |
OR | Odds ratio |
PAUISTI | Pan African University Institute for basic Sciences, Technology and Innovation |
Appendix A
Non-Spatial Random Effects | Mean | Standard Deviation (sd) |
---|---|---|
V[1] Boke | 0.06 | 0.10 |
V[2] Conakry | 0.01 | 0.11 |
V[3] Faranah | −0.02 | 0.10 |
V[4] Kankan | −0.07 | 0.12 |
V[5] Kindia | 0.07 | 0.11 |
V[6] Labe | −0.10 | 0.12 |
V[7] Mamou | −0.05 | 0.11 |
V[8] N’Zerekore | 0.11 | 0.14 |
Spatial random effects | ||
U[1] Boke | 0.05 | 0.08 |
U[2] Conakry | 0.03 | 0.11 |
U[3] Faranah | −0.03 | 0.07 |
U[4] Kankan | −0.05 | 0.10 |
U[5] Kindia | 0.04 | 0.08 |
U[6] Labe | −0.06 | 0.09 |
U[7] Mamou | −0.04 | 0.09 |
U[8] NZerekore | 0.07 | 0.12 |
Non-spatial and spatial random effects | ||
V[1] Boke | 0.05 | 0.11 |
V[2] Conakry | 0.01 | 0.11 |
V[3] Faranah | −0.02 | 0.10 |
V[4] Kankan | −0.06 | 0.12 |
V[5] Kindia | 0.06 | 0.11 |
V[6] Labe | −0.09 | 0.13 |
V[7] Mamou | −0.04 | 0.11 |
V[8] NZerekore | 0.09 | 0.13 |
U[1] Boke | 0.03 | 0.09 |
U[2] Conakry | 0.02 | 0.11 |
U[3] Faranah | −0.02 | 0.07 |
U[4] Kankan | −0.03 | 0.10 |
U[5] Kindia | 0.02 | 0.08 |
U[6] Labe | −0.04 | 0.09 |
U[7] Mamou | −0.03 | 0.08 |
U[8] NZerekore | 0.05 | 0.12 |
Appendix B
References
- WHO. Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Calis, J.C.; Phiri, K.S.; van Hensbroek, M.B. Severe anemia in Malawian children-Reply. N. Engl. J. Med. 2008, 358, 2291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, Z.A.; Ezzati, M.; Group, N.I.M.S.; et al. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: A systematic analysis of population-representative data. Lancet Glob. Health 2013, 1, e16–e25. [Google Scholar] [CrossRef] [Green Version]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; De Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Scott, S.P.; Chen-Edinboro, L.P.; Caulfield, L.E.; Murray-Kolb, L.E. The impact of anemia on child mortality: An updated review. Nutrients 2014, 6, 5915–5932. [Google Scholar] [CrossRef] [Green Version]
- Haas, J.D.; Brownlie, T., IV. Iron deficiency and reduced work capacity: A critical review of the research to determine a causal relationship. J. Nutr. 2001, 131, 676S–690S. [Google Scholar] [CrossRef] [Green Version]
- Brabin, B.J.; Premji, Z.; Verhoeff, F. An analysis of anemia and child mortality. J. Nutr. 2001, 131, 636S–648S. [Google Scholar] [CrossRef]
- Alderman, H.; Horton, S. The economics of addressing nutritional anemia. Nutr. Anemia 2007, 19, 35. [Google Scholar]
- Lamine, R.P.S.; Demographe, I. Analyse des Donnees du RGPH3; Institut National de la Statistique: Conakry, Guinee, 2017.
- INS et ICF. Enquête Démographique et de Santé en Guinée 2018; Techreport; Institut National de la Statistique (INS) et ICF: Conakry, Guinee, 2018.
- WHO. Nutritional Anaemias: Report of a WHO Scientific Group [Meeting Held in Geneva from 13 to 17 March 1967]; World Health Organization: Geneva, Switzerland, 1968. [Google Scholar]
- McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; De Benoist, B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr. 2009, 12, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Thankachan, P.; Muthayya, S.; Walczyk, T.; Kurpad, A.V.; Hurrell, R.F. An analysis of the etiology of anemia and iron deficiency in young women of low socioeconomic status in Bangalore, India. Food Nutr. Bull. 2007, 28, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Stoltzfus, R.J.; Kvalsvig, J.D.; Chwaya, H.M.; Montresor, A.; Albonico, M.; Tielsch, J.M.; Savioli, L.; Pollitt, E. Effects of iron supplementation and anthelmintic treatment on motor and language development of preschool children in Zanzibar: Double blind, placebo controlled study. BMJ 2001, 323, 1389. [Google Scholar] [CrossRef] [Green Version]
- Bobonis, G.J.; Miguel, E.; Puri-Sharma, C. Anemia and school participation. J. Hum. Resour. 2006, 41, 692–721. [Google Scholar] [CrossRef]
- Allali, S.; Brousse, V.; Sacri, A.S.; Chalumeau, M.; de Montalembert, M. Anemia in children: Prevalence, causes, diagnostic work-up, and long-term consequences. Expert Rev. Hematol. 2017, 10, 1023–1028. [Google Scholar] [CrossRef]
- Haining, R.P.; Haining, R. Spatial Data Analysis: Theory and Practice; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Roberts, D.J.; Matthews, G.; Snow, R.W.; Zewotir, T.; Sartorius, B. Investigating the spatial variation and risk factors of childhood anaemia in four sub-Saharan African countries. BMC Public Health 2020, 20, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ejigu, B.A.; Wencheko, E.; Berhane, K. Spatial pattern and determinants of anaemia in Ethiopia. PLoS ONE 2018, 13, e0197171. [Google Scholar] [CrossRef] [Green Version]
- Institut National de la Statistique. Enquête par Grappes à Indicateurs Multiples (MICS, 2016), Rapport Final, Conakry, Guinée; Technical Report; Institut National de la Statistique: Conakry, Guinee, 2016.
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Tu, Y.; Yu, S.M.; Sun, H. Transaction-based office price indexes: A spatiotemporal modeling approach. Real Estate Econ. 2004, 32, 297–328. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Lawson, A.B. Bayesian Disease Mapping hierarchical Modeling in Spatial Epidemiology; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Besag, J.; York, J.; Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 1991, 43, 1–20. [Google Scholar] [CrossRef]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 2002, 64, 583–639. [Google Scholar] [CrossRef] [Green Version]
- Kazembe, L.N.; Chirwa, T.F.; Simbeye, J.S.; Namangale, J.J. Applications of Bayesian approach in modelling risk of malaria-related hospital mortality. BMC Med. Res. Methodol. 2008, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Nambiema, A.; Robert, A.; Yaya, I. Prevalence and risk factors of anemia in children aged from 6 to 59 months in Togo: Analysis from Togo demographic and health survey data, 2013–2014. BMC Public Health 2019, 19, 215. [Google Scholar] [CrossRef] [Green Version]
- Adeyemi, R.A.; Zewotir, T.; Ramroop, S. Joint spatial mapping of childhood anemia and malnutrition in sub-Saharan Africa: A cross-sectional study of small-scale geographical disparities. Afr. Health Sci. 2019, 19, 2692–2712. [Google Scholar] [CrossRef]
- Osório, M.M.; Lira, P.I.; Batista-Filho, M.; Ashworth, A. Prevalence of anemia in children 6-59 months old in the state of Pernambuco, Brazil. Rev. Panam. Salud Pública 2001, 10, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobcraft, J. Women’s education, child welfare and child survival: A review of the evidence. Health Transit. Rev. 1993, 3, 159–175. [Google Scholar]
- Flores, G.; Bauchner, H.; Feinstein, A.R.; Nguyen, U.S. The impact of ethnicity, family income, and parental education on children’s health and use of health services. Am. J. Public Health 1999, 89, 1066–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Agarwal, P. A pathway-based view of human diseases and disease relationships. PLoS ONE 2009, 4, e4346. [Google Scholar] [CrossRef]
- Castelli, F.; Sulis, G.; Caligaris, S. The relationship between anaemia and malaria: Apparently simple, yet controversial. Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 181–182. [Google Scholar] [CrossRef]
- White, N.J. Anaemia and malaria. Malar. J. 2018, 17, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ngwira, A.; Kazembe, L.N. Analysis of severity of childhood anemia in Malawi: A Bayesian ordered categories model. Open Access Med. Stat. 2016, 6, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Christensen, L.; Sguassero, Y.; Cuesta, C.B. Anemia and adherence to oral iron supplementation in a sample of children assisted by the public health network of Rosario, Santa Fe. Arch. Argent. Pediatr. 2013, 111, 288–294. [Google Scholar] [CrossRef]
- Borgoni, R.; Billari, F.C. Bayesian spatial analysis of demographic survey data: An application to contraceptive use at first sexual intercourse. Demogr. Res. 2003, 8, 61–92. [Google Scholar] [CrossRef]
Variables | Percentage (%) | |
---|---|---|
Status of anemia | ||
Negative | 600 | 23.00 |
Positive | 2009 | 77.00 |
Status of malaria | ||
Negative | 2214 | 84.86 |
Positive | 395 | 15.14 |
Sex of child | ||
Male | 1340 | 51.36 |
Female | 1269 | 48.64 |
Place of residence | ||
Big city | 382 | 14.64 |
Secondary city | 370 | 14.18 |
Rural | 1857 | 71.18 |
Place of residence | ||
Urban | 752 | 28.82 |
Rural | 1857 | 71.18 |
Administrative Region | ||
Boke | 467 | 17.90 |
Conakry | 268 | 10.27 |
Faranah | 369 | 14.14 |
Kankan | 308 | 11.81 |
Kindia | 288 | 11.04 |
Labe | 245 | 9.39 |
Mamou | 229 | 8.78 |
NZerekore | 435 | 16.67 |
Natural Region | ||
Maritime Guinea | 646 | 24.76 |
Middle Guinea | 583 | 22.35 |
Upper Guinea | 576 | 22.08 |
Forested Guinea | 536 | 20.54 |
Conakry | 268 | 10.27 |
Age of Child (months) | ||
0–11 | 170 | 6.52 |
12–23 | 427 | 16.37 |
24–35 | 523 | 20.05 |
36–47 | 710 | 27.21 |
48–59 | 779 | 29.86 |
Sex of the household head | ||
Male | 2222 | 85.17 |
Female | 387 | 14.83 |
Education level of household head | ||
None | 1741 | 66.73 |
Primary | 288 | 11.04 |
Secondary school or above | 580 | 22.23 |
Mosquito net observed in the house | ||
Observed hanging | 2581 | 98.93 |
Observed not hanging | 28 | 1.07 |
Status of mosquito net | ||
Good | 2568 | 98.43 |
Bad | 41 | 1.57 |
Education level of mother | ||
None | 1950 | 74.74 |
Primary | 329 | 12.61 |
Secondary school or above | 330 | 12.65 |
Ethnicity of household head | ||
Soussou | 435 | 16.67 |
Peul | 960 | 36.80 |
Malinke | 665 | 25.49 |
Kissi | 156 | 5.98 |
Toma | 62 | 2.38 |
Guerze/Kono/Mano | 187 | 7.17 |
Other | 144 | 5.52 |
Religion of household head | ||
Muslim | 2203 | 84.44 |
Christian | 353 | 13.53 |
Others (Animist, no religion) | 53 | 2.03 |
Wealth index | ||
Poorest | 644 | 24.68 |
Second | 671 | 25.72 |
Middle | 522 | 20.01 |
Fourth | 458 | 17.55 |
Richest | 314 | 12.04 |
Potable water source | ||
improved water source | 2046 | 78.42 |
Non-improved water source | 563 | 21.58 |
Total member in the house | ||
1–5 | 1048 | 40.17 |
6–8 | 943 | 36.14 |
9 and more | 618 | 23.69 |
Treatment of drinking water | ||
Yes | 868 | 33.27 |
No | 1741 | 66.73 |
Access to electricity | ||
Yes | 706 | 27.06 |
No | 1903 | 72.94 |
Own Radio | ||
Yes | 1263 | 48.41 |
No | 1346 | 51.59 |
Own TV | ||
Yes | 666 | 25.53 |
No | 1943 | 74.47 |
Main material of roof | ||
Palm leaf/Palm/Bamboo/wood/wooden planks/Cardboard | 239 | 9.16 |
Grass | 367 | 14.07 |
Metal sheet | 1931 | 74.01 |
Other (Roof tiles/Concrete/Cement/Mat/ shingles, no roof) | 72 | 2.76 |
Main material of floor | ||
Earth/Sand/Cow dung | 998 | 38.25 |
Plank of wood/bamboo (Plank of wood, palm/bamboo/Other) | 56 | 2.15 |
Floor tile (floor tile/ waxed wood/vinyl/asphalt) | 209 | 8.01 |
Cement/grout/Carpet | 1346 | 51.59 |
Wall exterior main material | ||
Clods of earth | 547 | 20.97 |
Bamboo with Mud | 100 | 3.83 |
Stone with mud | 83 | 3.18 |
Cement/Stone with lime cement/Brick/Cement block | 1831 | 70.18 |
Wood(stick/trunk/plywood/cardboard/salvage wood/wood planks) | 11 | 0.42 |
Other (no wall/adobe/ covered/Adobe not covered) | 37 | 1.42 |
Type of toilet | ||
Improved toilet | 1687 | 64.66 |
Non-improved toilet | 922 | 35.34 |
Prevalence N (%) | Predicted Prevalence (after Adjusting for Non-Spatial Random Effects) (%) | |
---|---|---|
Total | 2609 (77.00) | - |
Boke | 467 (79.01) | 77.98 |
Conakry | 268 (70.52) | 70.32 |
Faranah | 369 (77.24) | 77.71 |
Kankan | 308 (75.65) | 77.30 |
Kindia | 288 (80.56) | 78.96 |
Labe | 245 (69.39) | 72.23 |
Mamou | 229 (69.87) | 71.40 |
Nzerekore | 435 (85.29) | 83.60 |
Crude Odds Ratio (95% CI) | OR (95% CI), M1 | |
---|---|---|
Place of residence | ||
Urban | 1 | 1 |
Rural | 1.59 [1.31 1.93] | 1.35 [0.96 1.90] |
Place of residence | ||
Big city | 1 | - |
Secondary city | 0.99 [0.73 1.36] | - |
Rural | 1.59 [1.24 2.03] | - |
Administrative Region | ||
Boke | 1 | 1 |
Conakry | 0.64 [0.45 0.90] | 0.94 [0.62 1.42] |
Faranah | 0.90 [0.65 1.25] | 0.82 [0.56 1.20] |
Kankan | 0.83 [0.59 1.16] | 0.73 [0.47 1.13] |
Kindia | 1.10 [0.76 1.59] | 1.05 [0.71 1.56] |
Labe | 0.60 [0.42 0.86] | 0.65 [0.44 0.96] |
Mamou | 0.62 [0.43 0.88] | 0.73 [0.49 1.08] |
Nzerekore | 1.54 [1.09 2.18] | 1.25 [0.77 2.04] |
Natural Region | ||
Maritime Guinea | 1 | - |
Middle Guinea | 0.63 [0.49 0.82] | - |
Upper Guinea | 0.87 [0.66 1.15] | - |
Forested Guinea | 1.21 [0.90 1.63] | - |
Conakry | 0.61 [0.44 0.84] | - |
Age of Child (months) | ||
0–11 | 1 | 1 |
12–23 | 1.26 [0.79 2.03] | 1.26 [0.78 2.04] |
24–35 | 1.03 [0.66 1.62] | 0.99 [0.63 1.57] |
36–47 | 0.68 [0.44 1.03] | 0.62 [0.40 0.95] |
48–59 | 0.51 [0.34 0.78] | 0.46 [0.30 0.71] |
Wealth index | ||
Poorest | 1 | 1 |
Second | 1.02 [0.77 1.34] | 0.88 [0.66 1.17] |
Middle | 0.75 [0.57 0.99] | 0.75 [0.55 1.00] |
Fourth | 0.67 [0.50 0.89] | 0.68 [0.41 1.14] |
Richest | 0.52 [0.38 0.71] | 0.57 [0.30 1.11] |
Education level of mother | ||
None | 1 | 1 |
Primary | 1.08 [0.81 1.44] | 1.05 [0.77 1.42] |
Secondary school or above | 0.61 [0.47 0.79] | 0.67 [0.50 0.91] |
Ethnicity of household head | ||
Soussou | 1 | 1 |
Peul | 0.66 [0.50 0.86] | 0.65 [0.47 0.90] |
Malinke | 0.84 [0.62 1.13] | 0.90 [0.61 1.34] |
Kissi | 0.97 [0.61 1.53] | 0.45 [0.22 0.92] |
Toma | 2.33 [0.97 5.59] | 1.35 [0.44 4.13] |
Guerze/Kono/Mano | 1.42 [0.89 2.26] | 0.89 [0.39 2.01] |
Other | 0.99 [0.61 1.59] | 0.88 [0.54 1.46] |
Religion of household head | ||
Muslim | 1 | 1 |
Christian | 0.82 [0.63 1.06] | 1.60 [0.85 3.04] |
Others (Animist, no religion) | 0.80 [0.61 1.04] | 0.72 [0.27 1.97] |
Own TV | ||
Yes | 1 | 1 |
No | 1.51 [1.23 1.84] | 1.05 [0.70 1.59] |
Access to electricity | ||
Yes | 1 | 1 |
No | 1.50 [1.23 1.83] | 0.88 [0.58 1.34] |
Deviance information criterion (DIC) | 2724.9 |
OR (95% CI), M2 | OR (95% CI), M3 | OR (95% CI), M4 | |
---|---|---|---|
Place of residence | |||
Urban | 1 | 1 | 1 |
Rural | 1.31 [0.92 1.82] | 1.31 [0.93 1.80] | 1.32 [0.93 1.82] |
Age of Child (months) | |||
0–11 | 1 | 1 | 1 |
12–23 | 1.31 [0.78 2.06] | 1.32 [0.78 2.06] | 1.30 [0.77 2.04] |
24–35 | 1.02 [0.62 1.57] | 1.03 [0.62 1.57] | 1.02 [0.62 1.56] |
36–47 | 0.63 [0.39 0.95] | 0.63 [0.39 0.95] | 0.63 [0.39 0.93] |
48–59 | 0.47 [0.29 0.70] | 0.47 [0.30 0.70] | 0.47 [0.29 0.70] |
Wealth index | |||
Poorest | 1 | 1 | 1 |
Second | 0.89 [0.66 1.17] | 0.89 [0.66 1.17] | 0.89 [0.66 1.17] |
Middle | 0.75 [0.55 1.01] | 0.75 [0.55 1.00] | 0.75 [0.55 1.00] |
Fourth | 0.72 [0.42 1.16] | 0.72 [0.42 1.15] | 0.71 [0.42 1.15] |
Richest | 0.63 [0.31 1.13] | 0.62 [0.31 1.11] | 0.62 [0.31 1.12] |
Education level of mother | |||
None | 1 | 1 | 1 |
Primary | 1.06 [0.78 1.43] | 1.06 [0.78 1.43] | 1.06 [0.78 1.43] |
Secondary school or above | 0.67 [0.49 0.90] | 0.67 [0.49 0.90] | 0.67 [0.49 0.90] |
Ethnicity of household head | |||
Soussou | 1 | 1 | 1 |
Peul | 0.57 [0.41 0.78] | 0.56 [0.41 0.76] | 0.58 [0.42 0.79] |
Malinke | 0.84 [0.59 1.17] | 0.83 [0.58 1.17] | 0.86 [0.59 1.21] |
Kissi | 0.48 [0.22 0.91] | 0.48 [0.22 0.91] | 0.48 [0.23 0.92] |
Toma | 1.86 [0.52 5.11] | 1.87 [0.53 5.13] | 1.84 [0.52 4.99] |
Guerze/Kono/Mano | 1.06 [0.44 2.17] | 1.07 [0.44 2.19] | 1.05 [0.44 2.16] |
Other | 0.89 [0.53 1.43] | 0.88 [0.53 1.41] | 0.89 [0.53 1.43] |
Religion of household head | |||
Muslim | 1 | 1 | 1 |
Christian | 1.81 [0.90 3.30] | 1.83 [0.91 3.33] | 1.79 [0.90 3.24] |
Others (Animist, no religion) | 0.95 [0.31 2.32] | 0.96 [0.31 2.34] | 0.93 [0.30 2.28] |
Own TV | |||
Yes | 1 | 1 | 1 |
No | 1.10 [0.71 1.62] | 1.10 [0.71 1.62] | 1.09 [0.71 1.61] |
Access to electricity | |||
Yes | 1 | 1 | 1 |
No | 0.91 [0.59 1.34] | 0.91 [0.59 1.33] | 0.91 [0.59 1.35] |
Deviance information criterion (DIC) | 2721.9 | 2722.9 | 2721.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barry, T.S.; Ngesa, O.; Onyango, N.O.; Mwambi, H. Bayesian Spatial Modeling of Anemia among Children under 5 Years in Guinea. Int. J. Environ. Res. Public Health 2021, 18, 6447. https://doi.org/10.3390/ijerph18126447
Barry TS, Ngesa O, Onyango NO, Mwambi H. Bayesian Spatial Modeling of Anemia among Children under 5 Years in Guinea. International Journal of Environmental Research and Public Health. 2021; 18(12):6447. https://doi.org/10.3390/ijerph18126447
Chicago/Turabian StyleBarry, Thierno Souleymane, Oscar Ngesa, Nelson Owuor Onyango, and Henry Mwambi. 2021. "Bayesian Spatial Modeling of Anemia among Children under 5 Years in Guinea" International Journal of Environmental Research and Public Health 18, no. 12: 6447. https://doi.org/10.3390/ijerph18126447
APA StyleBarry, T. S., Ngesa, O., Onyango, N. O., & Mwambi, H. (2021). Bayesian Spatial Modeling of Anemia among Children under 5 Years in Guinea. International Journal of Environmental Research and Public Health, 18(12), 6447. https://doi.org/10.3390/ijerph18126447