Effects of Isomaltulose Ingestion on Thermoregulatory Responses during Exercise in a Hot Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Participants
2.3. Test Beverages
2.4. Experimental Protocol
2.5. Measurements
2.6. Data and Statistical Analyses
3. Results
3.1. Hematologic Variables
3.2. Thermoregulatory and Cardiovascular Variables
3.3. Body Mass Loss and Urinary Output
3.4. Subjective Feelings
3.5. Exercise Performance
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shirreffs, S. Hydration in sport and exercise: Water, sports drinks and other drinks. Nutr. Bull. 2009, 34, 374–379. [Google Scholar] [CrossRef]
- Coyle, E.F.; Montain, S.J. Benefits of fluid replacement with carbohydrate during exercise. Med. Sci. Sports Exerc. 1992, 24, S324–S330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyle, E.F.; Montain, S.J. Carbohydrate and fluid ingestion during exercise: Are there trade-offs? Med. Sci. Sports Exerc. 1992, 24, 671–678. [Google Scholar] [CrossRef]
- Sentko, A.; Willibald-Ettle, I. Isomaltulose. In Sweeteners and Sugar Alternatives in Food Technology; O’Donnell, K., Kearsley, M., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 1988; pp. 397–415. [Google Scholar]
- Sawale, P.D.; Shendurse, A.M.; Mohan, M.S.; Patil, G. Isomaltulose (palatinose)–An emerging carbohydrate. Food Biosci. 2017, 18, 46–52. [Google Scholar] [CrossRef]
- König, D.; Zdzieblik, D.; Holz, A.; Theis, S.; Gollhofer, A. Substrate utilization and cycling performance following palatinose™ ingestion: A randomized, double-blind, controlled trial. Nutrients 2016, 8, 390. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, M.; Hamada, Y.; Fujihira, K.; Namura, S.; Sakazaki, M.; Miyasaka, K.; Nagai, Y. The effects of isomaltulose ingestion on gastric parameters and cycling performance in young men. J. Exerc. Sci. Fit. 2019, 17, 101–107. [Google Scholar] [CrossRef]
- Oosthuyse, T.; Carstens, M.; Millen, A.M. Ingesting isomaltulose versus fructose-maltodextrin during prolonged moderate-heavy exercise increases fat oxidation but impairs gastrointestinal comfort and cycling performance. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, E.J.; Watson, A.; Theis, S.; Holz, A.; Harper, L.D.; Russell, M. A comparison of isomaltulose versus maltodextrin ingestion during soccer-specific exercise. Eur. J. Appl. Physiol. 2017, 117, 2321–2333. [Google Scholar] [CrossRef] [Green Version]
- Achten, J.; Jentjens, R.L.; Brouns, F.; Jeukendrup, A.E. Exogenous oxidation of isomaltulose is lower than that of sucrose during exercise in men. J. Nutr. 2007, 137, 1143–1148. [Google Scholar] [CrossRef] [Green Version]
- Maeda, A.; Miyagawa, J.I.; Miuchi, M.; Nagai, E.; Konishi, K.; Matsuo, T.; Tokuda, M.; Kusunoki, Y.; Ochi, H.; Murai, K. Effects of the naturally-occurring disaccharides, palatinose and sucrose, on incretin secretion in healthy non-obese subjects. J. Diabetes Investig. 2013, 4, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Holub, I.; Gostner, A.; Theis, S.; Nosek, L.; Kudlich, T.; Melcher, R.; Scheppach, W. Novel findings on the metabolic effects of the low glycaemic carbohydrate isomaltulose (palatinose™). Br. J. Nutr. 2010, 103, 1730–1737. [Google Scholar] [CrossRef]
- Kawai, K.; Okuda, Y.; Yamashita, K. Changes in blood glucose and insulin after an oral palatinose administration in normal subjects. Endocrinol. Jpn. 1985, 32, 933–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortney, S.M.; Nadel, E.R.; Wenger, C.B.; Bove, J.R. Effect of blood volume on sweating rate and body fluids in exercising humans. J. Appl. Physiol. 1981, 51, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
- Dodt, C.; Gunnarsson, T.; Elam, M.; Karlsson, T.; Wallin, B.G. Central blood volume influences sympathetic sudomotor nerve traffic in warm humans. Acta Physiol. Scand. 1995, 155, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Mack, G.; Nishiyasu, T.; Shi, X. Baroreceptor modulation of cutaneous vasodilator and sudomotor responses to thermal stress in humans. J. Physiol. 1995, 483, 537–547. [Google Scholar] [CrossRef]
- Okazaki, K.; Ichinose, T.; Mitono, H.; Chen, M.; Masuki, S.; Endoh, H.; Hayase, H.; Doi, T.; Nose, H. Impact of protein and carbohydrate supplementation on plasma volume expansion and thermoregulatory adaptation by aerobic training in older men. J. Appl. Physiol. 2009, 107, 725–733. [Google Scholar] [CrossRef]
- Fortney, S.; Wenger, C.; Bove, J.; Nadel, E. Effect of hyperosmolality on control of blood flow and sweating. J. Appl. Physiol. 1984, 57, 1688–1695. [Google Scholar] [CrossRef]
- Barrera-Ramirez, J.; McGinn, R.; Carter, R.M.; Franco-Lopez, H.; Kenny, G.P. Osmoreceptors do not exhibit a sex-dependent modulation of forearm skin blood flow and sweating. Physiol. Rep. 2014, 2, e00226. [Google Scholar] [CrossRef]
- Lynn, A.G.; Gagnon, D.; Binder, K.; Boushel, R.C.; Kenny, G.P. Divergent roles of plasma osmolality and the baroreflex on sweating and skin blood flow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R634–R642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamijo, Y.-I.; Ikegawa, S.; Okada, Y.; Masuki, S.; Okazaki, K.; Uchida, K.; Sakurai, M.; Nose, H. Enhanced renal na+ reabsorption by carbohydrate in beverages during restitution from thermal and exercise-induced dehydration in men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R824–R833. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.; Riazi, S.; Ecelbarger, C.A. Insulin’s impact on renal sodium transport and blood pressure in health, obesity and diabetes. Am. J. Physiol. Renal Physiol. 2007, 293, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Okazaki, K.; Imai, D.; Takeda, R.; Naghavi, N.; Yokoyama, H.; Miyagawa, T. Thermoregulatory responses are attenuated after fructose but not glucose intake. Med. Sci. Sports Exerc. 2014, 46, 1452–1461. [Google Scholar] [CrossRef] [PubMed]
- Cheuvront, S.N.; Bearden, S.E.; Kenefick, R.W.; Ely, B.R.; Degroot, D.W.; Sawka, M.N.; Montain, S.J. A simple and valid method to determine thermoregulatory sweating threshold and sensitivity. J. Appl. Physiol. 2009, 107, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Hettinga, F.J.; Edwards, A.M.; Hanley, B. The science behind competition and winning in athletics: Using world-level competition data to explore pacing and tactics. Front. Sports Act. Living 2019, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A. A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Med. 2014, 44, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, D.; Kenny, G.P. Does sex have an independent effect on thermoeffector responses during exercise in the heat? J. Physiol. 2012, 590, 5963–5973. [Google Scholar] [CrossRef]
- Inoue, Y.; Tanaka, Y.; Omori, K.; Kuwahara, T.; Ogura, Y.; Ueda, H. Sex-and menstrual cycle-related differences in sweating and cutaneous blood flow in response to passive heat exposure. Eur. J. Appl. Physiol. 2005, 94, 323–332. [Google Scholar] [CrossRef]
- Giersch, G.E.; Charkoudian, N.; Stearns, R.L.; Casa, D.J. Fluid balance and hydration considerations for women: Review and future directions. Sports Med. 2020, 50, 253–261. [Google Scholar] [CrossRef]
- Morris, N.B.; Chaseling, G.K.; Bain, A.R.; Jay, O. Temperature of water ingested before exercise alters the onset of physiological heat loss responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 316, R13–R20. [Google Scholar] [CrossRef] [PubMed]
- Steinert, R.E.; Frey, F.; Töpfer, A.; Drewe, J.; Beglinger, C. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides. Br. J. Nutr. 2011, 105, 1320–1328. [Google Scholar] [CrossRef] [Green Version]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American college of sports medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [PubMed] [Green Version]
- Dill, D.B.; Costill, D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974, 37, 247–248. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, R.R.; Brown, B.S. Alterations in plasma-volume-corrected blood components of marathon runners and concomitant relationship to performance. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 55, 579–584. [Google Scholar] [CrossRef]
- Ramanathan, N.L. A new weighting system for mean surface temperature of the human body. J. Appl. Physiol. 1964, 19, 531–533. [Google Scholar] [CrossRef] [Green Version]
- Amano, T.; Fujii, N.; Kenny, G.P.; Nishiyasu, T.; Inoue, Y.; Kondo, N. The relative contribution of α-and β-adrenergic sweating during heat exposure and the influence of sex and training status. Exp. Dermatol. 2020, 29, 1216–1224. [Google Scholar] [CrossRef]
- Amano, T.; Fujii, N.; Inoue, Y.; Kondo, N. Cutaneous adrenergic nerve blockade attenuates sweating during incremental exercise in habitually trained men. J. Appl. Physiol. 2018, 125, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.H.; Shirreffs, S.M.; Maughan, R.J. Postexercise rehydration in man: The effects of osmolality and carbohydrate content of ingested drinks. Nutrition 2009, 25, 905–913. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Gagge, A.P.; Stolwijk, J.A.; Hardy, J.D. Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ. Res. 1967, 1, 1–20. [Google Scholar] [CrossRef]
- Gagnon, D.; Romero, S.A.; Ngo, H.; Poh, P.; Crandall, C.G. Plasma hyperosmolality attenuates skin sympathetic nerve activity during passive heat stress in humans. J. Physiol. 2016, 594, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeukendrup, A.E.; Killer, S.C. The myths surrounding pre-exercise carbohydrate feeding. Ann. Nutr. Metab. 2010, 57, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Brotherhood, J.; Brand, J. Carbohydrate feeding before exercise: Effect of glycemic index. Int. J. Sports Med. 1991, 12, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Febbraio, M.A.; Keenan, J.; Angus, D.J.; Campbell, S.E.; Garnham, A.P. Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: Effect of the glycemic index. J. Appl. Physiol. 2000, 89, 1845–1851. [Google Scholar] [CrossRef] [Green Version]
- Takamata, A.; Nose, H.; Kinoshita, T.; Hirose, M.; Itoh, T.; Morimoto, T. Effect of acute hypoxia on vasopressin release and intravascular fluid during dynamic exercise in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R161–R168. [Google Scholar] [CrossRef] [PubMed]
- Chaseling, G.K.; Crandall, C.G.; Gagnon, D. Skin blood flow measurements during heat stress: Technical and analytical considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 318, R57–R69. [Google Scholar] [CrossRef] [PubMed]
Nutrient Component | CON | SUC | ISO |
---|---|---|---|
Energy (kcal 100 mL−1) | 0 | 40 | 40 |
Carbohydrate (mmol L−1) | 0.0 | 292.1 | 292.1 |
Sodium (mmol L−1) | 20.6 | 20.6 | 20.6 |
Calcium (mmol L−1) | 1.2 | 1.2 | 1.2 |
Magnesium (mmol L−1) | 1.0 | 1.0 | 1.0 |
Potassium (mmol L−1) | 4.5 | 4.5 | 4.5 |
Osmolality (mOsmol kg−1) | 62 | 454 | 403 |
Rest | Exercise | p | ||||||
---|---|---|---|---|---|---|---|---|
Pre-Ingestion | Time into Ingestion | Time | Beverage | Time × Beverage | ||||
20 min | 40 min | |||||||
BV (mL) | CON | 100 | 101 ± 3 | 100 ± 5 | 90 ± 5 | <0.001 | 0.076 | 0.192 |
SUC | 100 | 102 ± 5 | 105 ± 5 | 93 ± 5 | ||||
ISO | 100 | 99 ± 2 | 100 ± 3 | 90 ± 3 | ||||
CV (mL) | CON | 46 ± 2 | 45 ± 2 | 44 ± 2 | 42 ± 3 | 0.001 | 0.350 | 0.060 |
SUC | 46 ± 2 | 46 ± 2 | 47 ± 4 | 44 ± 3 | ||||
ISO | 46 ± 2 | 46 ± 2 | 46 ± 2 | 44 ± 2 | ||||
PV (mL) | CON | 53 ± 2 | 55 ± 3 | 55 ± 3 | 46 ± 3 | <0.001 | 0.087 | 0.322 |
SUC | 54 ± 2 | 55 ± 4 | 57 ± 3 | 48 ± 4 | ||||
ISO | 53 ± 2 | 53 ± 3 | 54 ± 3 | 46 ± 3 | ||||
Hct (%) | CON | 46 ± 2 | 45 ± 2 | 44 ± 2 | 47 ± 2 | <0.001 | 0.309 | 0.410 |
SUC | 46 ± 2 | 45 ± 2 | 45 ± 2 | 48 ± 3 | ||||
ISO | 46 ± 2 | 46 ± 2 | 46 ± 2 | 49 ± 2 | ||||
Hb (g dL−1) | CON $ | 13.9 ± 0.7 | 13.8 ± 0.7 | 13.8 ± 0.6 | 15.4 ± 0.9 | <0.001 | 0.042 | 0.214 |
SUC $ | 14.3 ± 1.0 | 14.0 ± 1.1 | 13.6 ± 1.1 | 15.3 ± 1.2 | ||||
ISO | 14.4 ± 0.8 | 14.5 ± 0.8 | 14.4 ± 0.8 | 15.9 ± 0.9 | ||||
P(Na+) (mmol L−1) | CON | 143.0 ± 2.3 | 144.3 ± 7.6 | 148.1 ± 11.2 | - | 0.069 | 0.085 | 0.179 |
SUC | 143.1 ± 2.2 | 146.3 ± 10.5 | 151.4 ± 12.1 | - | ||||
ISO | 143.2 ± 2.8 | 140.7 ± 6.7 | 141.7 ± 5.0 | - | ||||
P(K+) (mmol L−1) | CON | 4.4 ± 0.5 | 4.7 ± 0.6 | 4.7 ± 0.8 | - | 0.296 | 0.272 | 0.176 |
SUC | 4.5 ± 0.5 | 4.3 ± 0.7 | 4.2 ± 0.4 | - | ||||
ISO | 4.5 ± 0.5 | 4.2 ± 0.4 | 4.8 ± 1.2 | - | ||||
P(Cl−) (mmol L−1) | CON | 106.6 ± 3.0 | 106.9 ± 5.7 | 108.9 ± 8.3 | - | 0.168 | 0.225 | 0.147 |
SUC | 105.3 ± 2.3 | 108.7 ± 8.9 | 111.4 ± 8.0 | - | ||||
ISO | 107.0 ± 3.0 | 104.1 ± 5.6 | 105.7 ± 4.4 | - |
Threshold (°C) | p | Slope (mg cm−2 min−1/°C or %BL/°C) | p | |||
---|---|---|---|---|---|---|
Tre | Δ Sweat rate on forearm | CON | 36.81 ± 0.57 | 0.909 | 2.66 ± 2.43 | 0.453 |
SUC | 36.89 ± 0.64 | 2.33 ± 1.63 | ||||
ISO | 36.93 ± 0.53 | 1.62 ± 0.90 | ||||
Δ Sweat rate on chest | CON | 36.83 ± 0.56 | 0.904 | 3.11 ± 3.97 | 0.600 | |
SUC | 36.81 ± 0.60 | 2.89 ± 2.33 | ||||
ISO | 36.92 ± 0.55 | 1.88 ± 0.66 | ||||
Δ SkBF on chest | CON | 36.83 ± 0.59 | 0.791 | 1597 ± 1351 | 0.516 | |
SUC | 37.02 ± 0.58 | 1110 ± 276 | ||||
ISO | 37.98 ± 0.57 | 1127 ± 920 | ||||
ΔTre | Δ Sweat rate on forearm | CON | 0.06 ± 0.07 | 0.269 | 2.61 ± 2.3 | 0.418 |
SUC | 0.11 ± 0.11 | 2.30 ± 1.62 | ||||
ISO | 0.13 ± 0.10 | 1.56 ± 0.86 | ||||
Δ Sweat rate on chest | CON | 0.07 ± 0.07 | 0.301 | 3.11 ± 3.97 | 0.606 | |
SUC | 0.11 ± 0.08 | 2.89 ± 2.33 | ||||
ISO | 0.13 ± 1.10 | 1.88 ± 0.66 | ||||
Δ SkBF on chest | CON | 0.11 ± 0.06 | 0.276 | 1621 ± 1337 | 0.426 | |
SUC | 0.16 ± 0.11 | 1201 ± 379 | ||||
ISO | 0.19 ± 0.13 | 1091 ± 834 |
Rest | Exercise | Post-Exercise | p | |||||
---|---|---|---|---|---|---|---|---|
Time into Ingestion | ||||||||
20 min | 40 min (BL before Exercise) | Time | Beverage | Time × Beverage | ||||
Hunger | CON | 3.9 ± 2.0 | 4.3 ± 2.2 | - | 4.6 ± 2.5 | 0.449 | 0.416 | 0.440 |
SUC | 4.1 ± 2.7 | 4.2 ± 2.9 | - | 4.1 ± 3.1 | ||||
ISO | 3.5 ± 1.9 | 3.7 ± 2.2 | - | 3.9 ± 2.5 | ||||
Thirst | CON | 1.4 ± 1.2 | 2.0 ± 1.8 | - | 4.6 ± 3.1 | <0.001 | 0.394 | 0.541 |
SUC | 2.4 ± 2.0 | 2.8 ± 2.4 | - | 5.0 ± 3.4 | ||||
ISO | 2.8 ± 2.9 | 2.9 ± 2.8 | - | 5.2 ± 2.9 | ||||
Stomach fullness | CON | 4.6 ± 2.2 | 3.8 ± 1.8 | - | 3.3 ± 1.9 | <0.087 | 0.528 | 0.218 |
SUC | 4.0 ± 2.5 | 3.9 ± 2.5 | - | 3.8 ± 2.3 | ||||
ISO | 3.5 ± 2.4 | 3.3 ± 2.4 | - | 3.0 ± 2.4 | ||||
RPE | CON | - | 7.5 ± 2.5 | 15.3 ± 2.2 | 18.8 ± 1.1 | <0.001 | 0.407 | 0.463 |
SUC | - | 7.3 ± 1.9 | 14.3 ± 1.6 | 18.8 ± 1.0 | ||||
ISO | - | 7.9 ± 2.1 | 15.1 ± 2.2 | 18.9 ± 1.1 | ||||
Thermal sensation | CON | - | 1.6 ± 0.7 | 3.2 ± 0.4 | 3.6 ± 0.5 | <0.001 | 0.171 | 0.594 |
SUC | - | 1.4 ± 0.7 | 3.1 ± 0.7 | 3.5 ± 0.7 | ||||
ISO | - | 1.8 ± 0.8 | 3.1 ± 0.6 | 3.7 ± 0.5 | ||||
Comfort | CON | - | 4.6 ± 1.1 | 6.6 ± 0.5 | 6.9 ± 0.3 | <0.001 | 0.194 | 0.597 |
SUC | - | 4.3 ± 0.9 | 6.6 ± 0.5 | 6.8 ± 0.4 | ||||
ISO | - | 4.8 ± 1.0 | 6.7 ± 0.5 | 7.0 ± 0.0 | ||||
Palatability of the beverage | CON | 4.4 ± 1.7 | - | - | - | Main effect of beverage 0.020 | ||
SUC | 6.7 ± 3.1 * | - | - | - | ||||
ISO | 4.9 ± 3.0 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otsuka, J.; Okamoto, Y.; Fujii, N.; Enoki, Y.; Maejima, D.; Nishiyasu, T.; Amano, T. Effects of Isomaltulose Ingestion on Thermoregulatory Responses during Exercise in a Hot Environment. Int. J. Environ. Res. Public Health 2021, 18, 5760. https://doi.org/10.3390/ijerph18115760
Otsuka J, Okamoto Y, Fujii N, Enoki Y, Maejima D, Nishiyasu T, Amano T. Effects of Isomaltulose Ingestion on Thermoregulatory Responses during Exercise in a Hot Environment. International Journal of Environmental Research and Public Health. 2021; 18(11):5760. https://doi.org/10.3390/ijerph18115760
Chicago/Turabian StyleOtsuka, Junto, Yumi Okamoto, Naoto Fujii, Yasuaki Enoki, Daisuke Maejima, Takeshi Nishiyasu, and Tatsuro Amano. 2021. "Effects of Isomaltulose Ingestion on Thermoregulatory Responses during Exercise in a Hot Environment" International Journal of Environmental Research and Public Health 18, no. 11: 5760. https://doi.org/10.3390/ijerph18115760