The Association of Problematic Internet Shopping with Dissociation among South Korean Internet Users
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Measures
2.2.1. Sociodemographic Characteristics
2.2.2. Internet Shopping Behaviors
2.2.3. Alcohol and Caffeine Use
2.2.4. The Korean Version of the Richmond Compulsive Buying Scale (RCBS-K)
2.2.5. The Korean Version of the Dissociative Experiences Scale (DES-K)
2.2.6. The Korean Version of the Canadian Problem Gambling Index (CPGI-K)
2.2.7. The Korean Version of the Zung Self-Rating Depression Scale (ZDS-K)
2.2.8. The Modified Form of the Stress Response Inventory (SRI-MF)
2.2.9. The Barratt Impulsive Scale-11-Revised (BIS-K).
2.3. Data Analysis
3. Results
Descriptive Statistics
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Statistical Research Department. Internet Usage in South Korea-Statistics & Facts. Available online: https://www.statista.com/topics/2230/internet-usage-in-south-korea/ (accessed on 16 February 2020).
- Statistics Korea. Online Shopping in July 2019. Available online: http://kostat.go.kr/portal/eng/pressReleases/1/index.board?bmode=read&aSeq=377546 (accessed on 4 September 2019).
- Hirschman, E.C.; Holbrook, M.B. Hedonic consumption: Emerging concepts, methods and propositions. J. Mark. 1982, 46, 92–101. [Google Scholar] [CrossRef]
- Black, D.W. A review of compulsive buying disorder. World Psychiatry 2007, 6, 14–18. [Google Scholar] [PubMed]
- Müller, A.; Brand, M.; Claes, L.; Demetrovics, Z.; de Zwaan, M.; Fernández-Aranda, F.; Frost, R.O.; Jimenez-Murcia, S.; Lejoyeux, M.; Steins-Loeber, S. Buying-shopping disorder—is there enough evidence to support its inclusion in ICD-11? CNS Spectr. 2019, 1–6. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®); American Psychiatric Pub: Arlington, VA, USA, 2013. [Google Scholar]
- WHO. ICD-11 for Mortality and Morbidity Statistics. Available online: https://icd.who.int/browse11/l-m/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f826065555 (accessed on 21 April 2020).
- Gaebel, W.; Zielasek, J.; Reed, G.M. Mental and behavioural disorders in the ICD-11: Concepts, methodologies, and current status. Psychiatr. Pol. 2017, 51, 169–195. [Google Scholar] [CrossRef] [PubMed]
- McElroy, S.L.; Keck, P.E., Jr.; Pope, H.G., Jr.; Smith, J.M.; Strakowski, S.M. Compulsive buying: A report of 20 cases. J. Clin. Psychiatry 1994, 55, 242–248. [Google Scholar]
- O’Guinn, T.C.; Faber, R.J. Compulsive buying: A phenomenological exploration. J. Consum. Res. 1989, 16, 147–157. [Google Scholar] [CrossRef]
- Black, D.W. Compulsive shopping. In Clinical Manual of Impulse-control Disorders; Hollander, E., Stein, D.J., Eds.; American Psychiatric Pub: Washington, DC, USA, 2006; pp. 203–228. [Google Scholar]
- Scherhorn, G.; Reisch, L.A.; Raab, G. Addictive buying in West Germany: An empirical study. J. Consum. Policy 1990, 13, 355–387. [Google Scholar] [CrossRef]
- Dittmar, H.; Beattie, J. Impulsive and excessive buying behaviour. In Choice and public policy: The limits to welfare markets; Taylor-Gooby, P., Ed.; Macmillan: London, UK, 1998; pp. 123–144. [Google Scholar]
- Muller, A.; Mitchell, J.E.; de Zwaan, M. Compulsive buying. Am. J. Addict. 2015, 24, 132–137. [Google Scholar] [CrossRef]
- Rose, S.; Dhandayudham, A. Towards an understanding of Internet-based problem shopping behaviour: The concept of online shopping addiction and its proposed predictors. J. Behav. Addict. 2014, 3, 83–89. [Google Scholar] [CrossRef]
- Zhao, H.; Tian, W.; Xin, T. The Development and Validation of the Online Shopping Addiction Scale. Front. Psychol 2017, 8, 735. [Google Scholar] [CrossRef]
- Muller, A.; Steins-Loeber, S.; Trotzke, P.; Vogel, B.; Georgiadou, E.; de Zwaan, M. Online shopping in treatment-seeking patients with buying-shopping disorder. Compr. Psychiatry 2019, 94, 152120. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.T.; Lam, M.K. The association between financial literacy and Problematic Internet Shopping in a multinational sample. Addict. Behav. Rep. 2017, 6, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Brewer, J.A.; Potenza, M.N. The neurobiology and genetics of impulse control disorders: Relationships to drug addictions. Biochem. Pharmacol. 2008, 75, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Granero, R.; Fernandez-Aranda, F.; Mestre-Bach, G.; Steward, T.; Bano, M.; Del Pino-Gutierrez, A.; Moragas, L.; Mallorqui-Bague, N.; Aymami, N.; Gomez-Pena, M.; et al. Compulsive Buying Behavior: Clinical Comparison with Other Behavioral Addictions. Front. Psychol 2016, 7, 914. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.; Wegmann, E.; Stark, R.; Muller, A.; Wolfling, K.; Robbins, T.W.; Potenza, M.N. The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neurosci. Biobehav. Rev. 2019, 104, 1–10. [Google Scholar] [CrossRef]
- Ford, M.; Hakansson, A. Problem gambling, associations with comorbid health conditions, substance use, and behavioural addictions: Opportunities for pathways to treatment. PLoS ONE 2020, 15, e0227644. [Google Scholar] [CrossRef]
- Moore, T.J.; Glenmullen, J.; Mattison, D.R. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. JAMA Intern. Med. 2014, 174, 1930–1933. [Google Scholar] [CrossRef]
- Aboujaoude, E. Compulsive buying disorder: A review and update. Curr. Pharm. Des. 2014, 20, 4021–4025. [Google Scholar] [CrossRef]
- Grant, J.E.; Chamberlain, S.R. Caffeine’s influence on gambling behavior and other types of impulsivity. Addict. Behav. 2018, 76, 156–160. [Google Scholar] [CrossRef]
- Grant, J.E.; Potenza, M.N.; Weinstein, A.; Gorelick, D.A. Introduction to behavioral addictions. Am. J. Drug Alcohol Abuse 2010, 36, 233–241. [Google Scholar] [CrossRef]
- Maraz, A.; van den Brink, W.; Demetrovics, Z. Prevalence and construct validity of compulsive buying disorder in shopping mall visitors. Psychiatry Res. 2015, 228, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Beranuy, M.; Carbonell, X.; Griffiths, M.D. A qualitative analysis of online gaming addicts in treatment. Int. J. Ment. Health Addict. 2013, 11, 149–161. [Google Scholar] [CrossRef]
- Ludwig, A.M. The psychobiological functions of dissociation. Am. J. Clin. Hypn. 1983, 26, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, J.R.; Spiegel, D. Dissociative disorders. In The American Psychiatic Association Publishing Textbook of Psychiatry, 7th ed.; Roberts, L.W., Ed.; American Psychiatric Association Publishing: Washington DC, USA, 2019; pp. 437–474. [Google Scholar]
- Lyssenko, L.; Schmahl, C.; Bockhacker, L.; Vonderlin, R.; Bohus, M.; Kleindienst, N. Dissociation in Psychiatric Disorders: A Meta-Analysis of Studies Using the Dissociative Experiences Scale. Am. J. Psychiatry 2018, 175, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Craparo, G.; Ardino, V.; Gori, A.; Caretti, V. The relationships between early trauma, dissociation, and alexithymia in alcohol addiction. Psychiatry Investig. 2014, 11, 330–335. [Google Scholar] [CrossRef]
- Karadag, F.; Sar, V.; Tamar-Gurol, D.; Evren, C.; Karagoz, M.; Erkiran, M. Dissociative disorders among inpatients with drug or alcohol dependency. J. Clin. Psychiatry 2005, 66, 1247–1253. [Google Scholar] [CrossRef]
- Jacobs, D.F. Evidence for a common dissociative-like reaction among addicts. J. Gambl. Behav. 1988, 4, 27–37. [Google Scholar] [CrossRef]
- Somer, E. Prediction of abstinence from heroin addiction by childhood trauma, dissociation, and extent of psychosocial treatment. Addict. Res. Theory 2003, 11, 339–348. [Google Scholar] [CrossRef]
- Ridgway, N.M.; Kukar-Kinney, M.; Monroe, K.B. An expanded conceptualization and a new measure of compulsive buying. J. Consum. Res. 2008, 35, 622–639. [Google Scholar] [CrossRef]
- Bernstein, E.M.; Putnam, F.W. Development, reliability, and validity of a dissociation scale. J. Nerv. Ment. Dis. 1986, 174, 727–735. [Google Scholar] [CrossRef]
- Park, J.; Choe, B.; Kim, M.; Han, H.; Yoo, S.; Kim, S. Standardization of dissociative experiences scale-Korean version. Korean J. Psychopathol 1995, 4, 105–125. [Google Scholar]
- Ferris, J.A.; Wynne, H.J. The Canadian problem gambling index; Final report; Canadian Centre on Substance Abuse: Ottawa, Canada, 2001. [Google Scholar]
- Kim, A.Y.; Cha, J.E.; Kwon, S.J.; Lee, S.M. Construction and Validation of Korean Version of CPGI. Korean J. Psychol. Gen. 2011, 30, 1011–1038. [Google Scholar]
- Zung, W.W. A self-rating depression scale. Arch. Gen. Psychiatry 1965, 12, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Passik, S.D.; Kirsh, K.L.; Donaghy, K.B.; Theobald, D.E.; Lundberg, J.C.; Holtsclaw, E.; Dugan, W.M., Jr. An attempt to employ the Zung Self-Rating Depression Scale as a “lab test” to trigger follow-up in ambulatory oncology clinics: Criterion validity and detection. J. Pain Symptom Manag. 2001, 21, 273–281. [Google Scholar] [CrossRef]
- Lee, Y.H.; Song, J.Y. A study of the reliability and the validity of the BDI, SDS, and MMPI-D scales. Korean J. Clin. Psychol. 1991, 10, 98–113. [Google Scholar]
- Choi, S.-M.; Kang, T.-Y.; Woo, J.-M. Development and validation of a modified form of the stress response inventory for workers. J. Korean Neuropsychiatr. Assoc. 2006, 45, 541–553. [Google Scholar]
- Koh, K.B.; Park, J.K.; Kim, C.H.; Cho, S. Development of the stress response inventory and its application in clinical practice. Psychosom. Med. 2001, 63, 668–678. [Google Scholar] [CrossRef]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor structure of the Barratt impulsiveness scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [CrossRef]
- Lee, S.-R.; Lee, W.-H.; Park, J.-S.; Kim, S.-M.; Kim, J.-W.; Shim, J.-H. The Study on Reliability and Validity of Korean Version of the Barratt Impulsiveness Scale-11-Revised in Nonclinical Adult Subjects. J. Korean Neuropsychiat. Assoc. 2012, 51, 378–386. [Google Scholar] [CrossRef]
- Byeon, G.H.; Kim, R.; Han, J.H.; Ko, Y.M.; Roh, S.; Lee, T.K. Reliability and validity of the Korean version of Richmond Compulsive Buying Scale. J. Korean Neuropsychiatr. Assoc. 2017, 56, 35–44. [Google Scholar] [CrossRef]
- Kukar-Kinney, M.; Ridgway, N.M.; Monroe, K.B. The relationship between consumers’ tendencies to buy compulsively and their motivations to shop and buy on the Internet. J. Retail. 2009, 85, 298–307. [Google Scholar] [CrossRef]
- Sorce, P.; Perotti, V.; Widrick, S. Attitude and age differences in online buying. Int. J. Retail. Distrib. Manag. 2005, 33, 122–132. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Pallesen, S.; Griffiths, M.D. The relationship between addictive use of social media, narcissism, and self-esteem: Findings from a large national survey. Addict. Behav. 2017, 64, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Elton-Marshall, T.; Wijesingha, R.; Sendzik, T.; Mock, S.E.; van der Maas, M.; McCready, J.; Mann, R.E.; Turner, N.E. Marital Status and Problem Gambling among Older Adults: An Examination of Social Context and Social Motivations. Can. J. Aging 2018, 37, 318–332. [Google Scholar] [CrossRef]
- Lejoyeux, M.; Mathieu, K.; Embouazza, H.; Huet, F.; Lequen, V. Prevalence of compulsive buying among customers of a Parisian general store. Compr. Psychiatry 2007, 48, 42–46. [Google Scholar] [CrossRef]
- Duroy, D.; Gorse, P.; Lejoyeux, M. Characteristics of online compulsive buying in Parisian students. Addict.Behav 2014, 39, 1827–1830. [Google Scholar] [CrossRef]
- Leeman, R.F.; Potenza, M.N. A targeted review of the neurobiology and genetics of behavioural addictions: An emerging area of research. Can. J. Psychiatry 2013, 58, 260–273. [Google Scholar] [CrossRef]
- Cudo, A.; Toroj, M.; Demczuk, M.; Francuz, P. Dysfunction of Self-Control in Facebook Addiction: Impulsivity Is the Key. Psychiatr. Q. 2019, 91, 91–101. [Google Scholar] [CrossRef]
- Rømer Thomsen, K.; Callesen, M.B.; Hesse, M.; Kvamme, T.L.; Pedersen, M.M.; Pedersen, M.U.; Voon, V. Impulsivity traits and addiction-related behaviors in youth. J. Behav. Addict. 2018, 7, 317–330. [Google Scholar] [CrossRef]
- Billieux, J.; Rochat, L.; Rebetez, M.M.L.; Van der Linden, M. Are all facets of impulsivity related to self-reported compulsive buying behavior? Personal. Individ. Differ. 2008, 44, 1432–1442. [Google Scholar] [CrossRef]
- Schimmenti, A.; Bifulco, A. Toward a Better Understanding of the Relationship between Childhood Trauma and Psychiatric Disorders: Measurement and Impact on Addictive Behaviors. Psychiatry Investig. 2015, 12, 415–416. [Google Scholar] [CrossRef] [PubMed]
- Schimmenti, A.; Guglielmucci, F.; Barbasio, C.P.; Granieri, A. Attachment disorganization and dissociation in virtual worlds: A study on problematic Internet use among players of online role playing games. Clin. Neuropsychiatry 2012, 9, 195–202. [Google Scholar]
- Moskowitz, A. Dissociation and violence: A review of the literature. Trauma Violence Abus. 2004, 5, 21–46. [Google Scholar] [CrossRef] [PubMed]
- Kianpoor, M.; Bakhshani, N.M. Trauma, dissociation, and high-risk behaviors. Int. J. High. Risk Behav. Addict. 2012, 1, 9–13. [Google Scholar] [CrossRef]
- Stewart, M.J.; Wohl, M.J. Pop-up messages, dissociation, and craving: How monetary limit reminders facilitate adherence in a session of slot machine gambling. Psychol. Addict. Behav. 2013, 27, 268–273. [Google Scholar] [CrossRef]
- Carlson, M.D.; Morrison, R.S. Study design, precision, and validity in observational studies. J. Palliat. Med. 2009, 12, 77–82. [Google Scholar] [CrossRef]
- Callegaro, M.; Baker, R.P.; Bethlehem, J.; Göritz, A.S.; Krosnick, J.A.; Lavrakas, P.J. Online panel research: A data quality perspective; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
Variable | Demographics | Group Difference | ||||
---|---|---|---|---|---|---|
PIS n = 75 (%), Mean (± SD) | NPIS n = 523 (%), Mean (± SD) | Total n = 598 (%), Mean (± SD) | χ2 /t | p Value | ||
Gender | Male | 34 (45.3) | 269 (51.4) | 303 (50.7) | 0.977 | 0.323 |
Female | 41 (54.7) | 254 (48.6) | 295 (49.3) | |||
Age (years) | 20–29 | 18 (24.0) | 87 (16.6) | 105 (17.6) | 3.090 | 0.543 |
30–39 | 16 (21.3) | 114 (21.8) | 130 (21.7) | |||
40–49 | 17 (22.7) | 131 (25.0) | 148 (24.7) | |||
50–59 | 17 (22.7) | 120 (22.9) | 137 (22.9) | |||
60–69 | 7 (9.3) | 71 (13.6) | 78 (13.0) | |||
Marital status | Married | 41 (54.7) | 329 (62.9) | 370 (61.9) | 6.476 | 0.039 |
Separated/ widowed/divorced | 2 (2.7) | 39 (7.5) | 41 (6.9) | |||
single | 32 (42.7) | 155 (29.6) | 187 (31.3) |
Shopping Pattern | Group Differences | |||||
---|---|---|---|---|---|---|
PIS | NPIS | Total | χ2 /t | p Value | ||
Mean or n (SD or %) | Mean or n (SD or %) | Mean or n (SD or %) | ||||
Online shopping duration | year | 11.06 (5.19) | 10.37 (4.56) | 10.46 (4.64) | 1.202 | 0.230 |
Online shopping amount of budget | 10k Won | 46.69 (56.30) | 27.84 (44.96) | 30.21 (46.90) | 2.776 | 0.007 |
Time spent shopping per day | minutes | 109.84 (91.10) | 47.26 (55.49) | 55.12 (64.43) | 5.796 | 0.000 |
The number of days shopping per week | days | 4.37 (1.92) | 3.33 (1.87) | 3.46 (1.91) | 4.477 | 0.000 |
Buying in the excess over the income | No | 37 (49.3) | 427 (81.6) | 464 (77.6) | 39.386 | 0.000 |
Yes | 38 (50.7) | 96 (18.4) | 134 (22.4) |
Variables | Mental Health | Group Difference | ||||
---|---|---|---|---|---|---|
PIS Mean or n (SD) | NPIS Mean or n (SD) | Total | χ2 /t | p Value | ||
Alcohol use | Not at all | 8 (10.7) | 96 (18.4) | 104 (17.4) | 11.968 | 0.018 |
Once a month | 10 (13.3) | 134 (25.6) | 144 (24.1) | |||
Twice a month | 16 (21.3) | 99 (18.9) | 115 (19.2) | |||
Once a week | 17 (22.7) | 88 (16.8) | 105 (17.6) | |||
Two or three times a week | 24 (32.0) | 106 (20.3) | 130 (21.7) | |||
Caffeine use | cups | 2.71 (1.84) | 2.66 (2.01) | 2.66 (1.98) | 0.199 | 0.842 |
DES-K | 41.78 (24.43) | 14.30 (14.50) | 17.75 (18.46) | 9.502 | 0.000 | |
CPGI-K | 6.16 (6.79) | 1.14 (2.96) | 1.77 (4.02) | 6.319 | 0.000 | |
ZDS-K | 50.47 (8.09) | 42.33 (9.13) | 43.35 (9.39) | 8.017 | 0.000 | |
SRI-MF | 41.24 (17.09) | 21.84 (15.57) | 24.27 (17.02) | 9.963 | 0.000 | |
BIS-K | 69.69 (10.30) | 58.46 (9.14) | 59.87 (10.00) | 9.791 | 0.000 |
Psychological Scales | Cronbach’s Alpha | 95% CI | r(p) |
---|---|---|---|
RCBS-K | 0.906 | 0.894–0.917 | 1 |
DES-K | 0.985 | 0.984–0.987 | 0.559 ** |
CPGI-K | 0.947 | 0.941–0.954 | 0.422 ** |
ZDS-K | 0.876 | 0.861–0.890 | 0.356 ** |
SRI-MF | 0.958 | 0.953–0.963 | 0.461 ** |
BIS-K | 0.855 | 0.837–0.871 | 0.484 ** |
Variable | Model 1 | Model 2 | Model 3 | Model 4 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | S.E. | OR | p Value | B | S.E. | OR | p Value | B | S.E. | OR | p-Value | B | S.E. | OR | p Value | |
Gender (ref:male) | ||||||||||||||||
female | 0.253 | 0.250 | 1.288 | 0.310 | –0.168 | 0.285 | 0.845 | 0.555 | 0.111 | 0.304 | 1.118 | 0.714 | 0.090 | 0.387 | 1.094 | 0.817 |
Age (ref:60~69) | ||||||||||||||||
20~29 | 0.138 | 0.580 | 1.148 | 0.813 | 0.092 | 0.655 | 1.096 | 0.889 | –0.002 | 0.658 | 0.998 | 0.997 | –0.539 | 0.844 | 0.584 | 0.523 |
30~39 | 0.027 | 0.512 | 1.028 | 0.958 | –0.436 | 0.574 | 0.647 | 0.448 | –0.694 | 0.582 | 0.499 | 0.233 | –1.116 | 0.753 | 0.328 | 0.138 |
40~49 | 0.121 | 0.482 | 1.128 | 0.802 | 0.266 | 0.531 | 1.304 | 0.617 | 0.048 | 0.536 | 1.050 | 0.928 | –0.253 | 0.676 | 0.777 | 0.709 |
50~59 | 0.333 | 0.476 | 1.395 | 0.484 | 0.385 | 0.527 | 1.470 | 0.465 | 0.295 | 0.525 | 1.343 | 0.574 | 0.093 | 0.668 | 1.098 | 0.889 |
Marital status(ref:married) | ||||||||||||||||
seperated/widowed/divorced | –0.915 | 0.747 | 0.400 | 0.221 | –1.098 | 0.795 | 0.333 | 0.167 | –1.097 | 0.790 | 0.334 | 0.165 | –1.245 | 0.892 | 0.288 | 0.163 |
single | 0.552 | 0.361 | 1.737 | 0.126 | 0.478 | 0.385 | 1.613 | 0.214 | 0.628 | 0.396 | 1.874 | 0.113 | 0.980 | 0.499 | 2.664 | 0.050 |
Online shopping duration | 0.039 | 0.034 | 1.039 | 0.253 | 0.054 | 0.035 | 1.055 | 0.119 | 0.089 | 0.040 | 1.093 | 0.026 | ||||
Online shopping amount | 0.003 | 0.002 | 1.003 | 0.177 | 0.002 | 0.002 | 1.002 | 0.336 | 0.000 | 0.003 | 1.000 | 0.964 | ||||
Time spent shopping per day | 0.010 | 0.002 | 1.010 | 0.000 | 0.010 | 0.002 | 1.010 | 0.000 | 0.008 | 0.002 | 1.008 | 0.001 | ||||
The number of days shopping per week | 0.099 | 0.079 | 1.104 | 0.210 | 0.101 | 0.080 | 1.106 | 0.211 | 0.180 | 0.097 | 1.197 | 0.063 | ||||
Buying exceeding the income (ref:No) | ||||||||||||||||
Yes | 1.086 | 0.287 | 2.961 | 0.000 | 1.051 | 0.294 | 2.860 | 0.000 | 0.608 | 0.372 | 1.837 | 0.102 | ||||
Alcohol use (ref:Not at all) | ||||||||||||||||
Once a month | –0.293 | 0.539 | 0.746 | 0.586 | –0.275 | 0.601 | 0.759 | 0.647 | ||||||||
Twice a month | 0.552 | 0.505 | 1.737 | 0.274 | 0.111 | 0.617 | 1.117 | 0.858 | ||||||||
Once a week | 0.972 | 0.505 | 2.643 | 0.054 | 0.614 | 0.636 | 1.847 | 0.335 | ||||||||
Two or three times a week | 1.058 | 0.488 | 2.880 | 0.030 | 1.017 | 0.579 | 2.765 | 0.079 | ||||||||
Caffeine consumption | –0.042 | 0.073 | 0.959 | 0.569 | –0.018 | 0.100 | 0.982 | 0.854 | ||||||||
DES-K | 0.043 | 0.010 | 1.044 | 0.000 | ||||||||||||
CPGI-K | 0.075 | 0.042 | 1.078 | 0.073 | ||||||||||||
ZDS-K | 0.006 | 0.029 | 1.006 | 0.829 | ||||||||||||
SRI-MF | 0.021 | 0.014 | 1.021 | 0.131 | ||||||||||||
BIS-K | 0.045 | 0.022 | 1.046 | 0.035 | ||||||||||||
-2LL | 442.969 | 371.731 | 359.010 | 247.218 |
Variables | Mental Health | Group Difference | ||
---|---|---|---|---|
Normal (n = 19) Mean Rank | Dissociation (n = 56) Mean Rank | M-W U | p Value | |
CPGI-K | 25.24 | 42.33 | 289.50 | 0.003 |
SRI-MF | 25.42 | 42.27 | 293.00 | 0.004 |
BIS-K | 26.18 | 42.01 | 307.50 | 0.006 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, Y.-M.; Roh, S.; Lee, T.K. The Association of Problematic Internet Shopping with Dissociation among South Korean Internet Users. Int. J. Environ. Res. Public Health 2020, 17, 3235. https://doi.org/10.3390/ijerph17093235
Ko Y-M, Roh S, Lee TK. The Association of Problematic Internet Shopping with Dissociation among South Korean Internet Users. International Journal of Environmental Research and Public Health. 2020; 17(9):3235. https://doi.org/10.3390/ijerph17093235
Chicago/Turabian StyleKo, Young-Mi, Sungwon Roh, and Tae Kyung Lee. 2020. "The Association of Problematic Internet Shopping with Dissociation among South Korean Internet Users" International Journal of Environmental Research and Public Health 17, no. 9: 3235. https://doi.org/10.3390/ijerph17093235
APA StyleKo, Y.-M., Roh, S., & Lee, T. K. (2020). The Association of Problematic Internet Shopping with Dissociation among South Korean Internet Users. International Journal of Environmental Research and Public Health, 17(9), 3235. https://doi.org/10.3390/ijerph17093235