# Statistical Modeling of the Early-Stage Impact of a New Traffic Policy in Milan, Italy

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

**Hypothesis**

**1.**

**Hypothesis**

**2.**

## 2. Materials and Methods

#### 2.1. Data

#### 2.1.1. Air Quality and Weather Monitoring Network in Milan

#### 2.1.2. Temporal Coverage, Pollutants, and Weather Measures

#### 2.1.3. Anthropogenic Activities

#### 2.2. Methods: Average and Median Difference before and after the Policy

#### 2.3. Methods: Time Series Modeling Using a State Space Approach

#### 2.3.1. Basic Structural Model for Air Quality Data

#### 2.3.2. Three-Step Model Selection

#### 2.3.3. Policy Intervention Analysis

#### 2.3.4. Software

## 3. Results

#### 3.1. Average and Median Differences

#### 3.2. Model Selection

#### 3.2.1. Step 1: Detection of the Seasonal Components

#### 3.2.2. Step 2: Detection of the Counter-Factual Component

#### 3.2.3. Step 3: Detection of the Weather and Calendar Factors

#### 3.2.4. Final Model Specification

#### 3.3. Basic Structural Model and Policy Intervention

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- European Parliament. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union
**2008**, 29, 169–212. - Thunis, P.; Miranda, A.; Baldasano, J.M.; Blond, N.; Douros, J.; Graff, A.; Janssen, S.; Juda-Rezler, K.; Karvosenoja, N.; Maffeis, G.; et al. Overview of current regional and local scale air quality modeling practices: Assessment and planning tools in the EU. Environ. Sci. Policy
**2016**, 65, 13–21. [Google Scholar] [CrossRef] - Cuvelier, C.; Thunis, P.; Vautard, R.; Amann, M.; Bessagnet, B.; Bedogni, M.; Berkowicz, R.; Brandt, J.; Brocheton, F.; Builtjes, P.; et al. CityDelta: A model intercomparison study to explore the impact of emission reductions in European cities in 2010. Atmos. Environ.
**2007**, 41, 189–207. [Google Scholar] [CrossRef] - Vautard, R.; Builtjes, P.H.J.; Thunis, P.; Cuvelier, C.; Bedogni, M.; Bessagnet, B.; Honoré, C.; Moussiopoulos, N.; Pirovano, G.; Schaap, M.; et al. Evaluation and intercomparison of Ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project. Atmos. Environ.
**2007**, 41, 173–188. [Google Scholar] [CrossRef] - Gao, J.; Yuan, Z.; Liu, X.; Xia, X.; Huang, X.; Dong, Z. Improving air pollution control policy in China—A perspective based on cost–benefit analysis. Sci. Total Environ.
**2016**, 543, 307–314. [Google Scholar] [CrossRef] - Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M.; Guariso, G.; Gianfreda, R.; Maffeis, G.; Thunis, P.; White, L.; Triacchini, G. An integrated assessment tool to define effective air quality policies at regional scale. Environ. Model. Softw.
**2012**, 38, 306–315. [Google Scholar] [CrossRef] - Vlachokostas, C.; Achillas, C.; Moussiopoulos, *!!! REPLACE !!!*; Hourdakis, E.; Tsilingiridis, G.; Ntziachristos, L.; Banias, G.; Stavrakakis, N.; Sidiropoulos, C. Decision support system for the evaluation of urban air pollution control options: Application for particulate pollution in Thessaloniki, Greece. Sci. Total Environ.
**2009**, 407, 5937–5948. [Google Scholar] [CrossRef] - European Environmental Agency. Air Quality in Europe-2019 Report; EEA Technical Report 10/2019; European Environment Agency: Copenhagen, Denmark, 2019. [Google Scholar]
- Liu, Z.; Zhao, L.; Wang, C.; Yang, Y.; Xue, J.; Bo, X.; Li, D.; Liu, D. An Actuarial Pricing Method for Air Quality Index Options. Int. J. Environ. Res. Public Health
**2019**, 16, 4882. [Google Scholar] [CrossRef] [Green Version] - Xu, X.; Dong, D.; Wang, Y.; Wang, S. The Impacts of Different Air Pollutants on Domestic and Inbound Tourism in China. Int. J. Environ. Res. Public Health
**2019**, 16, 5127. [Google Scholar] [CrossRef] [Green Version] - Municipality of Milan. Delibera Giunta Comunale n. 1366/2018 del 02/08/2018; Municipality of Milan: Milan, Italy, 2018. [Google Scholar]
- Finazzi, F.; Paci, L. Kernel-based estimation of individual location densities from smartphone data. Stat. Model.
**2019**. [Google Scholar] [CrossRef] [Green Version] - Fassò, A.; Porcu, E. Latent Variables and Space-Time Models for Environmental Problems. Stoch Environ. Res. Risk Assess
**2015**, 29, 323–324. [Google Scholar] [CrossRef] [Green Version] - Cameletti, M.; Gómez-Rubio, V.; Blangiardo, M. Bayesian modeling for spatially misaligned health and air pollution data through the INLA-SPDE approach. Spat. Stat.
**2019**, 31, 100353. [Google Scholar] [CrossRef] - Vu, P.T.; Larson, T.V.; Szpiro, A.A. Probabilistic Predictive Principal Component Analysis for Spatially- Misaligned and High-Dimensional Air Pollution Data with Missing Observations. arXiv
**2019**, arXiv:1905.00393. [Google Scholar] [CrossRef] - Calculli, C.; Fassò, A.; Finazzi, F.; Pollice, A.; Turnone, A. Maximum likelihood estimation of the multivariate hidden dynamic geostatistical model with application to air quality in Apulia, Italy. Environmetrics
**2015**, 26, 406–417. [Google Scholar] [CrossRef] - Menezes Piairo, H.; Garcia-Soidan, P.; Sousa, I. Spatial-temporal modellization of the NO2 concentration data through geostatistical tools. Stat. Methods Appl.
**2015**, 25. [Google Scholar] [CrossRef] [Green Version] - Taghavi-Shahri, S.M.; Fassò, A.; Mahaki, B.; Amini, H. Concurrent spatiotemporal daily land use regression modeling and missing data imputation of fine particulate matter using distributed space-time Expectation Maximization. Atmos. Environ.
**2019**, 117202. [Google Scholar] [CrossRef] - Chen, L.; Guo, B.; Huang, J.; He, J.; Wang, H.; Zhang, S.; Chen, S.X. Assessing air-quality in Beijing-Tianjin-Hebei region: The method and mixed tales of PM2. 5 and O3. Atmos. Environ.
**2018**, 193, 290–301. [Google Scholar] [CrossRef] - Fassò, A. Statistical assessment of air quality interventions. Stoch. Environ. Res. Risk Assess.
**2013**, 27, 1651–1660. [Google Scholar] [CrossRef] - Invernizzi, G.; Ruprecht, A.; Mazza, R.; De Marco, C.; Močnik, G.; Sioutas, C.; Westerdahl, D. Measurement of black carbon concentration as an indicator of air quality benefits of traffic restriction policies within the ecopass zone in Milan, Italy. Atmos. Environ.
**2011**, 45, 3522–3527. [Google Scholar] [CrossRef] - Percoco, M. The effect of road pricing on traffic composition: Evidence from a natural experiment in Milan, Italy. Transp. Policy
**2014**, 31, 55–60. [Google Scholar] [CrossRef] - Jones, A.M.; Harrison, R.M.; Barratt, B.; Fuller, G. A large reduction in airborne particle number concentrations at the time of the introduction of “sulphur free” diesel and the London Low Emission Zone. Atmos. Environ.
**2012**, 50, 129–138. [Google Scholar] [CrossRef] - Qadir, R.; Abbaszade, G.; Schnelle-Kreis, J.; Chow, J.; Zimmermann, R. Concentrations and source contributions of particulate organic matter before and after implementation of a low emission zone in Munich, Germany. Environ. Pollut.
**2013**, 175, 158–167. [Google Scholar] [CrossRef] [PubMed] - INEMAR ARPA Lombardia Settore Aria. Emission Inventory: 2014 Emission in Lombardy Region—Final Data; ARPA Lombardia Settore Aria: Milan, Italy, 2018. [Google Scholar]
- Mudelsee, M.; Alkio, M. Quantifying effects in two-sample environmental experiments using bootstrap confidence intervals. Environ. Model. Softw.
**2007**, 22, 84–96. [Google Scholar] [CrossRef] - Mudelsee, M. Climate Time Series Analysis-Classical Statistical and Bootstrap Methods, 2nd ed.; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Durbin, J.; Koopman, S.J. Time Series Analysis by State Space Methods; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Pelagatti, M.M. Time series modeling with unobserved components; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Windsor, H.; Toumi, R. Scaling and persistence of UK pollution. Atmos. Environ.
**2001**, 35, 4545–4556. [Google Scholar] [CrossRef] - Chelani, A.B. Statistical characteristics of ambient PM2. 5 concentration at a traffic site in Delhi: source identification using persistence analysis and nonparametric wind regression. Aerosol Air Qual. Res.
**2013**, 13, 1768–1778. [Google Scholar] [CrossRef] [Green Version] - Lee, C.K. Multifractal characteristics in air pollutant concentration time series. Water Air Soil Pollut.
**2002**, 135, 389–409. [Google Scholar] [CrossRef] - Harvey, A.C.; Todd, P. Forecasting economic time series with structural and Box-Jenkins models: A case study. J. Bus. Econ. Stat.
**1983**, 1, 299–307. [Google Scholar] - Harvey, A.; Koopman, S. Structural time series models. Wiley Stats Ref. Stat. Ref. Online
**2014**. [Google Scholar] [CrossRef] - Bergmeir, C.; Hyndman, R.J.; Koo, B. A note on the validity of cross-validation for evaluating time series prediction. Monash Univ. Dep. Econom. Bus. Stat. Work. Paper
**2015**, 10, 15. [Google Scholar] [CrossRef] - Bergmeir, C.; Hyndman, R.J.; Koo, B. A note on the validity of cross-validation for evaluating autoregressive time series prediction. Comput. Stat. Data Anal.
**2018**, 120, 70–83. [Google Scholar] [CrossRef] - R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Helske, J. KFAS: Exponential Family State Space Models in R. J. Stat. Softw.
**2017**, 78, 1–39. [Google Scholar] [CrossRef] [Green Version] - Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J.
**2018**, 10, 439–446. [Google Scholar] [CrossRef] [Green Version] - Perlman, D.; Takacs, G.J. The 10 Stages of Change: To cope with change. Nurs. Manag.
**1990**, 21, 33–38. [Google Scholar] [CrossRef] - Elrod, P.D.; Tippett, D.D. The “death valley” of change. J. Organ. Change Manag.
**2002**, 15, 273–291. [Google Scholar] [CrossRef]

**Figure 1.**Annual average NO${}_{2}$ concentrations ($\mathsf{\mu}$g/m${}^{3}$) in Europe during 2018. Levels are expressed in $\mathsf{\mu}$g/m${}^{3}$. Source: European Environmental Agency

**Figure 2.**Monitoring system in Milan. Air quality stations (blue points): Marche (501), Verziere (528), Senato (548), Liguria (539) and Città Studi (705). Weather stations (red points): Lambrate (100), Zavattari (503), Brera (620), Feltre (869), Rosellini (1327), Juvara (502), and Marche (501).

**Figure 3.**Georeferentiation of counter-factual candidates. Geographical positioning of the counter- factual candidates with respect to Milan.

**Figure 4.**Pollutant levels in Milan ($\mathsf{\mu}$g/m${}^{3}$). Observed concentrations levels of NO${}_{\mathrm{x}}$ and NO${}_{2}$ between 2014 and 2019 with yearly average and median values. Values are expressed as $\mathsf{\mu}$g/m${}^{3}$.

**Figure 5.**Model selection-Step 1-NO${}_{\mathrm{x}}$. Seasonal component selection for the five nitrogen oxides stations in Milan. Left panel: 10-steps-ahead MSFE in log-scale as function of the number of harmonics. Right panel: AICc and BIC pairs for each model.

**Figure 6.**Model selection-Step 1-NO${}_{2}$. Seasonal component selection for the 5 nitrogen dioxide stations in Milan. Left panel: 10-steps-ahead MSFE in log-scale as function of the number of harmonics. Right panel: AICc and BIC pairs for each model.

**Figure 7.**Model selection-Step 2-NO${}_{\mathrm{x}}$. Counter-factual term selection for the five nitrogen oxides stations in Milan. Left panel: 10-steps-ahead MSFE in log-scale as function of the candidate. Right panel: AICc and BIC pairs for each model.

**Figure 8.**Model selection-Step 2-NO${}_{2}$. Counter-factual term selection for the five nitrogen dioxide stations in Milan. Left panel: 10-steps-ahead MSFE in log-scale as function of the candidate. Right panel: AICc and BIC pairs for each model.

**Table 1.**Differences between the average concentration level of the sub-period 2014–2018 and the treatment period 2019. Differences are expressed in $\mathsf{\mu}$g/m${}^{3}$.

Station Name | Nitrogen Oxides | Nitrogen Dioxide | ||
---|---|---|---|---|

${\mathit{d}}_{\mathit{AVG}}$ | ${\mathit{d}}_{\mathit{MED}}$ | ${\mathit{d}}_{\mathit{AVG}}$ | ${\mathit{d}}_{\mathit{MED}}$ | |

Milano city stations | ||||

Città Studi | 0.94 | −0.43 | −2.63 | −4.26 |

Liguria | −25.59 | −26.91 | −19.49 | −20.71 |

Marche | −17.29 | −22.00 | −11.53 | −13.37 |

Senato | −14.99 | −13.84 | −10.46 | −9.73 |

Verziere | −2.66 | −5.00 | −4.35 | −5.78 |

Other urban centres in Lombardy | ||||

Bergamo | −11.56 | −8.90 | −5.11 | −4.07 |

Brescia | −4.61 | −6.39 | −3.46 | −4.12 |

Cremona | 3.47 | 1.10 | 1.53 | 0.85 |

Lodi | −5.99 | −7.62 | -1.85 | −2.57 |

Pavia | −14.75 | −17.77 | −7.75 | −9.28 |

Saronno | −7.96 | −7.84 | −8.66 | −8.87 |

Treviglio | 0.06 | −3.71 | 2.25 | 0.39 |

**Table 2.**Model selection-Step 3-NO${}_{\mathrm{x}}$: Best subset of covariates using backward-forward stepwise algorithms for NO${}_{\mathrm{x}}$.

Marche | Verziere | Senato | Liguria | Citta Studi | ||||||
---|---|---|---|---|---|---|---|---|---|---|

AIC | BIC | AIC | BIC | AIC | BIC | AIC | BIC | AIC | BIC | |

Holidays | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Week-End | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Saturday:Holidays | ✓ | ✓ | ✓ | ✓ | ✓ | |||||

Sunday:Holidays | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Wind speed Q${}_{\mathrm{NE}}$ | ||||||||||

Wind speed Q${}_{\mathrm{SE}}$ | ✓ | |||||||||

Wind speed Q${}_{\mathrm{SW}}$ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Wind speed Q${}_{\mathrm{NW}}$ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||

Temperature | ||||||||||

Rainfall | ✓ | ✓ | ✓ | ✓ | ||||||

Global radiation | ✓ | ✓ | ||||||||

Humidity |

**Table 3.**Model selection-Step 3-NO${}_{2}$: Best subset of covariates using backward-forward stepwise algorithms for NO${}_{2}$.

Marche | Verziere | Senato | Liguria | Citta Studi | ||||||
---|---|---|---|---|---|---|---|---|---|---|

AIC | BIC | AIC | BIC | AIC | BIC | AIC | BIC | AIC | BIC | |

Holidays | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Week-End | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Saturday:Holidays | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||

Sunday:Holidays | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |

Wind speed Q${}_{\mathrm{NE}}$ | ||||||||||

Wind speed Q${}_{\mathrm{SE}}$ | ||||||||||

Wind speed Q${}_{\mathrm{SW}}$ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Wind speed Q${}_{\mathrm{NW}}$ | ✓ | ✓ | ||||||||

Temperature | ||||||||||

Rainfall | ✓ | ✓ | ||||||||

Global radiation | ✓ | ✓ | ✓ | ✓ | ||||||

Humidity | ✓ | ✓ |

Parameter | Marche | Citta Studi | Liguria | Verziere | Senato | |
---|---|---|---|---|---|---|

log(Pavia) | $\theta $ | 0.51 *** | 0.93 *** | 0.73 *** | 0.66 *** | 0.57 *** |

(0.01) | (0.02) | (0.02) | 0.02 | (0.01) | ||

Holidays | ${\varphi}_{1}$ | −0.06 *** | −0.02 | −0.05 * | −0.10 *** | −0.09 *** |

(0.03) | (0.04) | (0.03) | (0.03) | (0.03) | ||

WeekEnd | ${\varphi}_{2}$ | −0.11 *** | −0.09 *** | −0.09 *** | −0.17 *** | −0.15 *** |

(0.01) | (0.02) | (0.01) | (0.01) | (0.01) | ||

Saturday:Holidays | ${\varphi}_{3}$ | 0.10 | 0.17 | 0.04 | 0.10 | 0.14 *** |

(0.08) | (0.13) | (0.10) | (0.14) | (0.05) | ||

Sunday:Holidays | ${\varphi}_{4}$ | 0.09 ** | 0.09 | 0.12 * | 0.08 | 0.10 *** |

(0.05) | (0.08) | (0.06) | (0.05) | (0.03) | ||

WindSpeed Q${}_{\mathrm{SW}}$ | ${\varphi}_{5}$ | −0.44 *** | −0.20 *** | −0.56 *** | −0.30 *** | −0.27 *** |

(0.01) | (0.02) | (0.02) | (0.02) | (0.01) | ||

WindSpeed Q${}_{\mathrm{NW}}$ | ${\varphi}_{6}$ | −0.31v*** | −0.27 *** | −0.12 *** | −0.20 *** | −0.12 *** |

(0.01) | (0.02) | (0.01) | (0.01) | (0.01) | ||

Level variance | ${\sigma}_{\eta}^{2}$ | 0.0047 | 0.0065 | 0.0037 | 0.0038 | 0.0027 |

Slope variance | ${\sigma}_{\zeta}^{2}$ | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

Seasonality variance | ${\sigma}_{\omega}^{2}$ | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

Error variance | ${\sigma}_{\epsilon}^{2}$ | 0.0298 | 0.0745 | 0.0437 | 0.0370 | 0.0308 |

Parameter | Marche | Citta Studi | Liguria | Verziere | Senato | |
---|---|---|---|---|---|---|

log(Pavia) | $\theta $ | 0.36 *** | 0.85 *** | 0.69 *** | 0.65 *** | 0.55 *** |

(0.01) | (0.02) | (0.02) | (0.02) | (0.01) | ||

Holidays | ${\varphi}_{1}$ | −0.06 *** | −0.08 *** | −0.08 *** | −0.10 *** | −0.08 ** |

(0.02) | (0.03) | (0.02) | (0.02) | (0.03) | ||

Week-end | ${\varphi}_{2}$ | −0.06 *** | −0.10 *** | −0.09 *** | −0.14 *** | −0.11 *** |

(0.01) | (0.01) | (0.01) | (0.01) | (0.01) | ||

Saturday:Holidays | ${\varphi}_{3}$ | 0.06 | 0.18 *** | 0.06 | 0.14 ** | −0.09 *** |

(0.05) | (0.08) | 0.07 | (0.06) | (0.02) | ||

Sunday:Holidays | ${\varphi}_{4}$ | 0.08 *** | 0.11 *** | 0.11 *** | 0.06 | 0.10 *** |

(0.03) | (0.05) | (0.04) | (0.03) | (0.03) | ||

WindSpeed Q${}_{\mathrm{SW}}$ | ${\varphi}_{5}$ | −0.35 *** | −0.13 *** | −0.42 *** | −0.23 *** | −0.18 *** |

(0.01) | (0.01) | (0.01) | (0.01) | (0.01) | ||

WindSpeed Q${}_{\mathrm{NW}}$ | ${\varphi}_{6}$ | −0.17 *** | −0.16 *** | −0.08 *** | −0.13 *** | −0.08 *** |

(0.01) | (0.01) | (0.01) | (0.01) | (0.01) | ||

Level variance | ${\sigma}_{\eta}^{2}$ | 0.0051 | 0.0065 | 0.0046 | 0.0044 | 0.0024 |

Slope variance | ${\sigma}_{\zeta}^{2}$ | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

Seasonality variance | ${\sigma}_{\omega}^{2}$ | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

Errors variance | ${\sigma}_{\epsilon}^{2}$ | 0.0093 | 0.0282 | 0.0182 | 0.0154 | 0.0114 |

**Table 6.**Estimated permanent and transitory effects in log scale on NO${}_{\mathrm{x}}$ and NO${}_{2}$ for each station.

Stations | Effect | Nitrogen Oxides | Nitrogen Dioxide | ||||
---|---|---|---|---|---|---|---|

Estimate | S.E. | t-Statistic | Estimate | S.E. | t-Statistic | ||

Senato | Perm. eff. ${\delta}_{1}$ | 0.38 | 0.19 | 2.03 ** | 0.29 | 0.12 | 2.40 ** |

Trans. eff. ${\delta}_{0}$ | −0.12 | 0.16 | −0.76 | −0.14 | 0.11 | −1.25 | |

Verziere | Perm. eff. ${\delta}_{1}$ | 0.26 | 0.21 | 1.27 | 0.22 | 0.15 | 1.50 |

Trans. eff. ${\delta}_{0}$ | −0.01 | 0.18 | −0.05 | −0.06 | 0.14 | −0.40 | |

Liguria | Perm. eff. ${\delta}_{1}$ | 0.12 | 0.22 | 0.54 | 0.20 | 0.16 | 1.25 |

Trans. eff. ${\delta}_{0}$ | −0.02 | 0.19 | −0.10 | −0.10 | 0.15 | −0.67 | |

Marche | Perm. eff. ${\delta}_{1}$ | 0.15 | 0.19 | 0.80 | 0.23 | 0.13 | 1.82 * |

Trans. eff. ${\delta}_{0}$ | −0.11 | 0.17 | −0.63 | −0.19 | 0.13 | 1.56 | |

Citta Studi | Perm. eff. ${\delta}_{1}$ | 0.35 | 0.29 | 1.19 | 0.25 | 0.19 | 1.30 |

Trans. eff. ${\delta}_{0}$ | 0.08 | 0.25 | 0.30 | 0.02 | 0.18 | 0.10 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Maranzano, P.; Fassò, A.; Pelagatti, M.; Mudelsee, M.
Statistical Modeling of the Early-Stage Impact of a New Traffic Policy in Milan, Italy. *Int. J. Environ. Res. Public Health* **2020**, *17*, 1088.
https://doi.org/10.3390/ijerph17031088

**AMA Style**

Maranzano P, Fassò A, Pelagatti M, Mudelsee M.
Statistical Modeling of the Early-Stage Impact of a New Traffic Policy in Milan, Italy. *International Journal of Environmental Research and Public Health*. 2020; 17(3):1088.
https://doi.org/10.3390/ijerph17031088

**Chicago/Turabian Style**

Maranzano, Paolo, Alessandro Fassò, Matteo Pelagatti, and Manfred Mudelsee.
2020. "Statistical Modeling of the Early-Stage Impact of a New Traffic Policy in Milan, Italy" *International Journal of Environmental Research and Public Health* 17, no. 3: 1088.
https://doi.org/10.3390/ijerph17031088