Chronic Lower Extremity Ischemia and Its Association with the Frailty Syndrome in Patients with Diabetes
Abstract
:1. Introduction
2. Frailty
3. Pathology and Epidemiology of PAD
4. The Significance of Ankle-Brachial Index (ABI) and Toe-Brachial Index (TBI)
5. Revascularization Treatment
6. Lower Limb Amputation
7. Frailty Assessment in Clinical Practice
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABI | ankle-brachial index |
Akt | protein kinase B |
AMPK | 5’-adenosine monophosphate-activated protein kinase |
APN-KO | adiponectin knock-out |
CABG | coronary artery bypass grafting |
CI | confidence interval |
CLI | critical limb ischemia |
DPP-4 | dipeptidyl peptidase-4 |
eNOS | endothelial nitric oxide synthase |
Frailty | the frailty syndrome |
HR | hazard ratio |
IMT | intima-media thickness |
MDM2 | mouse double minute 2 homolog |
mFI | modified Frailty Index |
NET | neutrophil extracellular trap |
NFAT | nuclear factor of activated T cell |
NLRP3 | NOD-, LRR- and pyrin domain-containing protein 3 |
OR | odds ratio |
PAD | peripheral arterial disease |
p53 | tumor suppressor p53 |
RAI | Risk Assessment Index |
SGLT2 | sodium/glucose cotransporter 2 |
sVCAM-1 | soluble form of vascular cell adhesion molecule 1 |
TBI | toe-brachial index |
vWF | von Willebrand factor |
WT | wild type |
References
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of type 2 diabetes–global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechner, K.; von Schacky, C.; McKenzie, A.L.; Worm, N.; Nixdorff, U.; Lechner, B.; Kränkel, N.; Halle, M.; Krauss, R.M.; Scherr, J. Lifestyle factors and high-risk atherosclerosis: Pathways and mechanisms beyond traditional risk factors. Eur. J. Prev. Cardiol. 2020, 27, 394–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd Alamir, M.; Goyfman, M.; Chaus, A.; Dabbous, F.; Tamura, L.; Sandfort, V.; Brown, A.; Budoff, M. The correlation of dyslipidemia with the extent of coronary artery disease in the multiethnic study of atherosclerosis. J. Lipids 2018, 2018, 5607349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakanishi, R.; Baskaran, L.; Gransar, H.; Budoff, M.J.; Achenbach, S.; Al-Mallah, M.; Cademartiri, F.; Callister, T.Q.; Chang, H.J.; Chinnaiyan, K.; et al. Relationship of hypertension to coronary atherosclerosis and cardiac events in patients with coronary computed tomographic angiography. Hypertension 2017, 70, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Kubota, Y.; Evenson, K.R.; MacLehose, R.F.; Roetker, N.S.; Joshu, C.E.; Folsom, A.R. Physical activity and lifetime risk of cardiovascular disease and cancer. Med. Sci. Sports Exerc. 2017, 49, 1599–1605. [Google Scholar] [CrossRef]
- Andersson, E.M.; Fagerberg, B.; Sallsten, G.; Borné, Y.; Hedblad, B.; Engström, G.; Barregard, L. Partial mediation by cadmium exposure of the association between tobacco smoking and atherosclerotic plaques in the carotid artery. Am. J. Epidemiol. 2018, 187, 806–816. [Google Scholar] [CrossRef]
- McGill, H.C.; McMahan, A.; Herderick, E.E.; Zieske, A.W.; Malcom, G.T.; Tracy, R.E.; Strong, J.P. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation 2002, 105, 2712–2718. [Google Scholar] [CrossRef]
- Haffner, S.M.; Lehto, S.; Rönnemaa, T.; Pyörälä, K.; Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 1998, 339, 229–234. [Google Scholar] [CrossRef]
- Buja, L.M. Innovators in atherosclerosis research: A historical review. Int. J. Cardiol. 2020, 307, 8–14. [Google Scholar] [CrossRef]
- Lawall, H.; Huppert, P.; Espinola-Klein, C.; Rümenapf, G. The diagnosis and treatment of peripheral arterial vascular disease. Dtsch. Arztebl. Int. 2016, 113, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Frank, U.; Nikol, S.; Belch, J.; Boc, V.; Brodmann, M.; Carpentier, P.H.; Chraim, A.; Canning, C.; Dimakakos, E.; Gottsäter, A.; et al. ESVM Guideline on peripheral arterial disease. Vasa 2019, 48, 1–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atella, V.; Piano Mortari, A.; Kopinska, J.; Belotti, F.; Lapi, F.; Cricelli, C.; Fontana, L. Trends in age-related disease burden and healthcare utilization. Aging Cell 2019, 18, e12861. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Abellan van Kan, G.; Rolland, Y.; Bergman, H.; Morley, J.E.; Kritchevsky, S.B.; Vellas, B. The I.A.N.A task force on frailty assessment of older people in clinical practice. J. Nutr. Health Aging 2008, 12, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Mao, G.; Leng, S.X. Frailty syndrome: An overview. Clin. Interv. Aging 2014, 9, 433–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisset, E.S.; Howlett, S.E. The biology of frailty in humans and animals: Understanding frailty and promoting translation. Aging Med. 2019, 2, 27–34. [Google Scholar] [CrossRef]
- Thillainadesan, J.; Scott, I.A.; Le Couteur, D.G. Frailty, a multisystem ageing syndrome. Age Ageing 2020, 49, 758–763. [Google Scholar] [CrossRef]
- Manfredi, G.; Midão, L.; Paúl, C.; Cena, C.; Duarte, M.; Costa, E. Prevalence of frailty status among the European elderly population: Findings from the Survey of Health, Aging and Retirement in Europe. Geriatr. Gerontol. Int. 2019, 19, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Ahrenfeldt, L.J.; Möller, S.; Thinggaard, M.; Christensen, K.; Lindahl-Jacobsen, R. Sex differences in comorbidity and frailty in Europe. Int. J. Public Health 2019, 64, 1025–1036. [Google Scholar] [CrossRef]
- Chao, C.T.; Wang, J.; Huang, J.W.; Hung, K.Y.; Chien, K.L. Frailty predicts a higher risk of incident urolithiasis in 525 368 patients with diabetes mellitus: A population-based study. BMJ Open Diab. Res. Care 2020, 8, e000755. [Google Scholar] [CrossRef] [Green Version]
- Chao, C.T.; Wang, J.; Huang, J.W.; Chan, D.C.; Chien, K.L. Frailty predicts an increased risk of end-stage renal disease with risk competition by mortality among 165,461 diabetic kidney disease patients. Aging Dis. 2019, 10, 1270–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ida, S.; Kaneko, R.; Imataka, K.; Murata, K. Relationship between frailty and mortality, hospitalization, and cardiovascular diseases in diabetes: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2019, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Karam, J.; Tsiouris, A.; Shepard, A.; Velanovich, V.; Rubinfeld, I. Simplified frailty index to predict adverse outcomes and mortality in vascular surgery patients. Ann. Vasc. Surg. 2013, 27, 904–908. [Google Scholar] [CrossRef]
- Ehlert, B.A.; Najafian, A.; Orion, K.C.; Malas, M.B.; Black, J.H.; Abularrage, C.J. Validation of a modified Frailty Index to predict mortality in vascular surgery patients. J. Vasc. Surg. 2016, 63, 1595–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, T.Z.; Lehman, E.B.; Aziz, F. Modified frailty index can be used to predict adverse outcomes and mortality after lower extremity bypass surgery. Ann. Vasc. Surg. 2018, 46, 168–177. [Google Scholar] [CrossRef]
- Ali, R.; Schwalb, J.M.; Nerenz, D.R.; Antoine, H.J.; Rubinfeld, I. Use of the modified frailty index to predict 30-day morbidity and mortality from spine surgery. J. Neurosurg. Spine 2016, 25, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Pandit, V.; Nelson, P.; Kempe, K.; Gage, K.; Zeeshan, M.; Kim, H.; Khan, M.; Trinidad, B.; Zhou, W.; Tan, T.W. Racial and ethnic disparities in lower extremity amputation: Assessing the role of frailty in older adults. Surgery 2020, 168, 1075–1078. [Google Scholar] [CrossRef]
- Gonzalez, L.; Kassem, M.; Owora, A.H.; Seligson, M.T.; Richards, C.Y.; Monita, M.M.; Cardounell, S.Z.; Brangman, S.A.; Gahtan, V. Frailty and biomarkers of frailty predict outcome in veterans after open and endovascular revascularization. J. Surg. Res. 2019, 243, 539–552. [Google Scholar] [CrossRef]
- Von Haehling, S.; Anker, S.D.; Doehner, W.; Morley, J.E.; Vellas, B. Frailty and heart disease. Int. J. Cardiol. 2013, 168, 1745–1747. [Google Scholar] [CrossRef]
- Abdelhafiz, A.H.; Rodríguez-Mañas, L.; Morley, J.E.; Sinclair, A.J. Hypoglycemia in older people–a less well recognized risk factor for frailty. Aging Dis. 2015, 6, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Abdelhafiz, A.H.; Sinclair, A.J. Diabetes in the elderly. Medicine 2019, 47, 119–122. [Google Scholar] [CrossRef]
- Komorita, Y.; Iwase, M.; Fujii, H.; Ohkuma, T.; Ide, H.; Yoshinari, M.; Oku, Y.; Nakamura, U.; Kitazono, T. Both hypo- and hyperglycaemia are associated with increased fracture risk in Japanese people with type 2 diabetes: The Fukuoka Diabetes Registry. Diabet. Med. 2020, 37, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Maddaloni, E.; D’Onofrio, L.; Pozzilli, P. Frailty and geography: Should these two factors be added to the ABCDE contemporary guide to diabetes therapy? Diabetes Metab. Res. Rev. 2016, 32, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Fernandez, B.; Gomez-Bris, R.; Somovilla-Crespo, B.; Gonzalez-Granado, J.M. Immunobiology of atherosclerosis: A complex net of interactions. Int. J. Mol. Sci. 2019, 20, 5293. [Google Scholar] [CrossRef] [Green Version]
- Duvall, W.L.; Vorchheimer, D.A. Multi-bed vascular disease and atherothrombosis: Scope of the problem. J. Thromb. Thrombolysis 2004, 17, 51–61. [Google Scholar] [CrossRef]
- Thiruvoipati, T.; Kielhorn, C.E.; Armstrong, E.J. Peripheral artery disease in patients with diabetes: Epidemiology, mechanisms, and outcomes. World J. Diabetes 2015, 6, 961–969. [Google Scholar] [CrossRef]
- Beckman, J.A.; Creager, M.A.; Libby, P. Diabetes and atherosclerosis: Epidemiology, pathophysiology, and management. JAMA 2002, 287, 2570–2581. [Google Scholar] [CrossRef]
- Shah, M.S.; Brownlee, M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ. Res. 2016, 118, 1808–1829. [Google Scholar] [CrossRef] [Green Version]
- De Bont, C.M.; Boelens, W.C.; Pruijn, G.J.M. NETosis, complement, and coagulation: A triangular relationship. Cell. Mol. Immunol. 2019, 16, 19–27. [Google Scholar] [CrossRef]
- Volpe, C.M.O.; Villar-Delfino, P.H.; dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018, 9, 119. [Google Scholar] [CrossRef]
- Criqui, M.H.; Aboyans, V. Epidemiology of peripheral artery disease. Circ. Res. 2015, 116, 1509–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontaine, R.; Kim, M.; Kieny, R. Surgical treatment of peripheral circulation disorders. Helv. Chir. Acta 1954, 21, 499–533. [Google Scholar]
- Rutherford, R.B.; Flanigan, D.P.; Gupta, S.K.; Johnston, K.W.; Karmody, A.; Whittemore, A.D.; Baker, J.D.; Ernst, C.B. Suggested standards for reports dealing with lower extremity ischemia. J. Vasc. Surg. 1986, 4, 80–94. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, R.B.; Baker, J.D.; Ernst, C.; Johnston, K.W.; Porter, J.M.; Ahn, S.; Jones, D.N. Recommended standards for reports dealing with lower extremity ischemia: Revised version. J. Vasc. Surg. 1997, 26, 517–538. [Google Scholar] [CrossRef] [Green Version]
- Hardman, R.L.; Jazaeri, O.; Yi, J.; Smith, M.; Gupta, R. Overview of classification systems in peripheral artery disease. Semin. Intervent. Radiol. 2014, 31, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Varu, V.N.; Hogg, M.E.; Kibbe, M.R. Critical limb ischemia. J. Vasc. Surg. 2010, 51, 230–241. [Google Scholar] [CrossRef] [Green Version]
- Fowkes, F.G.R.; Rudan, D.; Rudan, I.; Aboyans, V.; Denenberg, J.O.; McDermott, M.M.; Norman, P.E.; Sampson, U.K.A.; Williams, L.J.; Mensah, G.A.; et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet 2013, 382, 1329–1340. [Google Scholar] [CrossRef]
- Gallino, A.; Aboyans, V.; Diehm, C.; Cosentino, F.; Stricker, H.; Falk, E.; Schouten, O.; Lekakis, J.; Amman-Vesti, B.; Siclari, F.; et al. Non-coronary atherosclerosis. Eur. Heart. J. 2014, 35, 1112–1119. [Google Scholar] [CrossRef] [Green Version]
- Olinic, D.M.; Spinu, M.; Olinic, M.; Homorodean, C.; Tataru, D.A.; Liew, A.; Schernthaner, G.H.; Stanek, A.; Fowkes, G.; Catalano, M. Epidemiology of peripheral artery disease in Europe: VAS Educational Paper. Int. Angiol. 2018, 37, 327–334. [Google Scholar] [CrossRef]
- Song, P.; Rudan, D.; Zhu, Y.; Fowkes, F.J.I.; Rahimi, K.; Fowkes, F.G.R.; Rudan, I. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: An updated systematic review and analysis. Lancet Glob. Health 2019, 7, e1020–e1030. [Google Scholar] [CrossRef] [Green Version]
- Cimminiello, C.; Kownator, S.; Wautrecht, J.C.; Carvounis, C.P.; Kranendonk, S.E.; Kindler, B.; Mangrella, M.; Borghi, C. The PANDORA study: Peripheral arterial disease in patients with non-high cardiovascular risk. Intern. Emerg. Med. 2011, 6, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Jude, E.B.; Oyibo, S.O.; Chalmers, N.; Boulton, A.J.M. Peripheral arterial disease in diabetic and nondiabetic patients: A comparison of severity and outcome. Diabetes Care 2001, 24, 1433–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jude, E.B.; Eleftheriadou, I.; Tentolouris, N. Peripheral arterial disease in diabetes—A review. Diabet. Med. 2010, 27, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Rha, S.W.; Han, S.K.; Choi, B.G.; Choi, S.Y.; Ali, J.; Xu, S.; Ngow, H.A.; Lee, J.J.; Lee, K.N.; et al. Comparison of diabetic and non-diabetic patients undergoing endovascular revascularization for peripheral arterial disease. J. Invasive Cardiol. 2015, 27, 167–171. [Google Scholar]
- DeRubertis, B.G.; Pierce, M.; Ryer, E.J.; Trocciola, S.; Kent, K.C.; Faries, P.L. Reduced primary patency rate in diabetic patients after percutaneous intervention results from more frequent presentation with limb-threatening ischemia. J. Vasc. Surg. 2008, 47, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hu, G.; Yuan, Z.; Chen, L. Glycosylated hemoglobin in relationship to cardiovascular outcomes and death in patients with type 2 diabetes: A systematic review and meta-analysis. PLoS ONE 2012, 7, e42551. [Google Scholar] [CrossRef]
- Vrsalovic, M.; Vucur, K.; Vraslovic Presecki, A.; Fabijanic, D.; Milosevic, M. Impact of diabetes on mortality in peripheral artery disease: A meta-analysis. Clin. Cardiol. 2017, 40, 287–291. [Google Scholar] [CrossRef]
- Aboyans, V.; Criqui, M.H.; Abraham, P.; Allison, M.A.; Creager, M.A.; Diehm, C.; Fowkes, F.G.R.; Hiatt, W.R.; Jönsson, B.; Lacroix, P.; et al. Measurement and interpretation of the ankle-brachial index. A scientific statement of from the American Heart Association. Circulation 2012, 126, 2890–2909. [Google Scholar] [CrossRef] [Green Version]
- Winsor, T. Influence of arterial disease on the systolic blood pressure gradients of the extremity. Am. J. Med. Sci. 1950, 220, 117–126. [Google Scholar] [CrossRef]
- Carter, S.A. Indirect systolic pressures and pulse waves in arterial occlusive diseases of the lower extremities. Circulation 1968, 37, 624–637. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.T.; Hobbs, J.T.; Irvine, W.T. Ankle systolic pressure measurements in arterial disease affecting the lower extremities. Br. J. Surg. 1969, 56, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Fowkes, F.G.R.; Murray, G.D.; Butcher, I.; Heald, C.L.; Lee, R.J.; Chambless, L.E.; Folsom, A.R.; Hirsch, A.T.; Dramaix, M.; de Backer, G.; et al. Ankle brachial index combined with Framingham risk score to predict cardiovascular events and mortality: A meta-analysis. JAMA 2008, 300, 197–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myslinski, W.; Stanek, A.; Feldo, M.; Mosiewicz, J. Ankle-brachial index as the best predictor of first acute coronary syndrome in patients with treated systemic hypertension. Biomed. Res. Int. 2020, 2020, 6471098. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Skali, H.; Claggett, B.; Kasabov, R.; Cheng, S.; Shah, A.M.; Loehr, L.R.; Heiss, G.; Nambi, V.; Aguilar, D.; et al. Heart failure risk across the spectrum of ankle-brachial index: The Atherosclerosis Risk In Communities Study. JACC Heart Fail. 2014, 2, 447–454. [Google Scholar] [CrossRef]
- Murabito, J.M.; Evans, J.C.; Larson, M.G.; Nieto, K.; Levy, D.; Wilson, P.W.F. The ankle-brachial index in the elderly and risk of stroke, coronary disease, and death. The Framingham Study. Arch. Intern. Med. 2003, 163, 1939–1942. [Google Scholar] [CrossRef] [Green Version]
- Zwakenberg, S.R.; de Jong, P.A.; Hendriks, E.J.; Westerink, J.; Spiering, W.; de Borst, G.J.; Cramer, M.J.; Bartstra, J.W.; Doesburg, T.; Rutters, F.; et al. Intimal and medial calcification in relation to cardiovascular risk factors. PLoS ONE 2020, 15, e0235228. [Google Scholar] [CrossRef]
- Faglia, E.; Favales, F.; Quarantiello, A.; Calia, P.; Clelia, P.; Brambilla, G.; Rampoldi, A.; Morabito, A. Angiographic evaluation of peripheral arterial occlusive disease and its role as a prognostic determinant for major amputation in diabetic subjects with foot ulcers. Diabetes Care 1998, 21, 625–630. [Google Scholar] [CrossRef]
- Williams, D.T.; Harding, K.G.; Price, P. An evaluation of the efficacy of methods used in screening for lower-limb arterial disease in diabetes. Diabetes Care 2005, 28, 2206–2210. [Google Scholar] [CrossRef] [Green Version]
- Resnick, H.E.; Lindsay, R.S.; McDermott, M.M.; Devereux, R.B.; Jones, K.L.; Fabsitz, R.R.; Howard, B.V. Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality: The Strong Heart Study. Circulation 2004, 109, 733–739. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Bailey, K.R.; Noheria, A.; Kullo, I.J. Frailty across the spectrum of ankle-brachial index. Angiology 2012, 63, 229–236. [Google Scholar] [CrossRef]
- Alonso-Bouzón, C.; Carcaillon, L.; García-García, F.J.; Amor-Andrés, M.S.; El Assar, M.; Rodríguez-Mañas, L. Association between endothelial dysfunction and frailty: The Toledo Study for Healthy Aging. Age 2014, 36, 495–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Q.; Qin, M.; Jia, J.; Liu, J.; Wang, Y. Association between frailty and the cardio-ankle vascular index. Clin. Interv. Aging 2019, 14, 735–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadruz, W.; Kitzman, D.; Windham, B.G.; Kucharska-Newton, A.; Butler, K.; Palta, P.; Griswold, M.E.; Wagenknecht, L.E.; Heiss, G.; Solomon, S.D.; et al. Cardiovascular dysfunction and frailty among older adults in the community: The ARIC Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2017, 72, 958–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ababneh, M.; Al Ayed, M.Y.; Robert, A.A.; Al Dawish, M.A. Clinical utility of the ankle-brachial index and toe brachial index in patients with diabetic foot ulcers. Curr. Diabetes Rev. 2020, 16, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Høyer, C.; Sandermann, J.; Petersen, L.J. The toe-brachial index in the diagnosis of peripheral arterial disease. J. Vasc. Surg. 2013, 58, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Hinchliffe, R.J.; Forsythe, R.O.; Apelqvist, J.; Boyko, E.J.; Fitridge, R.; Hong, J.P.; Katsanos, K.; Mills, J.L.; Nikol, S.; Reekers, J.; et al. Guidelines on diagnosis, prognosis, and management of peripheral artery disease in patients with foot ulcers and diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020, 36, e3276. [Google Scholar] [CrossRef]
- Chisalita, S.I.; Wijkman, M.; Davidson, L.T.; Spångeus, A.; Nyström, F.; Östgren, C.J. Toe brachial index predicts major acute cardiovascular events in patients with type 2 diabetes independently of arterial stiffness. Diabetes Res. Clin. Pract. 2020, 161, 108040. [Google Scholar] [CrossRef]
- Brahmbhatt, R.; Brewster, L.P.; Shafii, S.; Rajani, R.R.; Veeraswamy, R.; Salam, A.; Dodson, T.F.; Arya, S. Gender and frailty predict poor outcomes in infrainguinal vascular surgery. J. Surg. Res. 2016, 201, 156–165. [Google Scholar] [CrossRef]
- Rothenberg, K.A.; George, E.L.; Trickey, A.W.; Barreto, N.B.; Johnson, T.M.; Hall, D.E.; Johanning, J.M.; Arya, S. Assessment of the Risk Analysis Index for prediction of mortality, major complications, and length of stay in patients who underwent vascular surgery. Ann. Vasc. Surg. 2020, 66, 442–453. [Google Scholar] [CrossRef]
- Wojtasik-Bakalarz, J.; Ruzsa, Z.; Rakowski, T.; Nyerges, A.; Bartuś, K.; Stanek, A.; Dudek, D.; Surdacki, A.; Kleczyński, P.; Bartuś, S. Impact of coronary artery disease and diabetes mellitus on the long-term follow-up in patients after retrograde recanalization of the femoropopliteal arterial region. J. Diabetes Res. 2019, 2019, 6036359. [Google Scholar] [CrossRef]
- Fang, Z.B.; Hu, F.Y.; Arya, S.; Gillespie, T.W.; Rajani, R.R. Preoperative frailty is predictive of complications after major lower extremity amputation. J. Vasc. Surg. 2017, 65, 804–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, W.B.; Marriott, S.; Eve, R.; Mapson, E.; Sexton, S.; Thompson, J.F. Factors influencing the early outcome of major lower limb amputation for vascular disease. Ann. R. Coll. Surg. Engl. 2001, 83, 309–314. [Google Scholar] [PubMed]
- Pell, J.P.; Donnan, P.T.; Fowkes, F.G.R.; Ruckley, C.V. Quality of life following lower limb amputation for peripheral arterial disease. Eur. J. Vasc. Surg. 1993, 7, 448–451. [Google Scholar] [CrossRef]
- Thompson, M.M.; Sayers, R.D.; Reid, A.; Underwood, M.J.; Bell, P.R.F. Quality of life following infragenicular bypass and lower limb amputation. Eur. J. Vasc. Endovasc. Surg. 1995, 9, 310–313. [Google Scholar] [CrossRef] [Green Version]
- Asano, M.; Rushton, P.; Miller, W.C.; Deathe, B.A. Predictors of quality of life among individuals who have a lower limb amputation. Prosthet. Orthot. Int. 2008, 32, 231–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, R.; van den Heuvel, W.J.A.; Arokiasamy, P. Factors affecting quality of life in lower limb amputees. Prosthet. Orthot. Int. 2011, 35, 90–96. [Google Scholar] [CrossRef]
- Quigley, M.; Dillon, M.P. Quality of life in persons with partial foot or transtibial amputation: A systematic review. Prosthet. Orthot. Int. 2016, 40, 18–30. [Google Scholar] [CrossRef]
- Helm, P.; Engel, T.; Holm, A.; Kristiansen, V.B.; Rosendahl, S. Function after lower limb amputation. Acta Orthop. Sand. 1986, 57, 154–157. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Li, Q.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Desai, M.; Hiatt, W.R.; Nehler, M.; Fabbrini, E.; et al. Effects of canagliflozin on amputation risk in type 2 diabetes: The CANVAS program. Diabetologia 2019, 62, 926–938. [Google Scholar] [CrossRef] [Green Version]
- Heyward, J.; Mansour, O.; Olson, L.; Singh, S.; Alexander, G.C. Association between sodium-glucose cotransporter 2 (SGLT2) inhibitors and lower extremity amputation: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0234065. [Google Scholar] [CrossRef]
- Miyashita, S.; Kuno, T.; Takagi, H.; Sugiyama, T.; Ando, T.; Valentin, N.; Shimada, Y.J.; Kodaira, M.; Numasawa, Y.; Kanei, Y.; et al. Risk of amputation associated with sodium-glucose co-transporter 2 inhibitors: A meta-analysis of five randomized controlled trials. Diabetes Res. Clin. Pract. 2020, 163, 108136. [Google Scholar] [CrossRef] [PubMed]
- Yu, O.H.Y.; Dell’Aniello, S.; Shah, B.R.; Brunetti, V.C.; Daigle, J.M.; Fralick, M.; Douros, A.; Hu, N.; Alessi-Severini, S.; Fisher, A.; et al. Sodium–glucose cotransporter 2 inhibitors and the risk of below knee amputation: A multicenter observational study. Diabetes Care 2020, 43, 2444–2452. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Mary, A.; Hartemann, A.; Liabeuf, S.; Aubert, C.E.; Kemel, S.; Salem, J.E.; Cluzel, P.; Lenglet, A.; Massy, Z.A.; Lalau, J.D.; et al. Association between metformin use and below-the-knee arterial calcification score in type 2 diabetic patients. Cardiovasc. Diabetol. 2017, 16, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jager, J.; Kooy, A.; Schalkwijk, C.; van der Kolk, J.; Lehert, P.; Bets, D.; Wulffelé, M.G.; Donker, A.J.; Stehouwer, C.D. Long-term effects of metformin on endothelial function in type 2 diabetes: A randomized controlled trial. J. Intern. Med. 2014, 275, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Shibata, R.; Ouchi, N.; Sugimoto, M.; Murohara, T.; Komori, K. Metformin stimulates ischemia-induced revascularization through an eNOS dependent pathway in the ischemic hindlimb mice model. J. Vasc. Surg. 2015, 61, 489–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.Z.; Rivero, M.; Nader, N.D.; Cherr, G.S.; Harris, L.M.; Dryjski, M.L.; Dosluoglu, H.H. Metformin is associated with improved survival and decreased cardiac events with no impact on patency and limb salvage after revascularization for peripheral arterial disease. Ann. Vasc. Surg. 2019, 55, 63–77. [Google Scholar] [CrossRef]
- Rajamani, K.; Colman, P.G.; Li, L.P.; Best, J.D.; Voysey, M.; D’Emden, M.C.; Laakso, M.; Baker, J.R.; Keech, A.C. Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): A prespecified analysis of a randomised controlled trial. Lancet 2009, 373, 1780–1788. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Shibata, R.; Maruyama, S.; Kondo, M.; Ohashi, K.; Ouchi, N.; Murohara, T. Fenofibrate promotes ischemia-induced revascularization through the adiponectin-dependent pathway. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E560–E566. [Google Scholar] [CrossRef] [Green Version]
- Shibata, R.; Ouchi, N.; Kihara, S.; Sato, K.; Funahashi, T.; Walsh, K. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of AMP-activated protein kinase signaling. J. Biol. Chem. 2004, 279, 28670–28674. [Google Scholar] [CrossRef] [Green Version]
- Aiello, F.A.; Khan, A.A.; Meltzer, A.J.; Gallagher, K.A.; McKinsey, J.F.; Schneider, D.B. Statin therapy is associated with superior clinical outcomes after endovascular treatment of critical limb ischemia. J. Vasc. Surg. 2012, 55, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morimoto, Y.; Bando, Y.K.; Shigeta, T.; Monji, A.; Murohara, T. Atorvastatin prevents ischemic limb loss in type 2 diabetes: Role of p53. J. Atheroscler. Thromb. 2011, 18, 200–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, T.R.; Singh, G.D.; Kokkinidis, D.G.; Choy, H.K.; Pham, T.; Amsterdam, E.A.; Rutledge, J.C.; Waldo, S.W.; Armstrong, E.J.; Laird, J.R. High-intensity statin therapy is associated with improved survival in patients with peripheral artery disease. J. Am. Heart Assoc. 2017, 6, e005699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGinigle, K.L.; Kindell, D.G.; Strassle, P.D.; Crowner, J.R.; Pascarella, L.; Farber, M.A.; Marston, W.A.; Arya, S.; Kalbaugh, C.A. Poor glycemic control is associated with significant increase in major limb amputation and adverse events in the 30-day postoperative period after infrainguinal bypass. J. Vasc. Surg. 2020, 72, 987–994. [Google Scholar] [CrossRef]
- Singh, N.; Zeng, C.; Lewinger, J.P.; Wolfson, A.M.; Shavelle, D.; Weaver, F.; Garg, P.K. Preoperative hemoglobin A1c levels and increased risk of adverse limb events in diabetic patients undergoing infrainguinal lower extremity bypass surgery in the Vascular Quality Initiative. J. Vasc. Surg. 2019, 70, 1225–1234. [Google Scholar] [CrossRef]
- McNulty, E.J.; Ng, W.; Spertus, J.A.; Zaroff, J.G.; Yeh, R.W.; Ren, X.M.; Lundstrom, R.J. Surgical candidacy and selection biases in nonemergent left main stenting: Implications for observational studies. JACC Cardiovasc. Interv. 2011, 4, 1020–1027. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Rihal, C.S.; Lennon, R.J.; Spertus, J.A.; Nair, K.S.; Roger, V.L. Influence of frailty and health status on outcomes in patients with coronary disease undergoing percutaneous revascularization. Circ. Cardiovasc. Qual. Outcomes 2011, 4, 496–502. [Google Scholar] [CrossRef] [Green Version]
- Waite, I.; Deshpande, R.; Baghai, M.; Massey, T.; Wendler, O.; Greenwood, S. Home-based preoperative rehabilitation (prehab) to improve physical function and reduce hospital length of stay for frail patients undergoing coronary artery bypass graft and valve surgery. J. Cardiothorac. Surg. 2017, 12, 91. [Google Scholar] [CrossRef] [Green Version]
- Drey, M.; Pfeifer, K.; Sieber, C.C.; Bauer, J.M. The Fried frailty criteria as inclusion criteria for a randomized controlled trial: Personal experience and literature review. Gerontology 2011, 57, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Rantanen, T.; Guralnik, J.M.; Izmirlian, G.; Williamson, J.D.; Simonsick, E.M.; Ferrucci, L.; Fried, L.P. Association of muscle strength with maximum walking speed in disabled older women. Am. J. Phys. Med. Rehabil. 1998, 77, 299–305. [Google Scholar] [CrossRef]
- Moseley, A.M.; Lanzarone, S.; Bosman, J.M.; van Loo, M.A.; de Bie, R.A.; Hassett, L.; Caplan, B. Ecological validity of walking speed assessment after traumatic brain injury: A pilot study. J. Head Trauma Rehabil. 2004, 19, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Purser, J.L.; Kuchibhatla, M.N.; Fillenbaum, G.G.; Harding, T.; Peterson, E.D.; Alexander, K.P. Identifying frailty in hospitalized older adults with significant coronary artery disease. J. Am. Geriatr. Soc. 2006, 54, 1674–1681. [Google Scholar] [CrossRef] [PubMed]
- Afilalo, J.; Alexander, K.P.; Mack, M.J.; Maurer, M.S.; Green, P.; Allen, L.A.; Popma, J.J.; Ferrucci, L.; Forman, D.E. Frailty assessment in the cardiovascular care of older adults. J. Am. Coll. Cardiol. 2014, 63, 747–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poh, A.W.Y.; Teo, S.P. Utility of frailty screening tools in older surgical patients. Ann. Geriatr. Med. Res. 2020, 24, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Little, M.O.; Morley, A. Reducing polypharmacy: Evidence from a simple quality improvement initiative. J. Am. Med. Dir. Assoc. 2013, 14, 152–156. [Google Scholar] [CrossRef] [PubMed]
Stage According to Fontaine Classification | Category According to Rutherford Classification | ||
---|---|---|---|
I | Asymptomatic | 0 | |
IIA | Claudication at distance > 200 m | Mild claudication | 1 |
IIB | Claudication at distance < 200 m | Moderate claudication | 2 |
Severe claudication | 3 | ||
III | Rest pain | 4 | |
IV | Necrosis | Minor tissue loss | 5 |
Major tissue loss | 6 |
ABI | Prevalence of Frailty |
---|---|
<0.9 | 17.5% |
≥0.9 and <1.1 | 6.7% |
≥1.1 and <1.4 | 4.7% |
≥1.4 | 7.3% |
ABI | No Frail | Pre-Frail | Frail |
---|---|---|---|
≤0.9 | 18.0% | 19.0% | 28.3% |
0.9–1.0 | 25.2% | 26.7% | 28.3% |
1.0–1.4 | 54.6% | 52.1% | 40.4% |
>1.4 | 2.3% | 2.1% | 3.0% |
Frailty is an important clinical problem of modern medicine that is associated with a more severe course of some diseases and with an increased predisposition to the development of additional health problems. The pathogenesis of Frailty is multifactorial. |
The 11-factor modified Frailty Index (mFI) is often used to assess Frailty in angiology and vascular surgery. |
An ankle-brachial index lower than 0.9 is a criterion for the diagnosis of peripheral arterial disease, and also indicates a greater risk of overall cardiovascular disease. The results of epidemiological studies show that a reduced ABI value is also associated with a greater predisposition to Frailty. |
Diabetes mellitus is associated with a greater predisposition to increased vascular stiffness; therefore, the diagnostic value of the ankle-brachial index is lower in this population and the toe-brachial index should also be assessed. |
There is a need for further research to confirm the relationship between the toe-brachial index value and the predisposition to Frailty. |
The severity of the frailty syndrome may influence the effects of reperfusion treatment of chronic lower limb ischemia, although the results so far are not conclusive in all aspects; therefore, further research is needed. |
There is a need to develop uniform, precise criteria for the diagnosis and assessment of the severity of Frailty, adequate both for the needs of research and clinical practice. |
The CANVAS study showed that the antidiabetic drug canagliflozin may increase the risk of amputation. However, later studies, including meta-analyses, did not confirm such a relationship. |
Assessment of the occurrence and severity of Frailty should be included in the care of patients with diabetes and chronic ischemia of the lower limbs in the selection of adequate management, both in terms of walking training, pharmacological treatment and revascularization treatment. More research is needed in this area. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubiak, G.K.; Pawlas, N.; Cieślar, G.; Stanek, A. Chronic Lower Extremity Ischemia and Its Association with the Frailty Syndrome in Patients with Diabetes. Int. J. Environ. Res. Public Health 2020, 17, 9339. https://doi.org/10.3390/ijerph17249339
Jakubiak GK, Pawlas N, Cieślar G, Stanek A. Chronic Lower Extremity Ischemia and Its Association with the Frailty Syndrome in Patients with Diabetes. International Journal of Environmental Research and Public Health. 2020; 17(24):9339. https://doi.org/10.3390/ijerph17249339
Chicago/Turabian StyleJakubiak, Grzegorz K., Natalia Pawlas, Grzegorz Cieślar, and Agata Stanek. 2020. "Chronic Lower Extremity Ischemia and Its Association with the Frailty Syndrome in Patients with Diabetes" International Journal of Environmental Research and Public Health 17, no. 24: 9339. https://doi.org/10.3390/ijerph17249339