Topical Treatment of Elevated Intraocular Pressure in Patients with Graves’ Orbitopathy
Abstract
:1. Introduction
2. Materials and Methods
Data Management and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Availability of Data and Material
Conflicts of Interest
Ethics Approval
Consent to Participate
References
- Da Silva, F.L.M.; Rodrigues, M.D.L.V.; Akaishi, P.M.S.; Cruz, A.A.V. Graves’ orbitopathy: Frequency of ocular hypertension and glaucoma. Eye 2008, 23, 957–959. [Google Scholar] [CrossRef] [PubMed]
- Naik, M.N.; Vasanthapuram, V.H. Demographic and clinical profile of 1000 patients with thyroid eye disease presenting to a Tertiary Eye Care Institute in India. Int. Ophthalmol. 2020, 1–6. [Google Scholar] [CrossRef]
- Chin, Y.H.; Ng, C.H.; Lee, M.H.; Koh, J.W.H.; Kiew, J.; Yang, S.P.; Sundar, G.; Khoo, C.M. Prevalence of thyroid eye disease in Graves’ disease: A meta-analysis and systematic review. Clin. Endocrinol. 2020, 93, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Mourits, M.P.; Koornneef, L.; Wiersinga, W.M.; Prummel, M.F.; Berghout, A.; Van Der Gaag, R. Clinical criteria for the assessment of disease activity in Graves’ ophthalmopathy: A novel approach. Br. J. Ophthalmol. 1989, 73, 639–644. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, D.H.; Gorman, C.A. Endocrine ophthalmopathy: Current ideas concerning aetiology, pathogenesis, and treatment. Endocr. Rev. 1984, 5, 200–220. [Google Scholar] [CrossRef]
- Cross, J.M.; Girkin, C.A.; Owsley, C.; McGwin, J.G. The association between thyroid problems and glaucoma. Br. J. Ophthalmol. 2008, 92, 1503–1505. [Google Scholar] [CrossRef] [Green Version]
- Behrouzi, Z.; Rabei, H.M.; Azizi, F.; Daftarian, N.; Mehrabi, Y.; Ardeshiri, M.; Mohammadpour, M. Prevalence of Open-angle Glaucoma, Glaucoma Suspect, and Ocular Hypertension in Thyroid-related Immune Orbitopathy. J. Glaucoma 2007, 16, 358–362. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Ko, J.; Woo, Y.J.; Bae, H.W.; Yoon, J.S. Prevalence of Ocular Hypertension and Glaucoma as Well as Associated Factors in Graves’ Orbitopathy. J. Glaucoma 2018, 27, 464–469. [Google Scholar] [CrossRef]
- He, J.; Wu, Z.; Yan, J.; Yang, H.; Mao, Y.; Ai, S.; Chen, Z. Clinical analysis of 106 cases with elevated intraocular pressure in thyroid-associated ophthalmopathy. Yan Ke Xue Bao 2004, 20, 10–14. [Google Scholar]
- Cockerham, K.P.; Pal, C.; Jani, B.; Wolter, A.; Kennerdell, J.S. The Prevalence and Implications of Ocular Hypertension and Glaucoma in Thyroid-associated Orbitopathy. Ophthalmology 1997, 104, 914–917. [Google Scholar] [CrossRef]
- Ohtsuka, K.; Nakamura, Y. Open-angle glaucoma associated with Graves disease. Am. J. Ophthalmol. 2000, 129, 613–617. [Google Scholar] [CrossRef]
- European Glaucoma Society. Terminology and Guidelines for Glaucoma, 4th ed.; Dogma: Savona, Italy, 2014; pp. 33–99. [Google Scholar]
- Kalmann, R.; Mourits, M.P. Prevalence and management of elevated intraocular pressure in patients with Graves’ orbitopathy. Br. J. Ophthalmol. 1998, 82, 754–757. [Google Scholar] [CrossRef] [Green Version]
- King, J.; Netland, P.A. Glaucoma in thyroid eye disease. In Thyroid Eye Disease, Diagnosis and Treatment; Dutton, J.J., Haik, B.G., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2002. [Google Scholar]
- Danesh-Meyer, H.V.; Savino, P.J.; Deramo, V.; Sergott, R.C.; Smith, A.F. Intraocular pressure changes after treatment for Graves’orbitophathy. Ophthalmology 2001, 108, 145–150. [Google Scholar] [CrossRef]
- Onaran, Z.; Konuk, O.; Oktar, S.O.; Yucel, C.; Unal, M. Intraocular Pressure Lowering Effect of Orbital Decompression is Related to Increased Venous Outflow in Graves Orbitopathy. Curr. Eye Res. 2014, 39, 666–672. [Google Scholar] [CrossRef]
- Gumińska, M.; Kłysik, A.; Siejka, A.; Jurowski, P. Latanoprost is effective in reducing high intraocular pressure associated with Graves’ ophthalmopathy. Klin Ocz. 2014, 116, 89–93. [Google Scholar]
- Van der Valk, R.; Webers, C.A.; Schouten, J.S.; Zeegers, M.P.; Hendrikse, F.; Prins, M.H. Intraocular pressure-lowering effects of all commonly used glaucoma drugs: A meta-analysis of randomized clinical trials. Ophthalmology 2005, 112, 1177–1185. [Google Scholar] [CrossRef]
- Sanchez, F.G.; Mansberger, S.L.; Newman-Casey, P.A. Predicting Adherence with the Glaucoma Treatment Compliance Assessment Tool. J. Glaucoma 2020. [Google Scholar] [CrossRef]
- Meier-Gibbons, F.; Töteberg-Harms, M. Influence of Cost of Care and Adherence in Glaucoma Management: An Update. J. Ophthalmol. 2020, 2020, 5901537. [Google Scholar] [CrossRef] [Green Version]
- Bahn, R.S. The Graves’ ophthalmopathy. N. Engl. J. Med. 2010, 362, 726–738. [Google Scholar] [CrossRef] [Green Version]
- Wiersinga, W.M.; Kahaly, G.J. Graves’ Orbitopathy: A Multidisciplinary Approach—Questions and Answers; Karger Medical and Scientific Publishers: Basel, Switzerland, 2017; pp. 128–155. [Google Scholar]
- Bartelana, L.; Baldeschi, L.; Boboridis, K.; Eckstein, A.; Kahaly, G.J.; Marcocci, C.; Perros, P.; Salvi, M.; Wiersinga, W.M. The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy guidelines for the management of Grves’ orbitopathy. Eur. Thyroid J. 2016, 5, 9–26. [Google Scholar] [CrossRef] [Green Version]
- The AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): The relationship between control of intraocular pressure and visual field deterioration. Am. J. Ophthalmol. 2000, 130, 429–440. [Google Scholar]
- Heijl, A.; Leske, M.C.; Bengtsson, B.; Hyman, L.; Bengtsson, B.; Hussein, M. Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 2002, 120, 1268–1279. [Google Scholar] [CrossRef] [PubMed]
- Spierer, A.; Eisenstein, Z. The Role of Increased Intraocular Pressure on Upgaze in the Assessment of Graves Ophthalmopathy. Ophthalmology 1991, 98, 1491–1494. [Google Scholar] [CrossRef]
- Radcliffe, N. The impact of timolol maleate on the ocular tolerability of fixed-combination glaucoma therapies. Clin. Ophthalmol. 2014, 8, 2541–2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.-T.; Zhao, L.; Wang, L.-J.; Zhang, Y.; Liao, D.-Y.; Wang, J.-M. Efficacy and safety of 0.0015% tafluprost versus 0.005% latanoprost in primary open angle glaucoma, ocular hypertension: A Meta-analysis. Int. J. Ophthalmol. 2020, 13, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.J.; Rauchman, S.H.; Cottingham, A.J., Jr.; Simmons, S.T.; Williams, J.M.; Schiffman, R.M.; Hollander, D.A. Fixed-combination brimonidine–timolol versus latanoprost in glaucoma and ocular hypertension: A 12-week, randomized, comparison study. Curr. Med. Res. Opin. 2012, 28, 781–788. [Google Scholar] [CrossRef]
Sex | Subgroup I | Subgroup II | Subgroup III | All | ||||
---|---|---|---|---|---|---|---|---|
Topical Treatment with Latanoprost and Steroids iv. | Topical Treatment with Brimonidine and Timolol and Steroids iv. | Control Group Steroids iv. Only | ||||||
No | % | No | % | No | % | No | % | |
Men | 7 | 35.00 | 6 | 30.00 | 12 | 26.09 | 25 | 29.07 |
Women | 13 | 65.00 | 14 | 70.00 | 34 | 73.91 | 61 | 70.93 |
All | 20 | 100.00 | 20 | 100.00 | 46 | 100.00 | 86 | 100.00 |
Statistical analysis | Chi squared test = 0.55, p = 0.7603 |
Age [Years] | Subgroup I | Subgroup II | Subgroup III |
---|---|---|---|
No of subjects | 20 | 20 | 46 |
Minimum | 42.00 | 36.00 | 29.00 |
Maximum | 67.00 | 73.00 | 73.00 |
Median | 56.00 | 55.00 | 55.00 |
Mean | 54.95 | 55.35 | 54.70 |
Standard deviation | 5.47 | 10.23 | 8.46 |
Asymmetry coefficient | −0.15 | −0.26 | −0.73 |
Statistical analysis | Kruskal-Wallis test: H = 0.095; p = 0.954 |
BMI Value | Subgroup I | Subgroup II | Subgroup III |
---|---|---|---|
No of subjects | 20 | 20 | 46 |
Minimum | 19.26 | 19.82 | 20.07 |
Maximum | 34.81 | 34.21 | 35.43 |
Median | 25.55 | 25.50 | 25.19 |
Mean | 26.01 | 26.33 | 25.66 |
Standard deviation | 3.55 | 4.34 | 3.45 |
Asymmetry coefficient | 0.75 | 0.50 | 0.85 |
Statistical analysis | Kruskal-Wallis test: H = 0.32; p = 0.851 |
Duration Time of GO at the Screening Visit (Months) | Subgroup I | Subgroup II | Subgroup III |
---|---|---|---|
No of subjects | 20 | 20 | 46 |
Minimum (months) | 3.00 | 6.00 | 3.00 |
Maximum (months) | 72.00 | 72.00 | 96.00 |
Median (months) | 8.00 | 17.00 | 12.00 |
Mean (months) | 21.95 | 24.00 | 20.48 |
Standard deviation | 24.61 | 21.74 | 22.50 |
Asymmetry coefficient | 1.24 | 1.19 | 1.79 |
Statistical analysis | Kruskal-Wallis test: H = 1.47; p = 0.851 |
Exophthalmos Values at the Screening Visit | Right Eyes | Left Eyes | ||||
---|---|---|---|---|---|---|
Subgroup I | Subgroup II | Subgroup III | Subgroup I | Subgroup II | Subgroup III | |
No of subjects | 20 | 20 | 46 | 20 | 20 | 46 |
Minimum (mm) | 12.00 | 13.00 | 13.00 | 14.00 | 16.00 | 10.00 |
Maximum (mm) | 22.00 | 26.00 | 28.00 | 24.00 | 27.00 | 27.00 |
Median (mm) | 20.00 | 21.50 | 20.00 | 19.00 | 21.50 | 19.00 |
Mean (mm) | 19.15 | 20.65 | 19.59 | 19.10 | 21.20 | 19.48 |
Standard deviation | 2.81 | 3.59 | 3.52 | 3.11 | 3.37 | 3.82 |
Asymmetry coefficient | −1.10 | −0.66 | 0.07 | −0.01 | −0.14 | 0.01 |
Statistical analysis | Kruskal-Wallis Test: H = 2.55; p = 0.279 | Kruskal-Wallis Test: H = 4.21; p = 0.122 |
Modified CAS Inflammation Values at the Screening Visit | Right Eyes | Left Eyes | ||||
---|---|---|---|---|---|---|
Subgroup I | Subgroup II | Subgroup III | Subgroup I | Subgroup II | Subgroup III | |
No of subjects | 20 | 20 | 46 | 20 | 20 | 46 |
Minimum | 3.00 | 2.00 | 2.00 | 3.00 | 3.00 | 3.00 |
Maximum | 6.00 | 5.00 | 5.00 | 6.00 | 5.00 | 5.00 |
Median | 3.00 | 3.00 | 3.00 | 3.00 | 4.00 | 4.00 |
Mean | 3.45 | 3.60 | 3.50 | 3.50 | 3.80 | 3.67 |
Standard deviation | 0.83 | 0.88 | 0.75 | 0.89 | 0.83 | 0.67 |
Asymmetry coefficient | 2.05 | 0.43 | 0.82 | 1.75 | 0.41 | 0.49 |
Statistical analysis | Kruskal-Wallis Test: H = 0.60; p = 0.741 | Kruskal-Wallis Test: H = 2.68; p = 0.262 |
IOP Values at the Screening Visit (mmHg) | Right Eyes | Left Eyes | ||||
---|---|---|---|---|---|---|
Subgroup I | Subgroup II | Subgroup III | Subgroup I | Subgroup II | Subgroup III | |
No of subjects | 20 | 20 | 46 | 20 | 20 | 46 |
Minimum (mmHg) | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 |
Maximum (mmHg) | 29.00 | 29.00 | 29.00 | 35.00 | 34.00 | 29.00 |
Median (mmHg) | 26.00 | 26.50 | 26.00 | 27.00 | 27.00 | 26.00 |
Mean (mmHg) | 26.75 | 26.80 | 26.46 | 27.40 | 27.45 | 26.22 |
Standard deviation | 1.25 | 1.24 | 1.03 | 2.21 | 2.04 | 1.38 |
Asymmetry coefficient | 0.71 | 0.60 | 1.28 | 2.33 | 1.84 | 1.02 |
Statistical analysis | Kruskal-Wallis Test: H = 1.60; p = 0.450 | Kruskal-Wallis Test: H = 11.59; p = 0.0030 | ||||
Dunn’s test | ||||||
Subgroup I | 0.127 | 2.581 | ||||
Subgroup II | 0.127 | 2.730 | ||||
Subgroup III | 2.581 | 2.730 | ||||
p | ||||||
Subgroup I | 1.000000 | 0.029565 | ||||
Subgroup II | 1.000000 | 0.018978 | ||||
Subgroup III | 0.029565 | 0.018978 |
IOP Values at the Final Visit (mmHg) | Right Eyes | Left Eyes | ||||
---|---|---|---|---|---|---|
Subgroup I | Subgroup II | Subgroup III | Subgroup I | Subgroup II | Subgroup III | |
No of subjects | 20 | 20 | 46 | 20 | 20 | 46 |
Minimum (mmHg) | 10.00 | 15.00 | 12.00 | 10.00 | 15.00 | 12.00 |
Maximum (mmHg) | 23.00 | 22.00 | 30.00 | 23.00 | 24.00 | 32.00 |
Median (mmHg) | 18.00 | 20.00 | 22.00 | 17.50 | 20.00 | 21.50 |
Mean (mmHg) | 17.20 | 19.25 | 21.80 | 16.70 | 19.70 | 21.72 |
Standard deviation | 3.61 | 2.00 | 4.98 | 3.88 | 2.41 | 5.11 |
Asymmetry coefficient | −0.58 | −0.56 | −0.23 | −0.17 | −0.51 | 0.05 |
Statistical analysis | Kruskal-Wallis Test: H = 21.05; p = 0.0008 | Kruskal-Wallis Test: H = 14.11; p = 0.0009 | ||||
Dunn’s test | Dunn’s test | |||||
Subgroup I | 1.387 | 3.642 | 2.074 | 3.737 | ||
Subgroup II | 1.387 | 2.005 | 2.074 | 1.288 | ||
Subgroup III | 3.642 | 2.005 | 3.737 | 1.288 | ||
p | p | |||||
Subgroup I | 0.496561 | 0.000812 | 0.114299 | 0.000560 | ||
Subgroup II | 0.496561 | 0.134977 | 0.114299 | 0.593070 | ||
Subgroup III | 0.000812 | 0.134977 | 0.000560 | 0.593070 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumińska, M.; Goś, R.; Śmigielski, J.; Nowak, M.S. Topical Treatment of Elevated Intraocular Pressure in Patients with Graves’ Orbitopathy. Int. J. Environ. Res. Public Health 2020, 17, 9331. https://doi.org/10.3390/ijerph17249331
Gumińska M, Goś R, Śmigielski J, Nowak MS. Topical Treatment of Elevated Intraocular Pressure in Patients with Graves’ Orbitopathy. International Journal of Environmental Research and Public Health. 2020; 17(24):9331. https://doi.org/10.3390/ijerph17249331
Chicago/Turabian StyleGumińska, Magdalena, Roman Goś, Janusz Śmigielski, and Michał S. Nowak. 2020. "Topical Treatment of Elevated Intraocular Pressure in Patients with Graves’ Orbitopathy" International Journal of Environmental Research and Public Health 17, no. 24: 9331. https://doi.org/10.3390/ijerph17249331
APA StyleGumińska, M., Goś, R., Śmigielski, J., & Nowak, M. S. (2020). Topical Treatment of Elevated Intraocular Pressure in Patients with Graves’ Orbitopathy. International Journal of Environmental Research and Public Health, 17(24), 9331. https://doi.org/10.3390/ijerph17249331