Muscle Activation and Kinematic Analysis during the Inclined Leg Press Exercise in Young Females
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Setting
2.3. Approach to 1RM
2.4. Outcome Variables
- At a controlled velocity of 2″ eccentric phase and 2″ concentric phase:
- Leg press at 0° forefoot external rotation and 100% hip width distance stance (0° 100%);
- Leg press at 45° forefoot external rotation and 100% hip width distance stance (45° 100%);
- Leg press at 0° forefoot external rotation and 150% hip width distance stance (0° 150%).
- At maximal intended velocity:
- Leg press at 0° forefoot external rotation and 100% hip width distance stance;
- Leg press at 45° forefoot external rotation and 100% hip width distance stance.
2.5. Materials
2.6. Statistical Analyses
3. Results
3.1. sEMG
3.2. Kinematic Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benjafield, A.J.; Killingback, A.; Robertson, C.J.; Adds, P.J. An investigation into the architecture of the vastus medialis oblique muscle in athletic and sedentary individuals: An in vivo ultrasound study. Clin. Anat. 2014, 28, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Lauersen, J.B.; Bertelsen, D.M.; Andersen, L.B. The effectiveness of exercise interventions to prevent sports injuries: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2014, 48, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Giles, L.S.; Webster, K.E.; McClelland, J.A.; Cook, J. Atrophy of the quadriceps is not isolated to the vastus medialis oblique in individuals with patellofemoral pain. J. Orthop. Sports Phys. Ther. 2015, 45, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Machado, W.; Paz, G.; Mendes, L.; Maia, M.; Winchester, J.B.; Lima, V.; Willardson, J.M.; Miranda, H. Myoeletric activity of the quadriceps during leg press exercise performed with differing techniques. J. Strength Cond. Res. 2017, 31, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.O.; Bowyer, D.; Dixon, J.; Stephenson, R.; Chester, R.; Donell, S.T. Can vastus medialis oblique be preferentially activated? A systematic review of electromyographic studies. Physiother. Theory Pract. 2009, 25, 69–98. [Google Scholar] [CrossRef] [PubMed]
- Miao, P.; Xu, Y.; Pan, C.; Liu, H.; Wang, C. Vastus medialis oblique and vastus lateralis activity during a double-leg semisquat with or without hip adduction in patients with patellofemoral pain syndrome. BMC Musculoskelet. Disord. 2015, 16, 289. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.; Cipriani, D.; O’Rand, D.; Reed-Jones, R. Effects of foot position during squatting on the quadriceps femoris: An electromyographic study. Int. J. Exerc. Sci. 2013, 6, 114–125. [Google Scholar]
- Rossi, F.E.; Schoenfeld, B.J.; Ocetnik, S.; Young, J.; Vigotsky, A.; Contreras, B.; Krieger, J.W.; Miller, M.G.; Cholewa, J. Strength, body composition, and functional outcomes in the squat versus leg press exercises. J. Sports Med. Phys. Fit. 2018, 58, 263–270. [Google Scholar] [CrossRef]
- Schwanbeck, S.R.; Cornish, S.; Barss, T.; Chilibeck, P.D. Effects of training with free weights versus machines on muscle mass, strength, free testosterone, and free cortisol levels. J. Strength Cond. Res. 2020, 34, 1851–1859. [Google Scholar] [CrossRef]
- Martín-Fuentes, I.; Oliva-Lozano, J.M.; Muyor, J.M. Evaluation of the lower limb muscles’ electromyographic activity during the leg press exercise and its variants: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 4626. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Fleisig, G.S.; Zheng, N.; Lander, J.E.; Barrentine, S.W.; Andrews, J.R.; Bergemann, B.W.; Moorman, C.T. Effects of technique variations on knee biomechanics during the squat and leg press. Med. Sci. Sports Exerc. 2001, 33, 1552–1566. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.T.; Kernozek, T.W.; Song, C.Y. Muscle activation of vastus medialis obliquus and vastus lateralis during a dynamic leg press exercise with and without isometric hip adduction. Phys. Ther. Sport 2013, 14, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Bolgla, L.A.; Shaffer, S.W.; Malone, T.R. Vastus medialis activation during knee extension exercises: Evidence for exercise prescription. J. Sport Rehabil. 2008, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.M.; Brentano, M.A.; Cadore, E.L.; De Almeida, A.P.V.; Kruel, L.F.M. Analysis of muscle activation during different leg press exercises at submaximum effort levels. J. Strength Cond. Res. 2008, 22, 1059–1065. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Stien, N.; Pedersen, H.; Andersen, V. Core muscle activation in three lower extremity with different stability requirements. J. Strength Cond. Res. 2019, 1–6. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Gorostiaga, E.M.; González-Badillo, J.J. Effect of movement velocity during resistance training on neuromuscular performance. Int. J. Sports Med. 2014, 35, 916–924. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.B. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front. Physiol. 2017, 7, 677. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yáñez-García, J.M.; Morales-Alamo, D.; Pérez-Suárez, I.; Calbet, J.A.L.; et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 2017, 27, 724–735. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Pareja-Blanco, F.; Rodríguez-Rosell, D.; Marques, M.C.; González-Badillo, J.J. Maximal velocity as a discriminating factor in the performance of loaded squat jumps. Int. J. Sports Physiol. Perform. 2016, 11, 227–234. [Google Scholar] [CrossRef]
- Padulo, J.; Migliaccio, G.M.; Ardigò, L.P.; Leban, B.; Cosso, M.; Samozino, P. Lower limb force, velocity, power capabilities during leg press and squat movements. Int. J. Sports Med. 2017, 38, 1083–1089. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Conceição, F.; Fernandes, J.; Lewis, M.; Gonzaléz-Badillo, J.J.; Jimenéz-Reyes, P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J. Sports Sci. 2015, 34, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Marcos-Pardo, P.J.; González-Hernández, J.M.; García-Ramos, A.; López-Vivancos, A.; Jiménez-Reyes, P. Movement velocity can be used to estimate the relative load during the bench press and leg press exercises in older women. PeerJ 2019, 2019, 7533. [Google Scholar] [CrossRef] [PubMed]
- Forde, F.A. Analysis of Knee Mechanics during the Squat Exercise: Differences between Females and Males; University of Florida: Gainesville, FL, USA.
- Bouillon, L.E.; Wilhelm, J.; Eisel, P.; Wiesner, J.; Rachow, M.; Hatteberg, L. Electromyographic assessment of muscle activity between genders during unilateral weight-bearing tasks using adjusted distances. Int. J. Sports Phys. Ther. 2012, 7, 595–605. [Google Scholar]
- Camara, K.; Coburn, J.; Dunnick, D.; Brown, L.; Galpin, A.; Costa, P. An examination of muscle activation and power characteristics while performing the deadlift exercise with straight and hexagonal barbells. J. Strength Cond. Res. 2016, 30, 1183–1188. [Google Scholar] [CrossRef]
- Gorostiaga, E.M.; Navarro-Amezqueta, I.; Gonzalez-Izal, M.; Malanda, A.; Granados, C.; Ibanez, J.; Setuain, I.; Izquierdo, M. Blood lactate and sEMG at different knee angles during fatiguing leg press exercise. Eur. J. Appl. Physiol. 2012, 112, 1349–1358. [Google Scholar] [CrossRef]
- Hahn, D. Lower extremity extension force and electromyography properties as a function of knee angle and their relation to joint torques: Implications for strength diagnostics. J. Strength Cond. Res. 2011, 25, 1622–1631. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Contreras, B.; Willardson, J.M.; Fontana, F.; Tiryaki-Sonmez, G. Muscle activation during low- versus high-load resistance training in well-trained men. Eur. J. Appl. Physiol. 2014, 114, 2491–2497. [Google Scholar] [CrossRef]
- Walker, S.; Peltonen, H.; Avela, J.; Hakkinen, K. Kinetic and electromyographic analysis of single repetition constant and variable resistance leg press actions. J. Electromyogr. Kinesiol. 2011, 21, 262–269. [Google Scholar] [CrossRef]
- Clark, D.R.; Lambert, M.I.; Hunter, A.M. Trunk muscle activation in the back and hack squat at the same relative loads. J. Strength Cond. Res. 2017, 33, S60–S69. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Ghigiarelli, J.J.; Sell, K.M.; Shone, E.W.; Kelly, C.F.; Mangine, G.T. Muscle activation during resistance exercise at 70% and 90% 1-repetition maximum in resistance-trained men. Muscle Nerve 2017, 56, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Muyor, J.M.; Martín-Fuentes, I.; Rodríguez-Ridao, D.; Antequera-Vique, J.A. Electromyographic activity in the gluteus medius, gluteus maximus, biceps femoris, vastus lateralis, vastus medialis and rectus femoris during the monopodal squat, forward lunge and lateral step-up exercises. PLoS ONE 2020, 15, 0230841. [Google Scholar] [CrossRef]
- Muyor, J.M.; Rodríguez-Ridao, D.; Martín-Fuentes, I.; Antequera-Vique, J.A. Evaluation and comparison of electromyographic activity in bench press with feet on the ground and active hip flexion. PLoS ONE 2019, 14, 0218209. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical power analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Alkner, B.A.; Bring, D.K. Muscle activation during gravity-independent resistance exercise compared to common exercises. Aerosp. Med. Hum. Perform. 2019, 90, 506–512. [Google Scholar] [CrossRef]
- Wakeling, J.M.; Uehli, K.; Rozitis, A.I. Muscle fibre recruitment can respond to the mechanics of the muscle contraction. J. R. Soc. Interface 2006, 3, 533–544. [Google Scholar] [CrossRef]
- Vigotsky, A.D.; Halperin, I.; Lehman, G.J.; Trajano, G.S.; Vieira, T.M. Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front. Physiol. 2018, 8, 985. [Google Scholar] [CrossRef]
Mean ± SD | p-Value | Effect Size (d) | ||
---|---|---|---|---|
Maximal Velocity 0° 100% | Maximal Velocity 45° 100% | |||
MPV (m·s−¹) | 0.37 ± 0.06 | 0.33 ± 0.06 | 0.001 | 0.66 |
Vmax (m·s−¹) | 0.75 ± 0.09 | 0.71 ± 0.09 | <0.001 | 0.44 |
Mean ± SD | p-Value | |||
---|---|---|---|---|
0° 100% | 45° 100% | 0° 150% | ||
Pmax (W) | 286.6 ± 47.8 | 322.6 ± 91.1 | 291.8 ± 65.9 | >0.050 |
Mean ± SD | p-Value | Effect Size (d) | |||
---|---|---|---|---|---|
0° 100% | 45° 100% | ||||
Pmax (W) | Maximal velocity | 1037.4 ± 211.0 | 973.2 ± 213.8 | <0.001 | 0.47 |
Controlled velocity | 286.6 ± 47.8 | 322.6 ± 91.1 | 0.179 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Fuentes, I.; Oliva-Lozano, J.M.; Muyor, J.M. Muscle Activation and Kinematic Analysis during the Inclined Leg Press Exercise in Young Females. Int. J. Environ. Res. Public Health 2020, 17, 8698. https://doi.org/10.3390/ijerph17228698
Martín-Fuentes I, Oliva-Lozano JM, Muyor JM. Muscle Activation and Kinematic Analysis during the Inclined Leg Press Exercise in Young Females. International Journal of Environmental Research and Public Health. 2020; 17(22):8698. https://doi.org/10.3390/ijerph17228698
Chicago/Turabian StyleMartín-Fuentes, Isabel, José M. Oliva-Lozano, and José M. Muyor. 2020. "Muscle Activation and Kinematic Analysis during the Inclined Leg Press Exercise in Young Females" International Journal of Environmental Research and Public Health 17, no. 22: 8698. https://doi.org/10.3390/ijerph17228698
APA StyleMartín-Fuentes, I., Oliva-Lozano, J. M., & Muyor, J. M. (2020). Muscle Activation and Kinematic Analysis during the Inclined Leg Press Exercise in Young Females. International Journal of Environmental Research and Public Health, 17(22), 8698. https://doi.org/10.3390/ijerph17228698