Occupational Assessments of Risk Factors for Cardiovascular Diseases in Labors: An Application of Metabolic Syndrome Scoring Index
Abstract
1. Introduction
2. Materials and Methods
2.1. Sources of Data
2.2. Research Variables
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ranasinghe, R.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the Asia-Pacific region: A systematic review. BMC Public Health 2017, 17, 101. [Google Scholar] [CrossRef]
- Liao, C.M.; Lin, C.M. Life course effects of socioeconomic and lifestyle factors on metabolic syndrome and 10-year risk of cardiovascular disease: A longitudinal study in Taiwan adults. Int. J. Environ. Res. Public Health 2018, 15, 2178. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.Y.; Hong, S.; Kim, C.H.; Lee, S.; Kim, J.H.; Lee, J.T.; Kim, D.H. Prevalence of the metabolic syndrome among Korean workers by occupational group: Fifth Korean National Health and Nutrition Examination Survey (KNHANES) 2010. Ann. Occup. Environ. Med. 2013, 25, 13. [Google Scholar] [CrossRef] [PubMed]
- Gale, E.A.M. Should we dump the metabolic syndrome? Yes. BMJ 2008, 336, 640. [Google Scholar] [CrossRef] [PubMed]
- Kastelein, J. Cardiovascular risk-through the ages. Atheroscler. Suppl. 2004, 5, 1–2. [Google Scholar] [CrossRef]
- Tuomilehto, J. Impact of age on cardiovascular risk: Implications for cardiovascular disease management. Atheroscler. Suppl. 2004, 5, 9–17. [Google Scholar] [CrossRef]
- Sattar, N.; Forouhi, N.G. Metabolic syndrome criteria: Ready for clinical prime time or work in progress? Eur. Heart J. 2005, 26, 1249–1251. [Google Scholar] [CrossRef][Green Version]
- Simmons, R.K.; Alberti, K.G.; Gale, E.A.; Tuomilehto, J.; Qiao, Q.; Ramachandran, A.; Tajima, N.; Brajkovich Mirchov, I.; Ben-Nakhi, A.; Reaven, G.; et al. The metabolic syndrome: Useful concept or clinical tool? Report of a WHO Expert Consultation. Diabetologia 2010, 53, 600–605. [Google Scholar] [CrossRef]
- Kahn, R.; Buse, J.; Ferrannini, E.; Stern, M. The metabolic syndrome: Time for a critical appraisal: Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2005, 28, 2289–2304. [Google Scholar] [CrossRef]
- Raitakari, O.T.; Porkka, K.V.; Rasanen, L.; Ronnemaa, T.; Viikari, J.S. Clustering and six year cluster-tracking of serum total cholesterol, HDL-cholesterol and diastolic blood pressure in children and young adults. The Cardiovascular Risk in Young Finns Study. J. Clin. Epidemiol. 1994, 47, 1085–1093. [Google Scholar] [CrossRef]
- Eisenmann, J.C.; Wickel, E.E.; Welk, G.; Blair, S.N. Combined influence of cardiorespiratory fitness and body mass index on cardiovascular disease risk factors among 8-18 year old youth: The Aerobics Center Longitudinal Study. Int. J. Pediatr. Obes. 2007, 2, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.B.; Harro, M.; Sardinha, L.B. Physical activity and clustered cardiovascular risk in children: A cross-sectional study (The European Youth Heart Study). Lancet 2006, 368, 299–304. [Google Scholar] [CrossRef]
- Guseman, E.H.; Eisenmann, J.C.; Laurson, K.R.; Cook, S.R.; Stratbucker, W. Calculating a continuous metabolic syndrome score using nationally representative reference values. Acad. Pediatr. 2018, 18, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.; Auinger, P.; Huang, T.T.K. Growth curves for cardio-metabolic risk factors in children and adolescents. J. Pediatr. 2009, 155, e15–e26. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T.; Perusse, L.; Malina, R.M.; Bergeron, J.; Despres, J.; Bouchard, C. Stability of indicators of the metabolic syndrome from childhood and adolescence to young adulthood: The Quebec Family Study. J. Clin. Epidemiol. 2001, 54, 190–195. [Google Scholar] [CrossRef]
- Wijndaele, K.; Beunen, G.; Duvigneaud, N.; Matton, L.; Duquet, W.; Thomis, M.; Lefevre, J.; Philippaerts, R.M. A Continuous Metabolic Syndrome Risk Score: Utility for epidemiological analyses. Diabetes Care 2006, 29, 2329. [Google Scholar] [CrossRef]
- Gurka, M.J.; Lilly, C.; Oliver, M.N.; DeBoer, M.D. An examination of sex and racial/ethnic differences in the metabolic syndrome among adults: A confirmatory factor analysis and a resulting continuous severity score. Metabolism 2014, 63, 218–225. [Google Scholar] [CrossRef]
- Gurka, M.J.; DeBoer, M.D.; Filipp, S.L. MetS Calc: Metabolic syndrome severity calculator. Cardiovasc. Diabetol. 2019, 17, 17. [Google Scholar] [CrossRef]
- Huh, H.; Lee, J.H.; Moon, J.S.; Sung, K.C.; Kim, J.Y.; Kang, D.R. Metabolic syndrome severity score in Korean adults: Analysis of the 2010–2015 Korea National Health and Nutrition Examination Survey. J. Korean Med. Sci. 2019, 34, e48. [Google Scholar] [CrossRef]
- Low, S.; Khoo, K.C.J.; Wang, J.; Irwan, B.; Sum, C.F.; Subramaniam, T.; Lim, S.C.; Wong, T.K.M. Development of a metabolic syndrome severity score and its association with incident diabetes in an Asian population—Results from a longitudinal cohort in Singapore. Endocrine 2019, 65, 73–80. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Kuczmarski, M.T.; Wang, Y.; Mason, M.A.; Evans, M.K.; Zonderman, A.B. Receiver-operating characteristics of adiposity for metabolic syndrome: The healthy aging in neighborhoods of diversity across the life span (HANDLS) study. Public Health Nutr. 2011, 14, 77–92. [Google Scholar] [CrossRef]
- Yu, J.; Tao, Y.; Tao, Y.; Yang, S.; Yu, Y.; Li, B.; Jin, L. Optimal cut-off of obesity indices to predict cardiovascular disease risk factors and metabolic syndrome among adults in Northeast China. BMC Public Health 2016, 16, 1079. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, Y.; Sun, X.; Yin, Z.; Li, H.; Deng, K.; Chen, X.; Cheng, C.; Luo, X.; Zhang, M.; et al. Identification of an obesity index for predicting metabolic syndrome by gender: the rural Chinese cohort study. BMC Endocr. Disord. 2018, 18, 54. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Hwang, S.Y. Influence of Occupational Type and Lifestyle Risk Factors on Prevalence of Metabolic Syndrome among Male Workers: A Retrospective Cohort Study. Korean J. Adult Nurs. 2016, 28, 180–190. [Google Scholar] [CrossRef]
- Adeseye, A.; Oloyede, T.W. Metabolic syndrome and occupation: Any association? Prevalence among auto technicians and school teachers in South West Nigeria. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S223–S227. [Google Scholar] [CrossRef]
- Bulka, C.M.; Daviglus, M.L.; Persky, V.W.; Durazo-Arvizu, R.A.; Avilés-Santa, M.L.; Gallo, L.C.; Hosgood, H.D.; Singer, R.H.; Talavera, G.A.; Thyagarajan, B.; et al. Occupational exposures and metabolic syndrome among hispanics/latinos. J. Occup. Environ. Med. 2017, 59, 1047–1055. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Yun, J.-M. Analysis of the association between health-related and work-related factors among workers and metabolic syndrome using data from the Korean National Health and Nutrition Examination Survey (2016). Nutr. Res. Pract. 2019, 13, 444–451. [Google Scholar] [CrossRef]
- Davila, E.P.; Florez, H.; Fleming, L.E.; Lee, D.J.; Goodman, E.; Leblanc, W.G.; Caban-Martinez, A.J.; Arheart, K.L.; McCollister, K.E.; Christ, S.L.; et al. Prevalence of the metabolic syndrome among US workers. Diabetes Care 2010, 33, 2390–2395. [Google Scholar] [CrossRef]
- Berry, J.D.; Lloyd-Jones, D.M.; Garside, D.B.; Greenland, P. Framingham risk score and prediction of coronary heart disease death in young men. Am. Heart J. 2007, 154, 80–86. [Google Scholar] [CrossRef]
- Hemann, B.A.; Bimson, W.F.; Taylor, A.J. The Framingham Risk Score: An Appraisal of Its Benefits and Limitations. Am. Heart Hosp. J. 2007, 5, 91–96. [Google Scholar] [CrossRef]
- Khanna, R.; Kapoor, A.; Kumar, S.; Tewari, S.; Garg, N.; Goel, P.K. Metabolic syndrome & Framingham Risk Score: Observations from a coronary angiographic study in Indian patients. Indian J. Med Res. 2013, 137, 295–301. [Google Scholar] [PubMed]
- Kang, G.-D.; Guo, L.; Guo, Z.; Hu, X.-S.; Wu, M.; Yang, H.-T. Continuous metabolic syndrome risk score for predicting cardiovascular disease in the Chinese population. Asia Pac. J. Clin. Nutr. 2012, 21, 88–96. [Google Scholar] [PubMed]
- Lin, C.-M. An application of metabolic syndrome severity scores in the lifestyle risk assessment of taiwanese adults. Int. J. Environ. Res. Public Health 2020, 17, 3348. [Google Scholar] [CrossRef] [PubMed]
Demography | n | MS (%) | Waist Circumference (cm) | Fasting Plasma Glucose (mg/dL) | Triglycerides(mg/dL) | High-Density Lipoprotein (mg/dL) | Systolic Blood Pressure (mmHg) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Sd | Mean | Sd | Mean | Mean | Sd | Mean | Sd | Mean | |||
Men | 4327 | 25.8 | 84.45 | 10.43 | 98.49 | 22.21 | 142.07 | 138.37 | 49.89 | 11.59 | 130.08 | 14.57 |
20–34 years | 1355 | 16.2 | 82.5 | 11.32 | 93.11 | 12.57 | 117.91 | 84.53 | 50.69 | 11.04 | 127.87 | 12.84 |
35–49 years | 2145 | 30.3 | 85.79 | 10.32 | 99.66 | 23.67 | 155.37 | 156.71 | 49.03 | 11.74 | 130.67 | 14.69 |
50–64 years | 827 | 29.9 | 84.2 | 8.45 | 104.28 | 28.03 | 147.19 | 152.74 | 50.81 | 11.91 | 132.17 | 16.35 |
Women | 2126 | 14.3 | 75.38 | 10.24 | 94.91 | 17.05 | 91.06 | 52.03 | 60.7 | 13.57 | 124.28 | 16.34 |
20–34 years | 497 | 9.9 | 73.3 | 11.49 | 90.71 | 18.48 | 81.01 | 53.62 | 60.62 | 14.36 | 119.94 | 13.31 |
35–49 years | 1096 | 14.3 | 76.16 | 10.33 | 95.05 | 15.96 | 90.32 | 50.54 | 59.87 | 13.31 | 123.36 | 16.02 |
50–64 years | 533 | 18.6 | 75.71 | 8.4 | 98.54 | 16.94 | 101.96 | 51.46 | 62.49 | 13.17 | 130.21 | 17.83 |
MS Components | Men | Women | ||||
---|---|---|---|---|---|---|
20–34 Years | 35–49 Years | 20–34 Years | 35–49 Years | 20–34 Years | 35–49 Years | |
Waist circumference | 0.82 | 0.75 | 0.75 | 0.78 | 0.71 | 0.62 |
Fasting plasma glucose | 0.25 | 0.26 | 0.24 | 0.31 | 0.34 | 0.42 |
Ln-Triglycerides | 0.41 | 0.48 | 0.51 | 0.50 | 0.52 | 0.41 |
High-density lipoprotein | 0.34 | 0.45 | 0.48 | 0.36 | 0.45 | 0.40 |
Systolic blood pressure | 0.48 | 0.34 | 0.30 | 0.51 | 0.46 | 0.49 |
MS | MS Severity Score | Total | ||
---|---|---|---|---|
n | % | Mean (Sd) | ||
Sex | ||||
Male | 1116 | 25.8 | –0.004 (1.000) | 4327 |
Female | 305 | 14.4 | –0.005 (1.000) | 2126 |
Age (years) | ||||
20–34 | 268 | 14.5 | –0.012 (1.000) | 1852 |
35–54 | 1008 | 25.2 | –0.001 (0.994) | 4002 |
55–64 | 145 | 24.2 | –0.006 (1.039) | 599 |
Occupational field | ||||
Electronics | 525 | 24. 8 | 0.164 (1.001) | 2118 |
Food | 110 | 24.6 | 0.019 (1.123) | 448 |
Traditional industries | 535 | 22.5 | –0.057 (0.961) | 2377 |
Logistics | 251 | 16.6 | –0.165 (0.984) | 1510 |
Job title | ||||
Technician | 1122 | 22.9 | 0.012 (0.994) | 4902 |
Administrator | 241 | 17.5 | –0.083 (1.027) | 1377 |
Manager | 58 | 33.3 | 0.150 (0.914) | 174 |
Job tenure (years) | ||||
<5 | 288 | 15.4 | –0.075 (0.934) | 1872 |
5–10 | 259 | 22.2 | 0.082 (1.128) | 1169 |
11–20 | 409 | 27.0 | 0.043 (1.022) | 1516 |
>20 | 463 | 24.5 | –0.026 (0.955) | 1890 |
Missing | 2 | 33.3 | –0.006 (0.581) | 6 |
Smoke | ||||
No | 946 | 19.8 | -0.026 (0.985) | 4789 |
Yes | 475 | 28.5 | 0.058 (1.038) | 1664 |
Drink | ||||
No | 806 | 21.0 | 0.009 (1.000) | 3840 |
Yes | 615 | 23.5 | –0.024 (0.999) | 2613 |
Betel chewing | ||||
No | 1253 | 21.0 | –0.017 (0.995) | 5967 |
Yes | 168 | 34.6 | 0.149 (1.046) | 486 |
Sleep(h/day) | ||||
≤6 | 462 | 25.0 | 0.050 (1.023) | 1850 |
7 | 694 | 21.9 | –0.016 (1.007) | 3175 |
≥8 | 264 | 18.6 | –0.049 (0.950) | 1421 |
Missing | 1 | 14.3 | –0.033 (0.224) | 7 |
Logistic Regression | Linear Regression | |||
---|---|---|---|---|
AOR | 95%CI | β | 95%CI | |
Occupational field (vs. Logistics) | ||||
Electronics | 1.722 | 1.428–2.077 | 0.328 | 0.256–0.399 |
Food | 1.835 | 1.405–2.396 | 0.190 | 0.083–0.297 |
Traditional industry | 1.323 | 1.106–1.581 | 0.109 | 0.041–0.177 |
Job title (vs. Administrator) | ||||
Technician | 0.982 | 0.826–1.168 | –0.010 | –0.077–0.057 |
Manager | 1.341 | 0.933–1.926 | 0.135 | 0.025–0.296 |
Job tenure (vs. <5 years) | ||||
5–10 years | 1.320 | 1.081–1.612 | 0.138 | 0.063–0.214 |
11–20 years | 1.410 | 1.143–1.739 | 0.102 | 0.018–0.185 |
>0 years | 1.307 | 1.056–1.618 | 0.094 | 0.010–0.178 |
Smoke (vs. No) | ||||
Yes | 1.232 | 1.058–1.434 | 0.058 | –0.006–0.122 |
Drink (vs. No) | ||||
Yes | 0.862 | 0.755–0.985 | –0.067 | –0.12– –0.013 |
Betel chewing (vs. No) | ||||
Yes | 1.533 | 1.224–1.919 | 0.167 | 0.066–0.269 |
Sleep (vs. ≥8 h/day) | ||||
≤6 h/day | 1.345 | 1.127–1.605 | 0.071 | 0.001–0.140 |
7 h/day | 1.198 | 1.017–1.411 | 0.027 | –0.036–0.089 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Lin, C.-M. Occupational Assessments of Risk Factors for Cardiovascular Diseases in Labors: An Application of Metabolic Syndrome Scoring Index. Int. J. Environ. Res. Public Health 2020, 17, 7539. https://doi.org/10.3390/ijerph17207539
Lin C-Y, Lin C-M. Occupational Assessments of Risk Factors for Cardiovascular Diseases in Labors: An Application of Metabolic Syndrome Scoring Index. International Journal of Environmental Research and Public Health. 2020; 17(20):7539. https://doi.org/10.3390/ijerph17207539
Chicago/Turabian StyleLin, Ching-Yuan, and Chih-Ming Lin. 2020. "Occupational Assessments of Risk Factors for Cardiovascular Diseases in Labors: An Application of Metabolic Syndrome Scoring Index" International Journal of Environmental Research and Public Health 17, no. 20: 7539. https://doi.org/10.3390/ijerph17207539
APA StyleLin, C.-Y., & Lin, C.-M. (2020). Occupational Assessments of Risk Factors for Cardiovascular Diseases in Labors: An Application of Metabolic Syndrome Scoring Index. International Journal of Environmental Research and Public Health, 17(20), 7539. https://doi.org/10.3390/ijerph17207539