Potentially Heterogeneous Cross-Sectional Associations of Seafood Consumption with Diabetes and Glycemia in Urban South Asia
Abstract
:1. Background
2. Aims
3. Methods
3.1. Study Population
3.2. Outcome Measures
3.3. Dietary Data
3.4. Sociodemographic, Behavioral, and Anthropometric Data
3.5. Statistical Analysis
4. Results
4.1. Seafood Consumption by City
4.2. Seafood Consumption and Diabetes
4.3. Seafood Consumption and Glycemia
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wu, J.H.; Micha, R.; Imamura, F.; Pan, A.; Biggs, M.L.; Ajaz, O.; Djousse, L.; Hu, F.B.; Mozaffarian, D. Omega-3 fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Br. J. Nutr. 2012, 107, S214–S227. [Google Scholar] [CrossRef] [PubMed]
- Hartweg, J.; Farmer, A.J.; Holman, R.R.; Neil, A. Potential impact of omega-3 treatment on cardiovascular disease in type 2 diabetes. Curr. Opin. Lipidol. 2009, 20, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Nicklisch, S.C.; Bonito, L.T.; Sandin, S.; Hamdoun, A. Geographic differences in persistent organic pollutant levels of yellowfin tuna. Environ. Health Perspect. 2017, 125, 064014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonito, L.T.; Hamdoun, A.; Sandin, S.A. Evaluation of the global impacts of mitigation on persistent, bioaccumulative and toxic pollutants in marine fish. Life Environ. 2016, 4, e1573. [Google Scholar] [CrossRef]
- Gribble, M.O.; Karimi, R.; Feingold, B.J.; Nyland, J.F.; O’Hara, T.M.; Gladyshev, M.I.; Chen, C.Y. Mercury, selenium and fish oils in marine food webs and implications for human health. J. Mar. Biol. Assoc. 2016, 96, 43–59. [Google Scholar] [CrossRef] [Green Version]
- Laird, B.D.; Goncharov, A.B.; Egeland, G.M.; Chan, H.M. Dietary advice on Inuit traditional food use needs to balance benefits and risks of mercury, selenium, and n3 fatty acids. J. Nutr. 2013, 143, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.Y.; Guo, Y.; Zeng, E.Y. Dietary intake of persistent organic pollutants and potential health risks via consumption of global aquatic products. Environ. Toxicol. Chem. 2010, 29, 2135–2142. [Google Scholar] [CrossRef]
- Taylor, K.W.; Novak, R.F.; Anderson, H.A.; Birnbaum, L.S.; Blystone, C.; Devito, M.; Jacobs, D.; Kohrle, J.; Lee, D.H.; Rylander, L.; et al. Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: A national toxicology program workshop review. Environ. Health Perspect. 2013, 121, 774–783. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. Global technical hexachlorocyclohexane usage and its contamination consequences in the environment: From 1948 to 1997. Sci. Total Environ. 1999, 232, 121–158. [Google Scholar] [CrossRef]
- Muralidharan, S.; Dhananjayan, V.; Jayanthi, P. Organochlorine pesticides in commercial marine fishes of Coimbatore, India and their suitability for human consumption. Environ. Res. 2009, 109, 15–21. [Google Scholar] [CrossRef]
- Arisekar, U.; Shakila, R.J.; Jeyasekaran, G.; Shalini, R.; Kumar, P.; Malani, A.H.; Rani, V. Accumulation of organochlorine and pyrethroid pesticide residues in fish, water, and sediments in the Thamirabarani river system of Southern Peninsular India. Environ. Nanotechnol. Monit. Manag. 2019, 11, 100194. [Google Scholar] [CrossRef]
- Bedi, J.S.; Singh, V.; Gupta, A.; Gill, J.P.S.; Aulakh, R.S. Persistent organic pollutants (POPs) in fresh water farm fish species from Punjab (India) and evaluation of their dietary intake for human risk assessment. Hum. Ecol. Risk Assess. 2018, 24, 1659–1672. [Google Scholar] [CrossRef]
- Dhananjayan, V.; Muralidharan, S. Organochlorine Pesticide Residues in Inland Wetland Fishes of Karnataka, India and Their Implications on Human Dietary Intake. Bull. Environ. Contam. Toxicol. 2010, 85, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.S.; Banerjee, K.; Utture, S.; Kamble, N.; Rao, B.M.; Panda, S.K.; Mathew, S. Assessment of polyaromatic hydrocarbons and pesticide residues in domestic and imported pangasius (Pangasianodon hypophthalmus) fish in India. J. Sci. Food Agric. 2016, 96, 2373–2377. [Google Scholar] [CrossRef] [PubMed]
- Eqani, S.A.-M.-A.-S.; Malik, R.N.; Alamdar, A.; Faheem, H. Status of organochlorine contaminants in the different environmental compartments of Pakistan: A review on occurrence and levels. Bull. Environ. Contam. Toxicol. 2012, 88, 303–310. [Google Scholar]
- Aamir, M.; Khan, S.; Nawab, J.; Qamar, Z.; Khan, A. Tissue distribution of HCH and DDT congeners and human health risk associated with consumption of fish collected from Kabul River, Pakistan. Ecotoxicol. Environ. Saf. 2016, 125, 128–134. [Google Scholar] [CrossRef]
- Robinson, T.; Ali, U.; Mahmood, A.; Chaudhry, M.J.I.; Li, J.; Zhang, G.; Jones, K.C.; Malik, R.N. Concentrations and patterns of organochlorines (OCs) in various fish species from the Indus River, Pakistan: A human health risk assessment. Sci. Total Environ. 2016, 541, 1232–1242. [Google Scholar] [CrossRef]
- Baqar, M.; Sadef, Y.; Ahmad, S.R.; Mahmood, A.; Li, J.; Zhang, G. Organochlorine contaminants in freshwater mussels; occurrence, bioaccumulation pattern, spatio-temporal distribution and human health risk assessment from the tributaries of River Ravi, Pakistan. Hum. Ecol. Risk Assess. 2018, 24, 1268–1290. [Google Scholar] [CrossRef]
- Munshi, A.B.; Detlef, S.B.; Schneider, R.; Zuberi, R. Organochlorine concentrations in various fish from different locations at Karachi Coast. Mar. Pollut. Bull. 2004, 49, 597–601. [Google Scholar] [CrossRef]
- Nair, M.; Ali, M.K.; Ajay, V.S.; Shivashankar, R.; Mohan, V.; Pradeepa, R.; Deepa, M.; Khan, H.M.; Kadir, M.M.; Fatmi, Z.A.; et al. CARRS Surveillance study: Design and methods to assess burdens from multiple perspectives. BMC Public Health 2012, 12. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care 2017, 40, S11–S24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, R.; Anand, S.; Ounpuu, S.; Islam, S.; Zhang, X.; Rangarajan, S.; Chifamba, J.; Al-Hinai, A.; Keltai, M.; Yusuf, S.; et al. Dietary patterns and the risk of acute myocardial infarction in 52 countries: Results of the INTERHEART study. Circulation 2008, 118, 1929–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, D.; Iqbal, R.; Singh, K.; Jaacks, L.M.; Shivashankar, R.; Sudha, V.; Anjana, R.M.; Kadir, M.; Mohan, V.; Ali, M.K.; et al. Association of dietary patterns and dietary diversity with cardiometabolic disease risk factors among adults in South Asia: The CARRS study. Asia Pac. J. Clin. Nutr. 2018, 27, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, Z.; Ghiasvand, R.; Salehi-Abargouei, A. Empirically derived dietary patterns and incident type 2 diabetes mellitus: A systematic review and meta-analysis on prospective observational studies. Public Health Nutr. 2016, 19, 230–241. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, M.L.; Dunbar, S.A.; Jaacks, L.M.; Karmally, W.; Mayer-Davis, E.J.; Wylie-Rosett, J.; Yancy, W.S., Jr. Macronutrients, food groups, and eating patterns in the management of diabetes: A systematic review of the literature, 2010. Diabetes Care 2012, 35, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, D.E.; Bull, F.C.; Marshall, A.L.; Sallis, J.F.; Bauman, A.E. Assessment of sedentary behavior with the International Physical Activity Questionnaire. J. Phys. Act. Health 2008, 5, S30–S44. [Google Scholar] [CrossRef]
- U.S. Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey III: Body Measurements (Anthropometry) Manual; Westat, Inc.: Rockville, MD, USA, 1988. [Google Scholar]
- Azur, M.J.; Stuart, E.A.; Frangakis, C.; Leaf, P.J. Multiple imputation by chained equations: What is it and how does it work? Int. J. Methods Psychiatr. Res. 2011, 20, 40–49. [Google Scholar] [CrossRef]
- Yakub, M.; Iqbal, M.P.; Iqbal, R. Dietary Patterns are Associated with Hyperhomocysteinemia in an Urban Pakistani Population. J. Nutr. 2010, 140, 1261–1266. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. Survey of Fish Consumption in Madras; Contract No.: BOBP/WP/83; Marketing and Research Group Pvt. Ltd.: Madras, India, 1992. [Google Scholar]
- Ganguli, D.; Das, N.; Saha, I.; Biswas, P.; Datta, S.; Mukhopadhyay, B.; Chaudhuri, D.; Ghosh, S.; Dey, S. Major dietary patterns and their associations with cardiovascular risk factors among women in West Bengal, India. Br. J. Nutr. 2011, 105, 1520–1529. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S.; Millett, C.; Subramanian, S.V.; Ebrahim, S. Frequency of fish intake and diabetes among adult Indians. J. Am. Coll. Nutr. 2014, 33, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Harding, A.H.; Day, N.E.; Khaw, K.T.; Bingham, S.A.; Luben, R.N.; Welsh, A.; Wareham, N.J. Habitual fish consumption and glycated haemoglobin: The EPIC-Norfolk study. Eur. J. Clin. Nutr. 2004, 58, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.S.; Sharp, S.J.; Luben, R.N.; Khaw, K.T.; Bingham, S.A.; Wareham, N.J.; Forouhi, N.G. Association between type of dietary fish and seafood intake and the risk of incident type 2 diabetes: The European prospective investigation of cancer (EPIC)-Norfolk cohort study. Diabetes Care 2009, 32, 1857–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucher, B.A.; Ennis, J.K.; Tsirlin, D.; Harris, S.A. A global database of polybrominated diphenyl ether flame retardant congeners in foods and supplements. J. Food Compos. Anal. 2018, 69, 171–188. [Google Scholar] [CrossRef]
- World Health Organization and Food and Agriculture Organization (WHO/FAO) of the United Nations. Joint FAO/WHO Meeting on Pesticide Residues. 2019. Available online: https://www.who.int/foodsafety/areas_work/chemical-risks/Sep_2019_JMPR_Summary_Report.pdf?ua=1 (accessed on 31 December 2019).
- Scherer, A.C.; Tsuchiya, A.; Younglove, L.R.; Burbacher, T.M.; Faustman, E.M. Comparative analysis of state fish consumption advisories targeting sensitive populations. Environ. Health Perspect. 2008, 116, 1598–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAuley, C.; Knopper, L.D. Impacts of traditional food consumption advisories: Compliance, changes in diet and loss of confidence in traditional foods. Environ. Health 2011, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Cole, S.R.; Frangakis, C.E. The consistency statement in causal inference: A definition or an assumption? Epidemiology 2009, 20, 3–5. [Google Scholar] [CrossRef]
- VanderWeele, T.J. Concerning the consistency assumption in causal inference. Epidemiology 2009, 20, 880–883. [Google Scholar] [CrossRef]
Characteristic | Fish Consumption (Estimates and 95% Confidence Intervals) | ||
---|---|---|---|
Less than Weekly 41.3% (36.1%, 46.5%) | Weekly 23.0% (21.0%, 24.9%) | More than Weekly 35.7% (30.4%, 41.0%) | |
CHENNAI | |||
Age: mean years | 42.1 (40.5, 43.7) | 41.0 (39.8, 42.3) | 39.6 (38.7, 40.4) |
Masculine gender: % | 43.8 (40.3, 47.3) | 45.3 (42.7, 47.8) | 45.9 (44.8, 46.9) |
Education: % | |||
Up to primary school | 17.0 (11.9, 22.0) | 16.8 (14.2, 19.5) | 15.4 (13.4, 17.4) |
High school/secondary | 63.3 (58.0, 68.5) | 69.5 (65.6, 73.4) | 73.6 (71.0, 76.2) |
College graduate | 19.8 (16.1, 23.4) | 13.7 (10.0, 17.5) | 11.0 (9.4, 12.6) |
Household income: % | |||
≤INR 10,000 (U.S. $200) | 75.3 (70.3, 80.2) | 80.8 (76.9, 84.7) | 82.4 (79.6, 85.3) |
INR 10,001–20,000 | 15.4 (11.7, 19.0) | 14.5 (11.5, 17.6) | 13.5 (11.0, 15.9) |
≥INR 20,001 (U.S. $400) | 8.0 (4.8, 11.3) | 4.5 (2.5, 6.4) | 3.7 (2.3, 5.0) |
Declined to state income | 1.3 (0.2, 2.5) | 0.2 (<0.1, 0.5) | 0.4 (0.2, 0.7) |
Sedentary Lifestyle: % | |||
Sitting < 5 h/day | 24.7 (18.9, 30.5) | 28.0 (19.7, 36.4) | 23.1 (17.3, 28.9) |
Sitting ≥ 5 h/day | 75.3 (69.5, 81.1) | 72.0 (63.6, 80.3) | 76.9 (71.1, 82.7) |
Body mass index: mean kg/m2 | 25.5 (25.1, 25.9) | 25.3 (24.8, 25.8) | 25.6 (25.5, 25.8) |
Unhealthy diet score: mean | 8.5 (8.1, 8.9) | 9.1 (8.5, 9.7) | 9.6 (9.3, 9.9) |
Systolic blood pressure: mean mm Hg | 121.6 (119.9, 123.3) | 121.3 (119.5, 123.1) | 120.6 (119.1, 122.2) |
Tobacco use: % | |||
Never smoker | 83.5 (80.2, 86.7) | 79.7 (76.9, 82.5) | 76.3 (74.8, 77.7) |
Former smoker (>6 months) | 1.9 (0.9, 2.9) | 2.0 (1.1, 3.0) | 1.9 (1.4, 2.4) |
Recent smoker (≤6 months) | 14.6 (11.4, 17.9) | 18.2 (15.4, 21.0) | 21.8 (20.4, 23.2) |
Diagnosed hyperlipidemia: % | 2.2 (0.8, 3.7) | 1.1 (0.4, 1.8) | 1.6 (1.1, 2.2) |
Diagnosed hypertension: % | 14.7 (10.9, 18.5) | 11.0 (8.5, 13.4) | 9.5 (8.0, 10.9) |
DELHI | |||
Age: mean years | 43.3 (41.5, 45.1) | 40.4 (38.8, 42.1) | 39.4 (37.6, 41.2) |
Masculine gender: % | 45.7 (44.4, 47.0) | 55.6 (51.5, 59.6) | 66.6 (61.8, 71.4) |
Education: % | |||
Up to primary school | 16.7 (11.9, 21.6) | 28.8 (23.9, 33.7) | 22.6 (17.0, 28.1) |
High school/secondary | 53.3 (47.8, 58.7) | 52.6 (47.3, 57.9) | 57.3 (50.0, 64.6) |
College graduate | 30.0 (21.1, 38.9) | 18.6 (10.1, 27.1) | 20.1 (10.6, 29.7) |
Household income: % | |||
≤INR 10,000 (U.S. $200) | 44.8 (34.4, 55.2) | 61.4 (51.2, 71.5) | 56.8 (46.0, 67.6) |
INR 10,001–20,000 | 21.7 (18.7, 24.7) | 18.9 (14.6, 23.2) | 20.5 (13.0, 28.1) |
≥INR 20,001 (U.S. $400) | 32.7 (22.6, 42.8) | 19.4 (11.1, 27.8) | 22.2 (13.7, 30.6) |
Declined to state income | 0.8 (0.4, 1.1) | 0.3 (<0.1, 0.7) | 0.5 (<0.1, 1.2) |
Sedentary lifestyle: % | |||
Sitting < 5 h/day | 56.1 (52.1, 60.0) | 54.5 (48.3, 60.7) | 55.6 (47.1, 64.1) |
Sitting ≥ 5 h/day | 43.9 (40.0, 47.9) | 45.5 (39.3, 51.7) | 44.4 (35.9, 52.9) |
Body mass index: mean kg/m2 | 25.7 (24.9, 26.4) | 24.6 (23.8, 25.4) | 24.6 (23.7, 25.6) |
Unhealthy diet score: mean | 10.0 (9.6, 10.4) | 10.7 (10.1, 11.4) | 12.2 (11.5, 13.0) |
Systolic blood pressure: mean mm Hg | 125.9 (123.9, 127.9) | 125.1 (122.9, 127.3) | 126.5 (123.6, 129.5) |
Tobacco use: % | |||
Never smoker | 79.5 (75.5, 83.5) | 65.1 (61.2, 69.0) | 62.3 (57.4, 67.3) |
Former smoker (>6 months) | 1.7 (1.3, 2.1) | 2.0 (1.0, 3.0) | 0.9 (0.2, 1.5) |
Recent smoker (≤6 months) | 18.8 (14.9, 22.7) | 32.9 (29.0, 36.8) | 36.8 (31.8, 41.7) |
Diagnosed hyperlipidemia: % | 2.3 (1.3, 3.2) | 1.8 (0.6, 3.0) | 1.7 (0.4, 2.9) |
Diagnosed hypertension: % | 15.5 (12.6, 18.5) | 12.6 (9.2, 16.0) | 9.7 (6.1, 13.3) |
KARACHI | |||
Age: mean years | 40.9 (39.9, 41.8) | 41.9 (40.6, 43.2) | 41.8 (40.0, 43.7) |
Masculine gender: % | 43.0 (41.1, 45.0) | 49.4 (46.6, 52.2) | 51.1 (46.4, 55.8) |
Education: % | |||
Up to primary school | 35.8 (30.9, 40.7) | 27.0 (22.6, 31.5) | 36.0 (25.5, 46.5) |
High school/secondary | 53.0 (49.4, 56.7) | 55.5 (51.9, 59.0) | 52.2 (44.4, 60.0) |
College graduate | 11.1 (7.9, 14.3) | 17.5 (13.4, 21.5) | 11.8 (7.0, 16.6) |
Household income: % | |||
≤INR 10,000 (U.S. $200) | 42.9 (39.1, 46.6) | 34.6 (30.5, 38.8) | 41.6 (33.3, 49.8) |
INR 10,001–20,000 | 42.2 (39.6, 44.8) | 43.5 (40.5, 46.5) | 40.4 (34.7, 46.1) |
≥INR 20,001 (U.S. $400) | 14.2 (11.1, 17.3) | 20.8 (16.8, 24.7) | 16.5 (11.6, 21.4) |
Declined to state income | 0.7 (0.3, 1.1) | 1.1 (0.6, 1.6) | 1.5 (0.1, 3.0) |
Sedentary lifestyle: % | |||
Sitting < 5 h/day | 48.7 (44.9, 52.4) | 51.9 (48.9, 55.0) | 48.3 (43.6, 52.9) |
Sitting ≥ 5 h/day | 51.3 (47.6, 55.1) | 48.1 (45.0, 51.1) | 51.7 (47.1, 56.4) |
Body mass index: mean kg/m2 | 25.4 (25.1, 25.7) | 25.3 (24.9, 25.7) | 25.0 (24.1, 25.9) |
Unhealthy diet score: mean | 8.3 (8.0, 8.6) | 10.1 (9.8, 10.4) | 10.1 (9.4, 10.8) |
Systolic blood pressure: mean mm Hg | 119.8 (118.6, 121.1) | 121.4 (119.8, 123.0) | 120.6 (118.3, 122.9) |
Tobacco use: % | |||
Never smoker | 72.7 (70.3, 75.1) | 73.0 (69.3, 76.7) | 59.2 (51.8, 66.6) |
Former smoker (>6 months) | 1.0 (0.5, 1.5) | 1.7 (0.9, 2.5) | 0.9 (0.1, 1.6) |
Recent smoker (≤6 months) | 26.3 (23.9, 28.7) | 25.3 (21.8, 28.8) | 39.9 (32.4, 47.4) |
Diagnosed hyperlipidemia: % | 2.3 (1.5, 3.1) | 4.2 (3.1, 5.3) | 5.1 (2.7, 7.4) |
Diagnosed hypertension: % | 17.3 (15.2, 19.4) | 19.7 (17.2, 22.3) | 16.8 (12.4, 21.2) |
Characteristic | Shellfish Consumption (Estimates and 95% Confidence Intervals) | ||
---|---|---|---|
Less than Weekly 74.8% (70.8%, 78.8%) | Weekly 13.9% (11.6%, 16.1%) | More than Weekly 11.3% (9.1%, 13.6%) | |
CHENNAI | |||
Age: mean years | 40.8 (40.1, 41.6) | 39.8 (38.8, 40.8) | 38.9 (37.7, 40.1) |
Masculine gender: % | 45.0 (42.8, 47.2) | 47.0 (44.4, 49.6) | 44.7 (40.9, 48.6) |
Education: % | |||
Up to primary school | 15.7 (13.4, 17.9) | 14.6 (11.2, 18.0) | 17.7 (15.3, 20.2) |
High school/secondary | 71.6 (69.2, 74.0) | 72.4 (66.7, 78.0) | 71.2 (68.2, 74.3) |
College graduate | 12.8 (10.9, 14.7) | 13.1 (9.7, 16.4) | 11.0 (9.0, 13.1) |
Household income: % | |||
≤INR 10,000 (U.S. $200) | 82.1 (79.1, 85.1) | 78.3 (74.1, 82.4) | 83.6 (80.3, 86.9) |
INR 10,001–20,000 | 12.6 (10.5, 14.8) | 17.3 (12.9, 21.7) | 12.1 (9.7, 14.6) |
≥INR 20,001 (U.S. $400) | 4.8 (2.9, 6.6) | 4.0 (2.3, 5.6) | 3.7 (2.0, 5.3) |
Declined to state income | 0.5 (0.2, 0.8) | 0.5 (<0.1, 0.9) | 0.6 (<0.1, 1.1) |
Sedentary lifestyle: % | |||
Sitting < 5 h/day | 25.5 (19.1, 31.9) | 25.2 (18.7, 31.6) | 20.0 (14.2, 25.8) |
Sitting ≥ 5 h/day | 74.5 (68.1, 80.9) | 74.8 (68.4, 81.3) | 80.0 (74.2, 85.8) |
Body mass index: mean kg/m2 | 25.5 (25.2, 25.7) | 25.5 (25.1, 25.9) | 25.9 (25.5, 26.2) |
Unhealthy diet score: mean | 8.1 (7.9, 8.4) | 10.5 (10.0, 10.9) | 10.7 (10.0, 11.3) |
Systolic blood pressure: mean mm Hg | 121.2 (120.0, 122.3) | 120.6 (118.4, 122.8) | 120.4 (118.6, 122.2) |
Tobacco use: % | |||
Never smoker | 78.4 (76.3, 80.5) | 78.1 (76.0, 80.2) | 75.6 (72.7, 78.5) |
Former smoker (>6 months) | 2.3 (1.6, 3.1) | 1.6 (0.9, 2.2) | 1.6 (0.7, 2.5) |
Recent smoker (≤6 months) | 19.3 (17.1, 21.5) | 20.3 (18.3, 22.4) | 22.8 (19.9, 25.6) |
Diagnosed hyperlipidemia: % | 2.0 (1.4, 2.6) | 1.2 (0.6, 1.9) | 1.2 (0.5, 1.9) |
Diagnosed hypertension: % | 12.1 (10.8, 13.3) | 9.0 (7.3, 10.7) | 8.3 (5.6, 11.0) |
DELHI | |||
Age: mean years | 42.4 (40.6, 44.2) | 42.0 (39.4, 44.7) | 41.5 (39.3, 43.7) |
Masculine gender: % | 47.6 (46.8, 48.4) | 90.1 (85.2, 95.1) | 85.2 (79.8, 90.7) |
Education: % | |||
Up to primary school | 19.7 (14.7, 24.7) | 13.4 (5.0, 21.9) | 22.1 (13.6, 30.7) |
High school/secondary | 53.3 (48.4, 58.2) | 58.7 (41.2, 76.1) | 57.8 (43.1, 72.5) |
College graduate | 27.0 (18.2, 35.8) | 27.9 (12.8, 43.0) | 20.0 (7.4, 32.7) |
Household income: % | |||
≤INR 10,000 (U.S. $200) | 48.6 (38.4, 58.7) | 61.3 (44.1, 78.6) | 58.6 (47.8, 69.5) |
INR 10,001–20,000 | 21.3 (18.1, 24.6) | 11.7 (4.6, 18.8) | 19.6 (10.9, 28.3) |
≥INR 20,001 (U.S. $400) | 29.5 (19.9, 39.1) | 26.6 (12.1, 41.2) | 20.1 (9.1, 31.2) |
Declined to state income | 0.6 (0.3, 1.0) | 0.4 (<0.1, 1.1) | 1.7 (<0.1, 3.8) |
Sedentary lifestyle: % | |||
Sitting < 5 h/day | 56.6 (52.5, 60.6) | 37.2 (27.8, 46.5) | 43.0 (28.5, 57.4) |
Sitting ≥ 5 h/day | 43.4 (39.4, 47.5) | 62.8 (53.5, 72.2) | 57.0 (42.6, 71.5) |
Body mass index: mean kg/m2 | 25.4 (24.6, 26.2) | 24.6 (22.9, 26.3) | 25.4 (24.3, 26.5) |
Unhealthy diet score: mean | 10.2 (9.8, 10.6) | 12.9 (12.2, 13.6) | 13.8 (12.7, 14.9) |
Systolic blood pressure: mean mm Hg | 125.8 (123.9, 127.7) | 123.5 (119.5, 127.5) | 128.0 (122.3, 133.7) |
Tobacco use: % | |||
Never smoker | 76.3 (72.3, 80.4) | 52.7 (39.9, 65.6) | 50.4 (41.9, 59.0) |
Former smoker (>6 months) | 1.7 (1.3, 2.0) | 0.8 (<0.1, 1.9) | 2.1 (<0.1, 4.4) |
Recent smoker (≤6 months) | 22.0 (18.1, 26.0) | 46.5 (33.5, 59.5) | 47.5 (39.0, 56.0) |
Diagnosed hyperlipidemia: % | 2.1 (1.3, 3.0) | 0.4 (<0.1, 1.3) | 2.9 (0.1, 5.7) |
Diagnosed hypertension: % | 14.7 (11.9, 17.5) | 12.2 (4.2, 20.1) | 6.9 (2.9, 10.9) |
KARACHI | |||
Age: mean years | 41.3 (40.3, 42.3) | 42.5 (40.2, 44.7) | 42.3 (39.1, 45.5) |
Masculine gender: % | 45.8 (44.4, 47.1) | 57.3 (51.0, 63.6) | 51.9 (40.3, 63.6) |
Education: % | |||
Up to primary school | 32.1 (27.7, 36.4) | 27.2 (17.1, 37.4) | 49.2 (25.5, 72.9) |
High school/secondary | 54.4 (51.5, 57.3) | 51.3 (43.3, 59.4) | 44.9 (24.8, 64.9) |
College graduate | 13.6 (10.4, 16.7) | 21.4 (14.5, 28.4) | 6.0 (<0.1, 12.1) |
Household income: % | |||
≤INR 10,000 (U.S. $200) | 39.1 (35.6, 42.7) | 33.3 (25.7, 40.9) | 58.6 (46.0, 71.2) |
INR 10,001–20,000 | 43.1 (40.8, 45.3) | 39.0 (33.0, 45.1) | 32.1 (23.9, 40.4) |
≥INR 20,001 (U.S. $400) | 16.9 (13.8, 19.9) | 26.4 (18.5, 34.3) | 7.3 (1.2, 13.4) |
Declined to state income | 0.9 (0.5, 1.3) | 1.2 (<0.1, 3.0) | 2.0 (<0.1, 5.0) |
Sedentary lifestyle: % | |||
Sitting < 5 h/day | 50.3 (47.6, 52.9) | 47.3 (40.9, 53.6) | 44.9 (36.4, 53.4) |
Sitting ≥ 5 h/day | 49.7 (47.1, 52.4) | 52.7 (46.4, 59.1) | 55.1 (46.6, 63.6) |
Body mass index: mean kg/m2 | 25.4 (25.1, 25.7) | 24.5 (23.6, 25.5) | 24.3 (22.3, 26.3) |
Unhealthy diet score: mean | 9.2 (8.9, 9.4) | 10.8 (9.9, 11.6) | 9.6 (8.1, 11.0) |
Systolic blood pressure: mean mm Hg | 120.6 (119.5, 121.7) | 121.3 (118.3, 124.3) | 118.0 (113.1, 122.9) |
Tobacco use: % | |||
Never smoker | 72.4 (69.9, 74.9) | 61.0 (52.7, 69.4) | 53.2 (35.6, 70.7) |
Former smoker (>6 months) | 1.3 (0.9, 1.8) | 0.8 (<0.1, 2.0) | 1.3 (<0.1, 3.4) |
Recent smoker (≤6 months) | 26.3 (23.9, 28.7) | 38.1 (29.7, 46.6) | 45.5 (27.4, 63.6) |
Diagnosed hyperlipidemia: % | 3.5 (2.7, 4.3) | 3.9 (1.6, 6.3) | 0.5 (<0.1, 1.5) |
Diagnosed hypertension: % | 18.2 (16.3, 20.0) | 22.5 (17.3, 27.6) | 11.2 (4.9, 17.4) |
Frequency of Consumption | Unadjusted | Adjusted Models | ||||
---|---|---|---|---|---|---|
Chennai | Delhi | Karachi | Chennai | Delhi | Karachi | |
Fish Consumption | ||||||
Less than weekly | Reference | Reference | Reference | Reference | Reference | Reference |
Weekly | 0.73 (0.56, 0.95) | 0.78 (0.64, 0.96) | 1.04 (0.87, 1.24) | 0.75 (0.56, 1.02) | 0.95 (0.78, 1.14) | 1.07 (0.87, 1.30) |
More than weekly | 0.72 (0.54, 0.96) | 0.95 (0.72, 1.24) | 1.22 (0.92, 1.61) | 0.81 (0.61, 1.08) | 1.18 (0.87, 1.58) | 1.30 (0.94, 1.80) |
Shellfish Consumption | ||||||
Less than Weekly | Reference | Reference | Reference | Reference | Reference | Reference |
Weekly | 0.95 (0.82, 1.09) | 0.96 (0.59, 1.56) | 1.22 (0.89, 1.68) | 1.04 (0.87, 1.23) | 1.03 (0.62, 1.69) | 1.21 (0.84, 1.75) |
More than Weekly | 0.92 (0.78, 1.09) | 1.23 (0.84, 1.81) | 1.48 (0.94, 2.33) | 1.08 (0.90, 1.30) | 1.35 (0.90, 2.01) | 1.68 (0.98, 2.86) |
Frequency of Consumption | HbA1c | Fasting Glucose | ||||
---|---|---|---|---|---|---|
Chennai | Delhi | Karachi | Chennai | Delhi | Karachi | |
Fish Consumption | ||||||
Less than weekly | Reference | Reference | Reference | Reference | Reference | Reference |
Weekly | −0.17 (−0.35, 0.02) | −0.09 (−0.22, 0.04) | 0.00 (−0.11, 0.12) | −3.54 (−9.31, 2.22) | −1.05 (−3.96, 1.87) | 1.46 (−1.55, 4.47) |
More than weekly | −0.06 (−0.19, 0.07) | 0.07 (−0.13, 0.28) | 0.10 (−0.06, 0.26) | −1.29 (−5.58, 2.99) | 4.56 (−0.60, 9.72) | 5.00 (0.68, 9.32) |
Shellfish Consumption | ||||||
Less than Weekly | Reference | Reference | Reference | Reference | Reference | Reference |
Weekly | 0.03 (−0.07, 0.13) | −0.04 (−0.34, 0.26) | 0.05 (−0.15, 0.26) | 0.13 (−2.77, 3.03) | −1.12 (−9.86, 7.63) | 3.24 (−2.78, 9.27) |
More than Weekly | 0.11 (−0.02, 0.24) | 0.05 (−0.22, 0.33) | 0.14 (−0.12, 0.40) | 2.15 (−1.69, 5.99) | 1.14 (−7.06, 9.34) | 6.08 (−2.71, 14.86) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gribble, M.O.; Head, J.R.; Prabhakaran, D.; Kapoor, D.; Garg, V.; Mohan, D.; Anjana, R.M.; Mohan, V.; Vasudevan, S.; Kadir, M.M.; et al. Potentially Heterogeneous Cross-Sectional Associations of Seafood Consumption with Diabetes and Glycemia in Urban South Asia. Int. J. Environ. Res. Public Health 2020, 17, 459. https://doi.org/10.3390/ijerph17020459
Gribble MO, Head JR, Prabhakaran D, Kapoor D, Garg V, Mohan D, Anjana RM, Mohan V, Vasudevan S, Kadir MM, et al. Potentially Heterogeneous Cross-Sectional Associations of Seafood Consumption with Diabetes and Glycemia in Urban South Asia. International Journal of Environmental Research and Public Health. 2020; 17(2):459. https://doi.org/10.3390/ijerph17020459
Chicago/Turabian StyleGribble, Matthew O., Jennifer R. Head, Dorairaj Prabhakaran, Deksha Kapoor, Vandana Garg, Deepa Mohan, Ranjit Mohan Anjana, Viswanathan Mohan, Sudha Vasudevan, M. Masood Kadir, and et al. 2020. "Potentially Heterogeneous Cross-Sectional Associations of Seafood Consumption with Diabetes and Glycemia in Urban South Asia" International Journal of Environmental Research and Public Health 17, no. 2: 459. https://doi.org/10.3390/ijerph17020459
APA StyleGribble, M. O., Head, J. R., Prabhakaran, D., Kapoor, D., Garg, V., Mohan, D., Anjana, R. M., Mohan, V., Vasudevan, S., Kadir, M. M., Tandon, N., Narayan, K. M. V., Patel, S. A., & Jaacks, L. M. (2020). Potentially Heterogeneous Cross-Sectional Associations of Seafood Consumption with Diabetes and Glycemia in Urban South Asia. International Journal of Environmental Research and Public Health, 17(2), 459. https://doi.org/10.3390/ijerph17020459