Active Transportation and Obesity Indicators in Adults from Latin America: ELANS Multi-Country Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Exclusion Criteria
2.3. Active Transportation, Leisure Time and Total Physical Activity
2.4. Obesity Indicators
2.5. Sociodemographic Variables
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organisation (WHO) Obesity and Overweight. Available online: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 12 August 2020).
- Kovalskys, I.; Fisberg, M.; Gomez, G.; Pareja, R.G.; Yepez Garcia, M.C.; Cortes Sanabria, L.Y.; Herrera-Cuenca, M.; Rigotti, A.; Guajardo, V.; Zalcman Zimberg, I.; et al. Energy intake and food sources of eight Latin American countries: Results from the Latin American Study of Nutrition and Health (ELANS). Public Health Nutr. 2018, 21, 2535–2547. [Google Scholar] [CrossRef] [Green Version]
- Abdelaal, M.; le Roux, C.W.; Docherty, N.G. Morbidity and mortality associated with obesity. Ann. Transl. Med. 2017, 5, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mytton, O.T.; Ogilvie, D.; Griffin, S.; Brage, S.; Wareham, N.; Panter, J. Associations of active commuting with body fat and visceral adipose tissue: A cross-sectional population based study in the UK. Prev. Med. 2018, 106, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Jakicic, J.M.; Davis, K.K. Obesity and physical activity. Psychiatr. Clin. N. Am. 2011, 34, 829–840. [Google Scholar] [CrossRef]
- Kokkinos, P. Physical activity, health benefits, and mortality risk. ISRN Cardiol. 2012, 2012, 718789. [Google Scholar] [CrossRef] [Green Version]
- Celis-Morales, C.A.; Lyall, D.M.; Welsh, P.; Anderson, J.; Steell, L.; Guo, Y.; Maldonado, R.; Mackay, D.F.; Pell, J.P.; Sattar, N.; et al. Association between active commuting and incident cardiovascular disease, cancer, and mortality: Prospective cohort study. BMJ 2017, 357, j1456. [Google Scholar] [CrossRef] [Green Version]
- Schafer, C.; Mayr, B.; Fernandez La Puente de Battre, M.D.; Reich, B.; Schmied, C.; Loidl, M.; Niederseer, D.; Niebauer, J. Health effects of active commuting to work: The available evidence before GISMO. Scand. J. Med. Sci. Sports 2020. [Google Scholar] [CrossRef]
- Andersen, L.B. Active commuting: An easy and effective way to improve health. Lancet Diabetes Endocrinol. 2016, 4, 381–382. [Google Scholar] [CrossRef]
- Menai, M.; Charreire, H.; Feuillet, T.; Salze, P.; Weber, C.; Enaux, C.; Andreeva, V.A.; Hercberg, S.; Nazare, J.A.; Perchoux, C.; et al. Walking and cycling for commuting, leisure and errands: Relations with individual characteristics and leisure-time physical activity in a cross-sectional survey (the ACTI-Cites project). Int. J. Behav. Nutr. Phys. Act. 2015, 12, 150. [Google Scholar] [CrossRef]
- Vaara, J.P.; Vasankari, T.; Fogelholm, M.; Koski, H.; Kyrolainen, H. Cycling but not walking to work or study is associated with physical fitness, body composition and clustered cardiometabolic risk in young men. BMJ Open Sport Exerc. Med. 2020, 6, e000668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, G.L.M.; Kovalskys, I.; Fisberg, M.; Gomez, G.; Rigotti, A.; Sanabria, L.Y.C.; García, M.C.Y.; Torres, R.G.P.; Herrera-Cuenca, M.; Zimberg, I.Z.; et al. Socio-demographic patterns of public, private and active travel in Latin America: Cross-sectional findings from the ELANS study. J. Transp. Health 2020, 16, 100788. [Google Scholar] [CrossRef]
- Salvo, D.; Reis, R.S.; Sarmiento, O.L.; Pratt, M. Overcoming the challenges of conducting physical activity and built environment research in Latin America: IPEN Latin America. Prev. Med. 2014, 69 (Suppl. S1), S86–S92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lund, C.; De Silva, M.; Plagerson, S.; Cooper, S.; Chisholm, D.; Das, J.; Knapp, M.; Patel, V. Poverty and mental disorders: Breaking the cycle in low-income and middle-income countries. Lancet 2011, 378, 1502–1514. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Urbanization Prospects: The 2011 Revision: Data Tables and Highlights 2011 Rev.; United Nations publication: New York, NY, USA, 2012. [Google Scholar]
- Montes, F.; Sarmiento, O.L.; Zarama, R.; Pratt, M.; Wang, G.; Jacoby, E.; Schmid, T.L.; Ramos, M.; Ruiz, O.; Vargas, O.; et al. Do health benefits outweigh the costs of mass recreational programs? An economic analysis of four Ciclovia programs. J. Urban Health 2012, 89, 153–170. [Google Scholar] [CrossRef] [Green Version]
- Gomez, L.F.; Sarmiento, R.; Ordonez, M.F.; Pardo, C.F.; de Sa, T.H.; Mallarino, C.H.; Miranda, J.J.; Mosquera, J.; Parra, D.C.; Reis, R.; et al. Urban environment interventions linked to the promotion of physical activity: A mixed methods study applied to the urban context of Latin America. Soc. Sci. Med. 2015, 131, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Hoehner, C.M.; Ribeiro, I.C.; Parra, D.C.; Reis, R.S.; Azevedo, M.R.; Hino, A.A.; Soares, J.; Hallal, P.C.; Simoes, E.J.; Brownson, R.C. Physical activity interventions in Latin America: Expanding and classifying the evidence. Am. J. Prev. Med. 2013, 44, e31–e40. [Google Scholar] [CrossRef] [Green Version]
- Berglund, E.; Lytsy, P.; Westerling, R. Active Traveling and Its Associations with Self-Rated Health, BMI and Physical Activity: A Comparative Study in the Adult Swedish Population. Int. J. Environ. Res. Public Health 2016, 13, 455. [Google Scholar] [CrossRef] [Green Version]
- Flint, E.; Cummins, S. Active commuting and obesity in mid-life: Cross-sectional, observational evidence from UK Biobank. Lancet Diabetes Endocrinol. 2016, 4, 420–435. [Google Scholar] [CrossRef] [Green Version]
- Larouche, R.; Faulkner, G.; Tremblay, M.S. Active travel and adults’ health: The 2007-to-2011 Canadian Health Measures Surveys. Health Rep. 2016, 27, 10–18. [Google Scholar]
- Sallis, J.F.; Cerin, E.; Kerr, J.; Adams, M.A.; Sugiyama, T.; Christiansen, L.B.; Schipperijn, J.; Davey, R.; Salvo, D.; Frank, L.D.; et al. Built Environment, Physical Activity, and Obesity: Findings from the International Physical Activity and Environment Network (IPEN) Adult Study. Annu. Rev. Public Health 2020, 41, 119–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, G.L.M.; Kovalskys, I.; Fisberg, M.; Gomez, G.; Rigotti, A.; Sanabria, L.Y.C.; Garcia, M.C.Y.; Torres, R.G.P.; Herrera-Cuenca, M.; Zimberg, I.Z.; et al. Methodological design for the assessment of physical activity and sedentary time in eight Latin American countries—The ELANS study. MethodsX 2020, 7, 100843. [Google Scholar] [CrossRef]
- Fisberg, M.; Kovalskys, I.; Gomez, G.; Rigotti, A.; Cortes, L.Y.; Herrera-Cuenca, M.; Yepez, M.C.; Pareja, R.G.; Guajardo, V.; Zimberg, I.Z.; et al. Latin American Study of Nutrition and Health (ELANS): Rationale and study design. BMC Public Health 2016, 16, 93. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation (WHO). Adolescent Health. Available online: https://www.who.int/southeastasia/activities/adolescent-health (accessed on 1 September 2020).
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U.; Lancet Physical Activity Series Working Group. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Hallal, P.C.; Gomez, L.F.; Parra, D.C.; Lobelo, F.; Mosquera, J.; Florindo, A.A.; Reis, R.S.; Pratt, M.; Sarmiento, O.L. Lessons learned after 10 years of IPAQ use in Brazil and Colombia. J. Phys. Act. Health 2010, 7 (Suppl. 2), S259–S264. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Medina, C.; Barquera, S.; Janssen, I. Validity and reliability of the International Physical Activity Questionnaire among adults in Mexico. Rev. Panam. Salud Publica/Pan Am. J. Public Health 2013, 34, 21–28. [Google Scholar]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual, 3rd ed.; Human Kinetics Press: Champaign, IL, USA, 1988; Volume 24. [Google Scholar]
- World Health Organisation (WHO). WHO Waist Circumference and Waist–Hip Ratio: Report of a WHO Expert Consultation; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Cornier, M.A.; Despres, J.P.; Davis, N.; Grossniklaus, D.A.; Klein, S.; Lamarche, B.; Lopez-Jimenez, F.; Rao, G.; St-Onge, M.P.; Towfighi, A.; et al. Assessing adiposity: A scientific statement from the American Heart Association. Circulation 2011, 124, 1996–2019. [Google Scholar] [CrossRef] [Green Version]
- Onat, A.; Hergenc, G.; Yuksel, H.; Can, G.; Ayhan, E.; Kaya, Z.; Dursunoglu, D. Neck circumference as a measure of central obesity: Associations with metabolic syndrome and obstructive sleep apnea syndrome beyond waist circumference. Clin. Nutr. 2009, 28, 46–51. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. 2019. Available online: http://www.R-project.org/ (accessed on 10 June 2020).
- RStudio Team Studio: Integrated Development for R. 2019. Available online: http://www.rstudio.com/ (accessed on 10 June 2020).
- Laverty, A.A.; Palladino, R.; Lee, J.T.; Millett, C. Associations between active travel and weight, blood pressure and diabetes in six middle income countries: A cross-sectional study in older adults. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, A.; Panter, J.; Suhrcke, M.; Ogilvie, D. Impact of changes in mode of travel to work on changes in body mass index: Evidence from the British Household Panel Survey. J. Epidemiol. Community Health 2015, 69, 753–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steell, L.; Garrido-Mendez, A.; Petermann, F.; Diaz-Martinez, X.; Martinez, M.A.; Leiva, A.M.; Salas-Bravo, C.; Alvarez, C.; Ramirez-Campillo, R.; Cristi-Montero, C.; et al. Active commuting is associated with a lower risk of obesity, diabetes and metabolic syndrome in Chilean adults. J. Public Health (Oxf.) 2018, 40, 508–516. [Google Scholar] [CrossRef] [Green Version]
- Flint, E.; Cummins, S.; Sacker, A. Associations between active commuting, body fat, and body mass index: Population based, cross sectional study in the United Kingdom. BMJ 2014, 349, g4887. [Google Scholar] [CrossRef] [Green Version]
- Wojan, T.R.; Hamrick, K.S. Can Walking or Biking to Work Really Make a Difference? Compact Development, Observed Commuter Choice and Body Mass Index. PLoS ONE 2015, 10, e0130903. [Google Scholar] [CrossRef] [Green Version]
- Luis de Moraes Ferrari, G.; Kovalskys, I.; Fisberg, M.; Gomez, G.; Rigotti, A.; Sanabria, L.Y.C.; Garcia, M.C.Y.; Torres, R.G.P.; Herrera-Cuenca, M.; Zimberg, I.Z.; et al. Association of moderate-to-vigorous physical activity with neck circumference in eight Latin American countries. BMC Public Health 2019, 19, 809. [Google Scholar] [CrossRef] [Green Version]
- Buehler, R.; Pucher, J.; Merom, D.; Bauman, A. Active travel in Germany and the U.S. Contributions of daily walking and cycling to physical activity. Am. J. Prev. Med. 2011, 41, 241–250. [Google Scholar] [CrossRef]
- Eriksson, J.S.; Ekblom, B.; Kallings, L.V.; Hemmingsson, E.; Andersson, G.; Wallin, P.; Ekblom, O.; Ekblom-Bak, E. Active commuting in Swedish workers between 1998 and 2015-Trends, characteristics, and cardiovascular disease risk. Scand. J. Med. Sci. Sports 2020, 30, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, G.L.M.; Kovalskys, I.; Fisberg, M.; Gomez, G.; Rigotti, A.; Sanabria, L.Y.C.; Garcia, M.C.Y.; Torres, R.G.P.; Herrera-Cuenca, M.; Zimberg, I.Z.; et al. Socio-demographic patterning of objectively measured physical activity and sedentary behaviours in eight Latin American countries: Findings from the ELANS study. Eur. J. Sport Sci. 2019, 1–12. [Google Scholar] [CrossRef]
- Schauder, S.A.; Foley, M.C. The relationship between active transportation and health. J. Transp. Health 2015, 2, 343–349. [Google Scholar] [CrossRef]
- Jarrett, J.; Woodcock, J.; Griffiths, U.K.; Chalabi, Z.; Edwards, P.; Roberts, I.; Haines, A. Effect of increasing active travel in urban England and Wales on costs to the National Health Service. Lancet 2012, 379, 2198–2205. [Google Scholar] [CrossRef]
- Flint, E.; Webb, E.; Cummins, S. Change in commute mode and body-mass index: Prospective, longitudinal evidence from UK Biobank. Lancet Public Health 2016, 1, e46–e55. [Google Scholar] [CrossRef] [Green Version]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Ben-Noun, L.L.; Sohar, E.; Laor, A. Neck circumference as a simple screening measure for identifying overweight and obese patients. Obes. Res. 2001, 9, 470–477. [Google Scholar] [CrossRef]
- Alzeidan, R.; Fayed, A.; Hersi, A.S.; Elmorshedy, H. Performance of neck circumference to predict obesity and metabolic syndrome among adult Saudis: A cross-sectional study. BMC Obes. 2019, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, G.L.M.; Kovalskys, I.; Fisberg, M.; Gomez, G.; Rigotti, A.; Sanabria, L.Y.C.; Garcia, M.C.Y.; Torres, R.G.P.; Herrera-Cuenca, M.; Zimberg, I.Z.; et al. Comparison of self-report versus accelerometer—Measured physical activity and sedentary behaviors and their association with body composition in Latin American countries. PLoS ONE 2020, 15, e0232420. [Google Scholar] [CrossRef]
- Luis de Moraes Ferrari, G.; Kovalskys, I.; Fisberg, M.; Gomez, G.; Rigotti, A.; Sanabria, L.Y.C.; Garcia, M.C.Y.; Torres, R.G.P.; Herrera-Cuenca, M.; Zimberg, I.Z.; et al. Original research Socio-demographic patterning of self-reported physical activity and sitting time in Latin American countries: Findings from ELANS. BMC Public Health 2019, 19, 1723. [Google Scholar] [CrossRef] [Green Version]
Variable and Category | Nonactive Transportation (%) (<10 min of Walking and/or Cycling) | Active Transportation (%) (≥10 min of Walking and/or Cycling) |
---|---|---|
n (%) | 3733 (44.8) | 4603 (55.2) |
Country | ||
Argentina | 565 (48.8) *** | 592 (51.2) *** |
Brazil | 889 (48.6) *** | 941 (51.4) *** |
Chile | 353 (44.3) *** | 443 (55.7) *** |
Colombia | 482 (42.7) *** | 646 (57.3) *** |
Costa Rica | 255 (35.7) *** | 460 (64.3) *** |
Ecuador | 195 (28.1) *** | 500 (71.9) *** |
Peru | 390 (39.0) *** | 609 (61.0) *** |
Venezuela | 604 (59.5) *** | 412 (40.5) *** |
Sex | ||
Men | 1744 (44.5) | 2176 (55.5) |
Women | 1989 (45.0) | 2427 (55.0) |
Age (years) | ||
18–34 | 1733 (44.0) | 2203 (56.0) |
35–49 | 1179 (45.9) | 1388 (54.1) |
50–65 | 821 (44.8) | 1012 (55.2) |
Socioeconomic level | ||
Low | 1953 (45.1) | 2375 (54.9) |
Medium | 1428 (44.5) | 1782 (55.5) |
High | 352 (44.1) | 446 (55.9) |
Ethnicity | ||
White | 1442 (49.5) *** | 1470 (50.5) *** |
Mixed | 1764 (42.1) *** | 2429 (57.9) *** |
Other | 341 (41.9) *** | 472 (58.1) *** |
Body mass index (Kg/m2) | ||
<18.5 | 99 (45.8) *** | 117 (54.2) *** |
18.5–24.9 | 1249 (42.7) *** | 1679 (57.3) *** |
25–29.9 | 1305 (43.9) *** | 1665 (56.1) *** |
≥30 | 1079 (48.6) *** | 1143 (51.4) *** |
Waist circumference (cm) | ||
≤102 (M) or 88 (W) | 2408 (43.5) *** | 3132 (56.5) *** |
>102 (M) or 88 (W) | 1324 (47.4) *** | 1472 (52.6) *** |
Neck circumference (cm) | ||
≤39 (M) or 35 (W) | 2430 (43.7) ** | 3132 (56.3) ** |
>39 (M) or 35 (W) | 1303 (47.0) ** | 1471 (53.0) ** |
Country | Body Mass Index (Kg/m2) | Waist Circumference (cm) | Neck Circumference (cm) | |||
---|---|---|---|---|---|---|
r | p-Value | r | p-Value | r | p-Value | |
Full sample | −0.196 | <0.001 | −0.199 | <0.001 | −0.121 | 0.048 |
Argentina | −0.235 | <0.001 | −0.194 | <0.001 | −0.104 | 0.901 |
Brazil | −0.155 | 0.015 | −0.182 | <0.001 | 0.113 | 0.555 |
Chile | −0.184 | 0.015 | −0.200 | 0.004 | 0.128 | 0.413 |
Colombia | −0.227 | <0.001 | −0.195 | <0.001 | −0.129 | 0.328 |
Costa Rica | −0.221 | <0.001 | −0.251 | <0.001 | −0.159 | 0.099 |
Ecuador | −0.138 | 0.302 | −0.158 | 0.118 | −0.114 | 0.702 |
Peru | −0.217 | <0.001 | −0.202 | <0.001 | −0.168 | 0.027 |
Venezuela | −0.231 | <0.001 | −0.244 | <0.001 | −0.184 | 0.006 |
Model 1 | Model 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Country | Body Mass Index (Kg/m2) | Waist Circumference (cm) | Neck Circumference (cm) | Body Mass Index (Kg/m2) | Waist Circumference (cm) | Neck Circumference (cm) | ||||||
β (95% CI) | p-Value | β (95% CI) | p-Value | β (95% CI) | p-Value | β (95% CI) | p-Value | β (95% CI) | p-Value | β (95% CI) | p-Value | |
Full sample | −0.044 (−0.074; −0.014) | 0.004 | −0.077 (−0.150; −0.003) | 0.041 | −0.013 (−0.032; 0.007) | 0.206 | −0.033 (−0.064; −0.002) | 0.036 | −0.037 (−1.126; 0.390) | 0.341 | −0.007 (−0.269; 0.130) | 0.496 |
Argentina | −0.074 (−0.148; 0.006) | 0.059 | −0.036 (−0.232; 0.160) | 0.717 | 0.054 (0.006; 0.098) | 0.023 | −0.046 (−1.254; 0.333) | 0.255 | −0.101 (−1.538; 2.518) | 0.468 | 0.060 (−0.123; 1.082) | 0.064 |
Brazil | −0.030 (−0.101; 0.041) | 0.407 | −0.059 (−0.236; 0.119) | 0.515 | 0.001 (−0.050; 0.053) | 0.969 | −0.038 (−1.116; 0.357) | 0.313 | −0.034 (−2.172; 1.496) | 0.718 | −0.006 (−0.600; 0.474) | 0.818 |
Chile | −0.012 (−0.111; 0.088) | 0.821 | −0.058 (−0.306; 0.190) | 0.646 | 0.009 (−0.049; 0.068) | 0.752 | −0.006 (−1.085; 0.964) | 0.908 | −0.058 (−3.151; 1.986) | 0.656 | 0.014 (−0.469; 0.740) | 0.661 |
Colombia | −0.071 (−0.137; −0.003) | 0.038 | −0.162 (−0.323; 0.007) | 0.053 | −0.025 (−0.065; 0.016) | 0.230 | −0.06 (−1.302; 0.096) | 0.091 | −0.138 (−3.093; 0.327) | 0.113 | −0.012 (−0.536; 0.304) | 0.588 |
Costa Rica | −0.081 (−0.172; 0.012) | 0.083 | −0.129 (−0.352; 0.099) | 0.262 | −0.056 (−0.106; −0.007) | 0.027 | −0.072 (−1.658; 0.216) | 0.131 | −0.097 (−3.271; 1.326) | 0.407 | −0.054 (−1.043; −0.032) | 0.037 |
Ecuador | 0.043 (−0.054; 0.139) | 0.381 | −0.018 (−0.229; 0.192) | 0.868 | −0.025 (−0.085; 0.034) | 0.407 | 0.055 (−0.450; 1.553) | 0.006 | 0.021 (−1.961; 2.380) | 0.850 | −0.020 (−0.82; 0.415) | 0.520 |
Peru | −0.025 (−0.111; 0.061) | 0.563 | −0.088 (−0.292; 0.117) | 0.403 | −0.070 (−0.123; −0.017) | 0.009 | −0.017 (−1.066; 0.718) | 0.702 | −0.051 (−2.636; 1.612) | 0.636 | −0.067 (−1.221; −0.128) | 0.016 |
Venezuela | −0.043 (−0.161; 0.068) | 0.463 | −0.141 (−0.430; 0.113) | 0.308 | −0.058 (−0.134; 0.010) | 0.114 | −0.029 (−1.445; 0.859) | 0.618 | −0.101 (−3.737; 1.720) | 0.468 | −0.049 (−1.215; 0.240) | 0.189 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habinger, J.G.; Chávez, J.L.; Matsudo, S.M.; Kovalskys, I.; Gómez, G.; Rigotti, A.; Sanabria, L.Y.C.; García, M.C.Y.; Pareja, R.G.; Herrera-Cuenca, M.; et al. Active Transportation and Obesity Indicators in Adults from Latin America: ELANS Multi-Country Study. Int. J. Environ. Res. Public Health 2020, 17, 6974. https://doi.org/10.3390/ijerph17196974
Habinger JG, Chávez JL, Matsudo SM, Kovalskys I, Gómez G, Rigotti A, Sanabria LYC, García MCY, Pareja RG, Herrera-Cuenca M, et al. Active Transportation and Obesity Indicators in Adults from Latin America: ELANS Multi-Country Study. International Journal of Environmental Research and Public Health. 2020; 17(19):6974. https://doi.org/10.3390/ijerph17196974
Chicago/Turabian StyleHabinger, Juan Guzmán, Javiera Lobos Chávez, Sandra Mahecha Matsudo, Irina Kovalskys, Georgina Gómez, Attilio Rigotti, Lilia Yadira Cortés Sanabria, Martha Cecilia Yépez García, Rossina G. Pareja, Marianella Herrera-Cuenca, and et al. 2020. "Active Transportation and Obesity Indicators in Adults from Latin America: ELANS Multi-Country Study" International Journal of Environmental Research and Public Health 17, no. 19: 6974. https://doi.org/10.3390/ijerph17196974