Are the Water Quality Improvement Measures of China’s South-to-North Water Diversion Project Effective? A Case Study of Xuzhou Section in the East Route
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Analysis Methods
2.3.1. Comprehensive Water Quality Identification Index (CWQII)
2.3.2. Trend Analysis Methods
2.3.3. Multivariate Statistical Methods
3. Results and Discussion
3.1. Characteristics of Water Quality Parameters in Xuzhou Section
3.2. Water Quality Assessment by Using CWQII
3.3. Trend Analysis of Water Quality in Xuzhou Section
3.4. Identification of Influencing Factors of Water Quality Changes in Xuzhou Section
4. Conclusions
- The water quality in the study area had greatly improved during the monitoring period assessed by CWQII and basically reached Class III of China’s Environmental Quality Standard for Surface Water (GB3838-2002) from 2011 on. In terms of seasonal variation, the water quality in wet season (2.75) was worse than that in dry season (2.66), mainly due to the more serious agricultural nonpoint source pollution in wet season.
- The trend analysis showed that the concentrations of NH3-N had a most obvious decline among the five parameters with four sites showing significant positive trends. However, the concentrations of TP showed significant upward trends in three sites. For each monitoring site, Lijiqiao (S3) had the most obvious improvement in water quality, with all five parameters showing significant positive trends during the 11 years. In contrast, Linjiaba (S1) and Shazhuangqiao (S2) had little progress in water quality. The positive abrupt change points of time series occurred in 2009-2011, and they all belonged to the time series of NH3-N.
- The identification of influencing factors of water quality changes found that the urbanization factor, the closure of factories with substandard emissions, and precipitation were the major influencing factors of most water quality parameters, especially CODMn and NH3-N. The concentrations of TP were irrelevant with anthropogenic activities and meteorological factors, and were assumed to be primarily derived from the release of endogenous phosphorus from the sediments rather than from pollutants discharged into the water. Overall, the water quality improvement measures in Xuzhou section had been effective.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhuang, W. Eco-environmental impact of inter-basin water transfer projects: A review. Environ. Sci. Pollut. Res. 2016, 23, 12867–12879. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.-Y.; Zuo, J.; Zillante, G. Transformation of water resource management: A case study of the South-to-North Water Diversion project. J. Clean. Prod. 2017, 163, 136–145. [Google Scholar] [CrossRef]
- Kattel, G.R.; Shang, W.; Wang, Z.; Langford, J. China’s South-to-North Water Diversion Project Empowers Sustainable Water Resources System in the North. Sustainability 2019, 11, 3735. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Chen, Y.; Xia, W.; Qu, X.; Yuan, H.; Xie, S.; Lin, L.-S. Eutrophication and heavy metal pollution patterns in the water suppling lakes of China’s south-to-north water diversion project. Sci. Total Environ. 2020, 711, 134543. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, W.; Zhang, W.; Wang, C.; Wang, P. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China. Water Res. 2016, 89, 9–19. [Google Scholar] [CrossRef]
- Rogers, S.; Chen, D.; Jiang, H.; Rutherfurd, I.; Wang, M.; Webber, M.; Crow-Miller, B.; Barnett, J.; Finlayson, B.; Jiang, M.; et al. An integrated assessment of China’s South-North Water Transfer Project. Geogr. Res. 2020, 58, 49–63. [Google Scholar] [CrossRef]
- Zheng, X.; Han, B.; Thavamani, P.; Duan, L.; Naidu, R. Composition, source identification and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments of the Subei Grand Canal, China. Environ. Earth Sci. 2015, 74, 2669–2677. [Google Scholar] [CrossRef]
- Fang, A.; Dong, J.; An, Y. Distribution Characteristics and Pollution Assessment of Soil Heavy Metals under Different Land-Use Types in Xuzhou City, China. Sustainability 2019, 11, 1832. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.K.; Ojha, C.S.P.; Mijic, A.; Buytaert, W.; Pathak, S.; Garg, R.D.; Shukla, S. Population growth, land use and land cover transformations, and water quality nexus in the Upper Ganga River basin. Hydrol. Earth Syst. Sci. 2018, 22, 4745–4770. [Google Scholar] [CrossRef] [Green Version]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef]
- Gao, Q.; Li, Y.; Cheng, Q.; Yu, M.; Hu, B.; Wang, Z.; Yu, Z. Analysis and assessment of the nutrients, biochemical indexes and heavy metals in the Three Gorges Reservoir, China, from 2008 to 2013. Water Res. 2016, 92, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cui, H.; Liu, X.; Wu, Q.; Zhang, H. Water pollution characteristics and analysis of Chaohu Lake basin by using different assessment methods. Environ. Sci. Pollut. Res. 2020, 27, 18168–18181. [Google Scholar] [CrossRef] [PubMed]
- Ban, X.; Wu, Q.Z.; Pan, B.Z.; Du, Y.; Feng, Q. Application of Composite Water Quality Identification Index on the water quality evaluation in spatial and temporal variations: A case study in Honghu Lake, China. Environ. Monit. Assess. 2014, 186, 4237–4247. [Google Scholar] [CrossRef] [PubMed]
- Ban, X.; Yu, C.; Pan, B.; Ren, X.; Du, Y.; Zhang, L. Application of the CWQII method and a 2D water quality model to assess diversion schemes for East Lake (Donghu), Wuhan, China. Lake Reserv. Manag. 2014, 30, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ban, X.; Li, E.; Wang, Z.; Xiao, F. Evaluating ecological health in the middle-lower reaches of the Hanjiang River with cascade reservoirs using the Planktonic index of biotic integrity (P-IBI). Ecol. Indic. 2020, 114, 106282. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Chen, J.; Lyu, Y.; Zhao, Z.; Liu, H.; Zhao, H.; Li, Z. Using the multidimensional synthesis methods with non-parameter test, multiple time scales analysis to assess water quality trend and its characteristics over the past 25 years in the Fuxian Lake, China. Sci. Total Environ. 2019, 655, 242–254. [Google Scholar] [CrossRef]
- Zhao, K.; Wu, H.; Chen, W.; Sun, W.; Zhang, H.; Duan, W.; Chen, W.; He, B. Impacts of Landscapes on Water Quality in A Typical Headwater Catchment, Southeastern China. Sustainability 2020, 12, 721. [Google Scholar] [CrossRef] [Green Version]
- Scheili, A.; Delpla, I.; Sadiq, R.; Rodriguez, M.J. Impact of Raw Water Quality and Climate Factors on the Variability of Drinking Water Quality in Small Systems. Water Resour. Manag. 2016, 30, 2703–2718. [Google Scholar] [CrossRef]
- Zhang, B.-L.; Cui, B.-H.; Zhang, S.-M.; Wu, Q.-Y.; Yao, L. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China. Environ. Sci. Pollut. Res. 2018, 25, 19101–19113. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, Y.; Zhang, W.; Zhang, Y.; Sun, C.; Marhaba, T. Phosphorus, organic matter and nitrogen distribution characteristics of the surface sediments in Nansi Lake, China. Environ. Earth Sci. 2015, 73, 5669–5675. [Google Scholar] [CrossRef]
- Li, S.; Guo, W.; Mitchell, B. Evaluation of water quality and management of Hongze Lake and Gaoyou Lake along the Grand Canal in Eastern China. Environ. Monit. Assess. 2011, 176, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Lu, X.; Pei, H.; Hu, W.; Xie, J. Seasonal dynamics of phytoplankton and its relationship with the environmental factors in Dongping Lake, China. Environ. Monit. Assess. 2013, 185, 2627–2645. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Han, B.; Du, J. Water Quality of Xuzhou Block of the South to North Water Transfer Project and Countermeasures. Soils 2007, 39, 483–487. (In Chinese) [Google Scholar]
- Xuzhou Statistic Bureau. Xuzhou Statistical Yearbook; China Statistics Press: Beijing, China, 2005–2015. [Google Scholar]
- Xu, Z. Comprehensive Water Quality Identification Index for EnvironmentalQuality Assessment of Surface Water. J. Tongji Univ. 2005, 33, 482–488. (In Chinese) [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Bae, M.-J.; Kim, J.-S.; Park, Y.-S. Evaluation of Changes in Effluent Quality from Industrial Complexes on the Korean Nationwide Scale Using a Self-Organizing Map. Int. J. Environ. Res. Public Health 2012, 9, 1182–1200. [Google Scholar] [CrossRef] [PubMed]
- Bouza-Deano, R.; Ternero-Rodriguez, M.; Fernandez-Espinosa, A.J. Trend study and assessment of surface water quality in the Ebro River (Spain). J. Hydrol. 2008, 361, 227–239. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Ye, M.; Zhang, F.; Zhu, M. Multivariate statistical and trend analyses of surface water quality in the central Indian River Lagoon area, Florida. Environ. Earth Sci. 2018, 77, 127. [Google Scholar] [CrossRef]
- Some’e, B.S.; Ezani, A.; Tabari, H. Spatiotemporal trends and change point of precipitation in Iran. Atmos. Res. 2012, 113, 1–12. [Google Scholar]
- Sayemuzzaman, M.; Jha, M.K.; Mekonnen, A. Spatio-temporal long-term (1950–2009) temperature trend analysis in North Carolina, United States. Theor. Appl. Climatol. 2015, 120, 159–171. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Nong, X.; Shao, D.; Xiao, Y.; Zhong, H. Spatio-Temporal Characterization Analysis and Water Quality Assessment of the South-to-North Water Diversion Project of China. Int. J. Environ. Res. Public Health 2019, 16, 2227. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.I.; Pires, J.C.M.; Figueiredo, S.A.; Boaventura, R.A.R. Multiple linear and principal component regressions for modelling ecotoxicity bioassay response. Environ. Technol. 2014, 35, 945–955. [Google Scholar] [CrossRef]
- CAEP. Introduction of Plan of Sewage Treatment for the East Route of the South-to-North Water Transfer Project. China Water Resour. 2003, 2, 19–22. (In Chinese) [Google Scholar]
- Ma, L.; He, F.; Sun, J.; Huang, T.; Xu, D.; Zhang, Y.; Wu, Z. Effects of flow speed and circulation interval on water quality and zooplankton in a pond-ditch circulation system. Environ. Sci. Pollut. Res. 2015, 22, 10166–10178. [Google Scholar] [CrossRef]
- Wang, X.; Han, J.; Xu, L.; Zhang, Q. Spatial and seasonal variations of the contamination within water body of the Grand Canal, China. Environ. Pollut. 2010, 158, 1513–1520. [Google Scholar]
- Kaste, O.; Wright, R.F.; Barkved, L.J.; Bjerkeng, B.; Engen-Skaugen, T.; Magnusson, J.; Saelthun, N.R. Linked models to assess the impacts of climate change on nitrogen in a Norwegian river basin and fjord system. Sci. Total Environ. 2006, 365, 200–222. [Google Scholar] [CrossRef]
- Yang, Z.; Feng, J.; Niu, J.; Shen, Z. Release of polycyclic aromatic hydrocarbons from Yangtze River sediment cores during periods of simulated resuspension. Environ. Pollut. 2008, 155, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Mu, X.; Zhao, G.; Gao, P.; Sun, W.; Yu, Q. Changes in Stream Flow and Their Relationships with Climatic Variations and Anthropogenic Activities in the Poyang Lake Basin, China. Water 2016, 8, 564. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; He, B.; Nover, D.; Duan, W.; Luo, C.; Zhao, K.; Chen, W. Spatiotemporal patterns and source attribution of nitrogen pollution in a typical headwater agricultural watershed in Southeastern China. Environ. Sci. Pollut. Res. 2018, 25, 2756–2773. [Google Scholar] [CrossRef] [PubMed]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Struyf, E.; Van Damme, S.; Meire, P. Possible effects of climate change on estuarine nutrient fluxes: A case study in the highly nutrified Schelde estuary (Belgium, The Netherlands). Estuar. Coast. Shelf Sci. 2004, 60, 649–661. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, R.; Gershunov, A.; Benmarhnia, T. Atmospheric rivers impact California’s coastal water quality via extreme precipitation. Sci. Total Environ. 2019, 671, 488–494. [Google Scholar] [CrossRef]
- Li, C.; Zheng, X.; Zhao, F.; Wang, X.; Cai, Y.; Zhang, N. Effects of Urban Non-Point Source Pollution from Baoding City on Baiyangdian Lake, China. Water 2017, 9, 249. [Google Scholar] [CrossRef]
- Delpla, I.; Jung, A.V.; Baures, E.; Clement, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef]
- Komatsu, E.; Fukushima, T.; Harasawa, H. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecol. Model. 2007, 209, 351–366. [Google Scholar] [CrossRef]
- Grilo, T.F.; Cardoso, P.G.; Dolbeth, M.; Bordalo, M.D.; Pardal, M.A. Effects of extreme climate events on the macrobenthic communities’ structure and functioning of a temperate estuary. Mar. Pollut. Bull. 2011, 62, 303–311. [Google Scholar] [CrossRef]
- Zhu, M.; Zhu, G.; Li, W.; Zhang, Y.; Zhao, L.; Gu, Z. Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake (Taihu, China) using profiled SMT fractional analysis. Environ. Pollut. 2013, 173, 216–223. [Google Scholar] [CrossRef]
- Gainswin, B.E.; House, W.A.; Leadbeater, B.S.C.; Armitage, P.D.; Patten, J. The effects of sediment size fraction and associated algal biofilms on the kinetics of phosphorus release. Sci. Total Environ. 2006, 360, 142–157. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.C.; Jiang, X.; Yao, Y.; Li, L.H.; Wu, F.C. Effects of light and oxygen on the uptake and distribution of phosphorus at the sediment-water interface. Sci. Total Environ. 2006, 357, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Qin, B.; Brookes, J.D.; Yan, W.; Ji, X.; Feng, J. Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective. Sci. Total Environ. 2019, 650, 1554–1565. [Google Scholar] [CrossRef] [PubMed]
- Ongley, E.D.; Zhang, X.; Yu, T. Current status of agricultural and rural non-point source Pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Liao, Q.; Hong, Q.; Gong, Y. An overview of research on agricultural non-point source pollution modelling in China. Sep. Purif. Technol. 2012, 84, 104–111. [Google Scholar] [CrossRef]
- Wu, M.; Tang, X.; Li, Q.; Yang, W.; Jin, F.; Tang, M.; Scholz, M. Review of Ecological Engineering Solutions for Rural Non-Point Source Water Pollution Control in Hubei Province, China. Water Air Soil Pollut. 2013, 224, 1561. [Google Scholar] [CrossRef]
- Zamora, S.; Luis Marin-Muniz, J.; Nakase-Rodriguez, C.; Fernandez-Lambert, G.; Sandoval, L. Wastewater Treatment by Constructed Wetland Eco-Technology: Influence of Mineral and Plastic Materials as Filter Media and Tropical Ornamental Plants. Water 2019, 11, 2344. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.F.; Wei, X.Y.; Xu, X.P.; Zhang, Y.; Li, J.C.; Wan, J. Characteristics of Dissolved Organic Nitrogen in the Sediments of Six Water Sources in Taihu Lake, China. Int. J. Environ. Res. Public Health 2019, 16, 929. [Google Scholar] [CrossRef] [Green Version]
Site | Index | DO | CODMn | BOD5 | NH3-N | TP | CWQII |
---|---|---|---|---|---|---|---|
S1 | Z | −0.311 | 0.779 | 1.246 | 0.311 | 2.180(−) * | 1.868 |
Q | −0.033 | 0.042 | 0.074 | 0.002 | 0.006(−) * | 0.043 | |
S2 | Z | 0 | −1.868 | 0.779 | −0.311 | 2.024(−) * | 0.623 |
Q | −0.002 | −0.131 | 0.060 | −0.006 | 0.009(−) * | 0.018 | |
S3 | Z | 2.491(+) * | −3.114(+) ** | −2.491(+) * | −2.803(+) ** | −2.180(+) * | −2.803(+) ** |
Q | 0.162(+) * | −0.150(+) ** | −0.100(+) * | −0.052(+) ** | −0.005(+) * | −0.104 ** | |
S4 | Z | −0.156 | −0.623 | −1.557 | −2.336(+) * | −2.024(+) * | −1.401 |
Q | −0.008 | −0.043 | −0.056 | −0.034(+) * | −0.013(+) * | −0.026 | |
S5 | Z | 0.779 | −2.647(+) ** | −3.425(+) ** | −2.180(+) * | 2.647(−) ** | −2.413(+) * |
Q | 0.025 | −0.088(+) ** | −0.118(+) ** | −0.033(+) * | 0.004(−) ** | −0.028(+) * | |
S6 | Z | 1.713 | −2.336(+) * | 0.156 | −3.114(+) ** | −0.311 | −2.336(+) * |
Q | 0.033 | −0.177(+) * | 0.046 | −0.051(+) ** | −0.001 | −0.042(+) * |
Site | DO | CODMn | BOD5 | NH3-N | TP | CWQII |
---|---|---|---|---|---|---|
S1 | -- | -- | -- | -- | 2008 (+) | -- |
S2 | -- | -- | -- | -- | 2008 (+) * | -- |
S3 | 2008 (+) | 2011 (−) | 2008 (−) | 2011 (−) * | 2008 (−) | 2008 (−) |
S4 | -- | -- | -- | 2009 (−) * | 2010 (−) | -- |
S5 | -- | 2010 (−) | 2008 (−) | 2010 (−) * | 2010 (+) | 2010 (−) |
S6 | -- | 2009 (−) | -- | 2012 (−) | -- | 2008 (−) |
Variables | PC1 | PC2 |
---|---|---|
Pesticide application (Pes) | −0.902 | |
Chemical fertilizer application (CF) | −0.898 | |
Urbanization rate (UR) | 0.868 | |
Domestic wastewater discharge (DW) | 0.838 | |
Forest land (FL) | −0.758 | |
Wastewater treatment capacity (WTC) | 0.746 | |
Wet season precipitation (WP) | −0.879 | |
Number of factories (Fac) | 0.810 | |
Industrial wastewater discharge (IW) | 0.800 | |
Eigenvalues | 6.550 | 1.510 |
% of Variance | 72.782 | 16.783 |
Cumulative % | 72.782 | 89.565 |
Parameter | Standardized Regression Coefficient | R-Squared | |
---|---|---|---|
PC1 | PC2 | ||
DO | 0.250 | 0.664 * | 0.504 + |
CODMn | −0.638 ** | −0.628 ** | 0.802 ** |
BOD5 | −0.336 + | −0.556 * | 0.422 + |
NH3-N | −0.740 ** | −0.625 ** | 0.938 ** |
TP | 0.164 | −0.234 | 0.082 |
CWQII | −0.553 * | −0.661 ** | 0.744 ** |
Region | Section | Period | CFP | PP | DWR | IWR | Fac |
---|---|---|---|---|---|---|---|
Tongshan District | First half | 0.990 | 0.013 | 80.6% | 98.9% | 535 | |
S1 | Second half | 0.939 | 0.011 | 82.6% | 99.2% | 463 | |
Change rate | −5.2% | −15.4% | +2.0% | +0.3% | −13.5% | ||
Feng County | First half | 1.549 | 0.033 | 78.4% | 95.2% | 244 | |
S2 | Second half | 1.489 | 0.027 | 83.2% | 97.6% | 235 | |
Change rate | −3.9% | −18.2% | +4.8% | +2.4% | −3.7% | ||
Pei County | First half | 1.423 | 0.025 | 83.4% | 97.8% | 710 | |
S3 | Second half | 1.310 | 0.021 | 88.6% | 98.9% | 464 | |
Change rate | −7.9% | −16.0% | +5.2% | +1.1% | −34.6% | ||
Pizhou City | First half | 1.384 | 0.025 | 67.5% | 96.2% | 645 | |
S4, S6 | Second half | 1.343 | 0.021 | 72.1% | 97.6% | 539 | |
Change rate | −3.0% | −16.0% | +4.6% | +1.4% | −16.4% | ||
Suining County | First half | 1.079 | 0.015 | 73.2% | 99.0% | 314 | |
S5 | Second half | 1.024 | 0.012 | 78.6% | 99.4% | 271 | |
Change rate | −5.1% | −20.0% | +5.4% | +0.4% | −13.7% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Yuan, Y.; Sun, T.; Wang, Y.; Xie, Y.; Fan, Z. Are the Water Quality Improvement Measures of China’s South-to-North Water Diversion Project Effective? A Case Study of Xuzhou Section in the East Route. Int. J. Environ. Res. Public Health 2020, 17, 6388. https://doi.org/10.3390/ijerph17176388
Pan Y, Yuan Y, Sun T, Wang Y, Xie Y, Fan Z. Are the Water Quality Improvement Measures of China’s South-to-North Water Diversion Project Effective? A Case Study of Xuzhou Section in the East Route. International Journal of Environmental Research and Public Health. 2020; 17(17):6388. https://doi.org/10.3390/ijerph17176388
Chicago/Turabian StylePan, Ye, Yuan Yuan, Ting Sun, Yuxin Wang, Yujing Xie, and Zhengqiu Fan. 2020. "Are the Water Quality Improvement Measures of China’s South-to-North Water Diversion Project Effective? A Case Study of Xuzhou Section in the East Route" International Journal of Environmental Research and Public Health 17, no. 17: 6388. https://doi.org/10.3390/ijerph17176388
APA StylePan, Y., Yuan, Y., Sun, T., Wang, Y., Xie, Y., & Fan, Z. (2020). Are the Water Quality Improvement Measures of China’s South-to-North Water Diversion Project Effective? A Case Study of Xuzhou Section in the East Route. International Journal of Environmental Research and Public Health, 17(17), 6388. https://doi.org/10.3390/ijerph17176388