Physical Fitness, Selective Attention and Academic Performance in a Pre-Adolescent Sample
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments and Measures
2.3. Procedure
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ekelund, U.; Luan, J.; Sherar, L.B.; Esliger, D.W.; Griew, P.; Cooper, A. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. J. Am. Med. Assoc. 2012, 307, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Morton, K.L.; Atkin, A.J.; Corder, K.; Suhrcke, M.; Van Sluijs, E.M.F. The school environment and adolescent physical activity and sedentary behaviour: A mixed-studies systematic review. Obes. Rev. 2016, 17, 142–158. [Google Scholar] [CrossRef] [PubMed]
- Zylke, J.; Bauchner, H. The unrelenting challenge of obesity. J. Am. Med. Assoc. 2016, 315, 2277–2278. [Google Scholar] [CrossRef] [PubMed]
- Herold, F.; Müller, P.; Gronwald, T.; Müller, N.G. Dose-response matters!—A perspective on the exercise prescription in exercise-cognition research. Front. Psychol. 2019, 10, 2338. [Google Scholar] [CrossRef]
- Hayes, G.; Dowd, K.P.; MacDonncha, C.; Donnelly, A.E. Tracking of physical activity and sedentary behavior from adolescence to young adulthood: A systematic literature review. J. Adolesc. Health 2019, 65, 446–454. [Google Scholar] [CrossRef]
- Herold, F.; Törpel, A.; Hamacher, D.; Budde, H.; Gronwald, T. A discussion on different approaches for prescribing physical interventions—Four roads lead to Rome, but which one should we choose? J. Pers. Med. 2020, 10, 55. [Google Scholar] [CrossRef]
- Westfall, D.R.; Gejl, A.K.; Tarp, J.; Wedderkopp, N.; Kramer, A.F.; Hillman, C.H.; Bugge, A. Associations between aerobic fitness and cognitive control in adolescents. Front. Psychol. 2018, 9, 1298. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, Y.; Huang, T. Effects of chronic exercise interventions on executive function among children and adolescents: A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1397–1404. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.D.; Szabo-Reed, A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef]
- Li, J.W.; O’Connor, H.; O’Dwyer, N.; Orr, R. The effect of acute and chronic exercise on cognitive function and academic performance in adolescents: A systematic review. J. Sci. Med. Sport 2017, 20, 841–848. [Google Scholar] [CrossRef]
- Scudder, M.R.; Federmeier, K.D.; Raine, L.B.; Direito, A.; Boyd, J.K. The association between aerobic fitness and language processing in children: Implications for academic achievement. Brain Cogn. 2014, 87, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Verburgh, L.; Königs, M.; Scherder, E.J.; Oosterlaan, J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. Br. J. Sports Med. 2014, 48, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.R.; Cooper, R.; Craig, L.; Elliott, J.; Kuh, D.; Richards, M.; Deary, I.J. Cognitive function in childhood and lifetime cognitive change in relation to mental wellbeing in four cohorts of older people. PLoS ONE 2012, 7, e44860. [Google Scholar] [CrossRef] [PubMed]
- Lubans, D.; Richards, J.; Hillman, C.; Faulkner, G.; Beauchamp, M.N.; Kelly, P.; Smith, J.; Raine, L.; Biddle, S. Physical Activity for Cognitive and Mental Health in Youth: A Systematic Review of Mechanisms. Pediatrics 2016, 138, e20161642. [Google Scholar] [CrossRef] [PubMed]
- Ludyga, S.; Herrmann, C.; Mücke, M.; Andrä, C.; Brand, S.; Pühse, U.; Gerber, M. Contingent negative variation and working memory maintenance in adolescents with low and high motor competencies. Neural Plast. 2018, 1–9. [Google Scholar] [CrossRef]
- Boecker, H.; Drzezga, A. A perspective on the future role of brain pet imaging in exercise science. Neuroimage 2016, 131, 73–80. [Google Scholar] [CrossRef]
- Chen, A.G.; Zhu, L.N.; Yan, J.; Yin, H.C. Neural basis of working memory enhancement after acute aerobic exercise: fMRI study of preadolescent children. Front. Psychol. 2016, 7, 1804. [Google Scholar] [CrossRef]
- Gutmann, B.; Zimmer, P.; Hülsdünker, T.; Lefebvre, J.; Binnebößel, S.; Oberste, M.; Bloch, W.; Strüder, H.K.; Mierau, A. The effects of exercise intensity and post-exercise recovery time on cortical activation as revealed by EEG alpha peak requency. Neurosci. Lett. 2018, 668, 159–163. [Google Scholar] [CrossRef]
- Huang, P.; Fang, R.; Li, B.Y.; Chen, S.D. Exercise-related changes of networks in aging and mild cognitive impairment brain. Front. Aging Neurosci. 2016, 8, 47. [Google Scholar] [CrossRef]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Müller, N.G. Applications of functional near-infrared spectroscopy (fnirs) neuroimaging in exercise-cognition science: A systematic, methodology-focused review. J. Clin. Med. 2018, 7, 466. [Google Scholar] [CrossRef]
- Lloyd-Fox, S.; Blasi, A.; Elwell, C.E. Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 2010, 34, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Jonasson, L.S.; Nyberg, L.; Kramer, A.F.; Lundquist, A.; Riklund, K.; Boraxbekk, C.J. Aerobic exercise intervention, cognitive performance, and brain structure: Results from the physical influences on brain in aging (PHIBRA) study. Front. Aging Neurosci. 2017, 8, 336. [Google Scholar] [CrossRef] [PubMed]
- Schwarb, H.; Johnson, C.L.; Daugherty, A.M.; Hillman, C.H.; Kramer, A.F.; Cohen, N.J.; Barbey, A.K. Aerobic fitness, hippocampal viscoelasticity, and relational memory performance. Neuroimage 2017, 153, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Pontifex, M.M.; Colby, J.B.; Sowell, E.R.; Nagel, B.J. White matter connectivity and aerobic fitness in male adolescents. Dev. Cogn. Neurosci. 2014, 7, 65–75. [Google Scholar] [CrossRef]
- Pontifex, M.B.; Raine, L.B.; Johnson, C.R.; Chaddock, L.; Voss, M.W.; Cohen, N.J.; Kramer, A.F.; Hillman, C.H. Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. J. Cogn. Neurosci. 2011, 23, 1332–1345. [Google Scholar] [CrossRef]
- Reloba-Martínez, S.; Reigal-Garrido, R.E.; Hernández-Mendo, A.; Martínez-López, E.J.; Martín-Tamayo, I.; Chirosa-Ríos, L.J. Effects of vigorous extracurricular physical exercise on the attention of schoolchildren. Rev. Psicol. Deporte 2017, 26, 29–36. [Google Scholar]
- Mora-Gonzalez, J.; Esteban-Cornejo, I.; Solis-Urra, P.; Migueles, J.H.; Cadenas-Sanchez, C.; Molina-Garcia, P.; Rodriguez-Ayllon, M.; Hillman, C.H.; Catena, A.; Pontifex, M.B.; et al. Fitness, physical activity, sedentary time, inhibitory control, and neuroelectric activity in children with overweight or obesity: The ActiveBrains project. Psychophysiology 2020, 57, e13579. [Google Scholar] [CrossRef]
- Khan, N.A.; Hillman, C.H. The relation of childhood physical activity and aerobic fitness to brain function and cognition: A review. Pediatr. Exerc. Sci. 2014, 26, 138–146. [Google Scholar] [CrossRef]
- Verret, C.; Guay, M.C.; Berthiaume, C.; Gardiner, P.; Béliveau, L. A physical activity program improves behavior and cognitive functions in children with ADHD: An exploratory study. J. Atten. Disord. 2012, 16, 71–80. [Google Scholar] [CrossRef]
- Vanhelst, J.; Béghin, L.; Duhamel, A.; Manios, Y.; Molnar, D.; De Henauw, S.; Moreno, L.A.; Ortega, F.B.; Sjöström, M.; Widhalm, K.; et al. Physical activity is associated with attention capacity in adolescents. J. Pediatr. 2016, 168, 126–131. [Google Scholar] [CrossRef]
- Cserjési, R.; Molnár, D.; Luminet, O.; Lénárd, L. Is there any relationship between obesity and mental flexibility in children? Appetite 2007, 49, 675–678. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, A.F.M.; Medeiros, A.R.; Del Rosso, S.; Stults-Kolehmainen, M.; Boullosa, D.A. The influence of exercise and physical fitness status on attention: A systematic review. Int. Rev. Sport. Exerc. Psychol. 2019, 12, 202–234. [Google Scholar] [CrossRef]
- Hillman, C.H.; Kamijo, K.; Scudder, M. A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Prev. Med. 2011, 52, 21–28. [Google Scholar] [CrossRef]
- Pérez-Lobato, R.; Reigal, R.E.; Hernández-Mendo, A. Relationships between physical practice, physical condition, and attention in a sample of adolescents. Rev. Psicol. Deporte 2016, 25, 179–186. [Google Scholar]
- Perlman, S.B.; Hein, T.C.; Stepp, S.D. Emotional reactivity and its impact on neural circuitry for attention–emotion interaction in childhood and adolescence. Dev. Cogn. Neurosci. 2014, 8, 100–109. [Google Scholar] [CrossRef]
- Rabiner, D.L.; Godwin, J.; Dodge, K.A. Predicting academic achievement and attainment: The contribution of early academic skills, attention difficulties, and social competence. Sch. Psychol. Rev. 2016, 45, 250–267. [Google Scholar] [CrossRef]
- Giuliano, R.J.; Karns, C.M.; Neville, H.J.; Hillyard, S.A. Early auditory evoked potential is modulated by selective attention and related to individual differences in visual working memory capacity. J. Cogn. Neurosci. 2014, 26, 2682–2690. [Google Scholar] [CrossRef]
- Cadenas-Sanchez, C.; Vanhelst, J.; Ruiz, J.R.; Castillo-Gualda, R.; Libuda, L.; Labayen, I.; De Miguel-Etayo, P.; Marcos, A.; Molnár, E.; Catena, A.; et al. Fitness and fatness in relation with attention capacity in European adolescents: The HELENA study. J. Sci. Med. Sport 2017, 20, 373–379. [Google Scholar] [CrossRef]
- Reigal, R.E.; Moral-Campillo, L.; Juárez-Ruiz de Mier, R.; Morillo-Baro, J.P.; Morales-Sánchez, V.; Pastrana, J.L.; Hernández-Mendo, A. Physical fitness level is related to attention and concentration in adolescents. Front. Psychol. 2020, 11, 110. [Google Scholar] [CrossRef]
- Reigal, R.E.; Moral-Campillo, L.; Morillo-Baro, J.P.; Juárez-Ruiz de Mier, R.; Hernández-Mendo, A.; Morales-Sánchez, V. Physical exercise, fitness, cognitive functioning, and psychosocial variables in an adolescent sample. Int. J. Environ. Res. Public Health 2020, 17, 1100. [Google Scholar] [CrossRef]
- Álvarez-Bueno, C.; Hillman, C.H.; Cavero-Redondo, I.; Sánchez-López, M.; Pozuelo-Carrascosa, D.P.; Martínez-Vizcaíno, V. Aerobic fitness and academic achievement: A systematic review and meta-analysis. J. Sports Sci. 2020, 1–8. [Google Scholar] [CrossRef]
- Álvarez-Bueno, C.; Pesce, C.; Cavero-Redondo, I.; Sánchez-López, M.; Garrido-Miguel, M.; Martínez-Vizcaíno, V. Academic achievement and physical activity: A meta-analysis. Pediatrics 2017, 140, e20171498. [Google Scholar] [CrossRef] [PubMed]
- De Greeff, J.W.; Bosker, R.J.; Oosterlaan, J.; Visscher, C.; Hartman, E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. J. Sci. Med. Sport 2017, 21, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.S.; Saliasi, E.; van den Berg, V.; Uijtdewilligen, L.; de Groot, R.H.M.; Jolles, J.; Andersen, L.B.; Bailey, R.; Chang, Y.-K.; Diamond, A.; et al. Effects of physical activity interventions on cognitive and academic performance in children and adolescents: A novel combination of a systematic review and recommendations from an expert panel. Br. J. Sports Med. 2018, 53, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Brickenkamp, R. D-2. Attention Task, Madrid; TEA Ediciones: Madrid, Spain, 2001. [Google Scholar]
- Eurofit. Handbook for the Eurofit Test on Physical Fitness; Council of Europe: Strasbourg, France, 1993. [Google Scholar]
- Balsalobre-Fernández, C.; Glaister, M.; Lockey, R.A. The validity and reliability of an iPhone app for measuring vertical jump performance. J. Sports Sci. 2015, 33, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
- Romero-Franco, N. Sprint performance and mechanical outputs computed with an iPhone app: Comparison with existing reference methods. Eur. J. Sport Sci. 2017, 17, 386–392. [Google Scholar] [CrossRef]
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Suarez-Arrones, L.; Arjol-Serrano, J.L.; Casajús, J.A.; Mendez-Villanueva, A. Validity of the V-cut test for young basketball players. Int. J. Sports Med. 2015, 94, 893–899. [Google Scholar] [CrossRef]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Am. Med. Assoc. 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Brooks/Cole Publishing Company: Pacific Grove, CA, USA, 1996. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1998. [Google Scholar]
- Pardo, A.; Ruiz, M.A. Data Analysis with SPSS 13 Base; McGraw Hill: Madrid, Spain, 2005. [Google Scholar]
- Kao, S.C.; Drollette, E.S.; Scudder, M.R.; Raine, L.B.; Westfall, D.R.; Pontifex, M.B.; Hillman, C.H. Aerobic fitness is associated with cognitive control strategy in preadolescent children. J. Motor Behav. 2017, 49, 150–162. [Google Scholar] [CrossRef]
- Chaddock, L.; Erickson, K.I.; Prakash, R.S.; VanPatter, M.; Voss, M.W.; Pontifex, M.B.; Raine, L.B.; Hillman, C.H.; Kramer, A.F. Basal ganglia volume is associated with aerobic fitness in preadolescent children. Dev. Neurosci. 2010, 32, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Chaddock-Heyman, L.; Erickson, K.I.; Holtrop, J.L.; Voss, M.W.; Pontifex, M.B.; Raine, L.B.; Hillman, C.H.; Kramer, A.F. Aerobic fitness is associated with greater white matter integrity in children. Front. Hum. Neurosci. 2014, 8, 584. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Cornejo, I.; Cadenas-Sanchez, C.; Contreras-Rodriguez, O.; Verdejo-Roman, J.; Mora-Gonzalez, J.; Migueles, J.H.; Henriksson, P.; Davis, C.L.; Verdejo-García, A.; Catena, A.; et al. A whole brain volumetric approach in overweight/obese children: Examining the association with different physical fitness components and academic performance. The ActiveBrains project. Neuroimage 2017, 159, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.R.; Ribeiro, M.L.S.; Melo, T.; de Tarso Maciel-Pinheiro, P.; Guimarães, T.T.; Araújo, N.B.; Ribeiro, S.; Deslandes, A.C. Motor coordination correlates with academic achievement and cognitive function in children. Front. Psychol. 2016, 7, 318. [Google Scholar] [CrossRef]
- Santana, C.C.A.; Azevedo, L.B.; Cattuzzo, M.T.; Hill, J.O.; Andrade, L.P.; Prado, W.L. Physical fitness and academic performance in youth: A systematic review. Scand. J. Med. Sci. Sports 2017, 27, 579–603. [Google Scholar] [CrossRef]
- Chaddock-Heyman, L.; Erickson, K.I.; Kienzler, C.; King, M.; Pontifex, M.B.; Raine, L.B.; Hillman, C.H.; Kramer, A.F. The role of aerobic fitness in cortical thickness and mathematics achievement in preadolescent children. PLoS ONE 2015, 10, e0134115. [Google Scholar] [CrossRef]
- Chaddock-Heyman, L.; Erickson, K.I.; Chappell, M.A.; Johnson, C.L.; Kienzler, C.; Knecht, A.; Drollette, E.S.; Raine, L.B.; Scudder, M.R.; Kao, S.C.; et al. Aerobic fitness is associated with greater hippocampal cerebral blood flow in children. Dev. Cogn. Neurosci. 2016, 20, 52–58. [Google Scholar] [CrossRef]
Study Variables | M | SD | S | K | K–S |
---|---|---|---|---|---|
% Body fat mass | 16.07 | 6.41 | 0.45 | −0.62 | 1.09 |
Sprint 30 m (sg) | 5.48 | 0.45 | −0.36 | 0.02 | 1.33 |
Vertical jump (cm) | 35.88 | 6.46 | 0.00 | −1.20 | 1.17 |
Horizontal jump (cm) | 129.80 | 12.07 | 0.67 | −0.14 | 1.24 |
V-cut (sg) | 8.17 | 1.11 | 0.37 | −1.02 | 1.30 |
VO2max (mL/kg/min) | 39.04 | 4.65 | 0.59 | −0.11 | 1.17 |
D2-TA | 62.41 | 14.62 | −0.02 | −1.11 | 1.21 |
D2-TH | 61.86 | 14.19 | 0.08 | −1.18 | 1.25 |
D2-O | 65.99 | 11.19 | −0.36 | −0.58 | 1.97 *** |
D2-C | 51.11 | 14.02 | 0.15 | −1.23 | 2.64 *** |
D2-TOT | 64.35 | 14.56 | 0.01 | −1.04 | 1.32 |
D2-CON | 61.63 | 13.21 | 0.11 | −0.97 | 1.08 |
D2-VAR | 59.67 | 13.60 | 0.15 | −0.95 | 1.32 |
SAR (1–10) | 7.59 | 1.38 | −0.58 | −0.49 | 1.20 |
Study Variables | D2-TA | D2-TH | D2-O | D2-C | D2-TOT | D2-CON | D2-VAR | SAR |
---|---|---|---|---|---|---|---|---|
% Body fat mass | −0.27 ** | −0.26 ** | −0.07 | 0.03 | 0.26 ** | −0.21 * | −0.22 * | −0.09 |
Sprint 30 m (sg) | −0.28 ** | −0.27 ** | −0.08 | 0.06 | 0.24 ** | −0.26 ** | −0.23 ** | −0.11 |
Vertical jump (cm) | 0.04 | 0.05 | 0.04 | −0.06 | 0.11 | 0.02 | 0.03 | −0.04 |
Horizontal jump (cm) | 0.06 | 0.07 | −0.05 | 0.01 | 0.10 | 0.04 | 0.06 | 0.05 |
V-cut (sg) | −0.31 *** | −0.30 *** | −0.11 | −0.06 | −0.29 *** | −0.28 ** | −0.26 ** | −0.15 |
VO2max (mL/kg/min) | 0.44 *** | 0.42 *** | 0.16 | −0.07 | 0.41 *** | 0.40 *** | 0.35 *** | 0.18 * |
Criterion | ANOVA | R | R2 Adjusted | D–W | Predictors | Beta | t | T | VIF |
---|---|---|---|---|---|---|---|---|---|
D2-TA | 31.28 *** | 0.44 | 0.18 | 1.78 | VO2max | 0.44 | 5.59 *** | 1.00 | 1.00 |
D2-TH | 28.35 *** | 0.42 | 0.17 | 1.96 | VO2max | 0.42 | 5.33 *** | 1.00 | 1.00 |
D2-TOT | 33.55 *** | 0.45 | 0.20 | 2.01 | VO2max | 0.45 | 5.79 *** | 1.00 | 1.00 |
D2-CON | 28.98 *** | 0.42 | 0.17 | 2.03 | VO2max | 0.42 | 5.38 *** | 1.00 | 1.00 |
D2-VAR | 23.54 *** | 0.39 | 0.15 | 2.01 | VO2max | 0.39 | 4.85 *** | 1.00 | 1.00 |
SAR | 5.04 * | 0.19 | 0.03 | 1.82 | VO2max | 0.19 | 2.25 * | 1.00 | 1.00 |
Study Variables | Group 1 | Group 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | S | K | K–S | M | SD | S | K | K–S | |
% Body fat mass | 23.29 | 3.48 | 0.92 | 1.85 | 0.85 | 11.95 | 3.28 | 0.05 | −1.19 | 1.46 * |
Sprint 30 m (sg) | 5.66 | 0.42 | −0.62 | 0.75 | 0.79 | 5.37 | 0.44 | −0.27 | 0.04 | 1.07 |
Vertical jump (cm) | 34.92 | 4.84 | −0.01 | −0.50 | 0.60 | 36.43 | 7.19 | −0.12 | −1.47 | 1.22 |
Horizontal jump (cm) | 126.63 | 9.95 | 0.49 | 0.04 | 0.74 | 131.60 | 12.83 | 0.60 | −0.51 | 1.18 |
V-cut (sg) | 8.57 | 1.19 | −0.05 | −1.48 | 1.19 | 7.94 | 1.00 | 0.55 | −0.48 | 1.05 |
VO2max (mL/kg/min) | 37.08 | 4.81 | 1.54 | 2.17 | 1.40 * | 40.15 | 4.19 | 0.28 | −0.15 | 1.12 |
D2-TA | 55.53 | 12.95 | 0.93 | 0.54 | 1.12 | 66.33 | 14.12 | −0.53 | −0.71 | 1.47 * |
D2-TH | 55.24 | 12.07 | 1.13 | 1.03 | 1.29 | 65.63 | 13.98 | −0.44 | −0.94 | 1.55 * |
D2-O | 64.35 | 11.65 | −0.09 | −0.77 | 1.18 | 66.92 | 10.88 | −0.52 | −0.30 | 1.58 * |
D2-C | 50.82 | 13.07 | 0.10 | −1.11 | 1.53 * | 51.28 | 14.61 | 0.17 | −1.31 | 2.14 *** |
D2-TOT | 57.76 | 12.37 | 0.90 | 0.64 | 1.14 | 68.10 | 14.45 | −0.47 | −0.72 | 1.55 * |
D2-CON | 56.12 | 11.67 | 0.81 | 0.33 | 1.04 | 64.77 | 13.07 | −0.27 | −0.83 | 1.28 |
D2-VAR | 54.12 | 12.23 | 1.01 | 0.61 | 1.01 | 62.83 | 13.39 | −0.27 | −0.77 | 1.67 ** |
SAR (1–10) | 7.23 | 1.27 | −0.41 | 0.14 | 1.26 | 7.76 | 1.40 | −0.74 | −0.56 | 1.48 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Páez-Maldonado, J.A.; Reigal, R.E.; Morillo-Baro, J.P.; Carrasco-Beltrán, H.; Hernández-Mendo, A.; Morales-Sánchez, V. Physical Fitness, Selective Attention and Academic Performance in a Pre-Adolescent Sample. Int. J. Environ. Res. Public Health 2020, 17, 6216. https://doi.org/10.3390/ijerph17176216
Páez-Maldonado JA, Reigal RE, Morillo-Baro JP, Carrasco-Beltrán H, Hernández-Mendo A, Morales-Sánchez V. Physical Fitness, Selective Attention and Academic Performance in a Pre-Adolescent Sample. International Journal of Environmental Research and Public Health. 2020; 17(17):6216. https://doi.org/10.3390/ijerph17176216
Chicago/Turabian StylePáez-Maldonado, José A., Rafael E. Reigal, Juan P. Morillo-Baro, Hernaldo Carrasco-Beltrán, Antonio Hernández-Mendo, and Verónica Morales-Sánchez. 2020. "Physical Fitness, Selective Attention and Academic Performance in a Pre-Adolescent Sample" International Journal of Environmental Research and Public Health 17, no. 17: 6216. https://doi.org/10.3390/ijerph17176216
APA StylePáez-Maldonado, J. A., Reigal, R. E., Morillo-Baro, J. P., Carrasco-Beltrán, H., Hernández-Mendo, A., & Morales-Sánchez, V. (2020). Physical Fitness, Selective Attention and Academic Performance in a Pre-Adolescent Sample. International Journal of Environmental Research and Public Health, 17(17), 6216. https://doi.org/10.3390/ijerph17176216