Runner’s Perceptions of Reasons to Quit Running: Influence of Gender, Age and Running-Related Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Respondents
2.2. Questionnaire
2.3. Measurements
2.3.1. Creating Scales of Running AIOs
- (1)
- Perceived advantages of running (e.g., ‘running gives me energy’, or ‘running is good for my health’);
- (2)
- Identification with running (e.g., ‘I am proud to be a runner’, or ‘I feel myself to be a real runner’);
- (3)
- Running is a sport that is easy to practice (e.g., ‘I can practice running anytime, anywhere’);
- (4)
- Social motives for quitting (e.g., I would quit running ‘if my trainer quit’ or ‘if my running friends quit’);
- (5)
- Individual motives for quitting (e.g., I would quit running if ‘I got injured’, or if ‘my spare time was decreased’).
2.3.2. Dependent Variables
2.3.3. Independent Variables
2.4. Analysis
3. Results
3.1. Descriptive Analysis
3.2. Binary Logistic Regression Social Reasons for Quitting
3.3. Binary Logistic Regression Individual Reasons for Quitting
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Warburton, D.E.R.; Charlesworth, S.; Ivey, A.; Nettlefold, L.; Bredin, S.S.D. A systematic review of the evidence for Canada’s Physical Activity Guidelines for Adults. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 39. [Google Scholar] [CrossRef] [PubMed][Green Version]
- World Health Organization. World Health Statistics 2016: Monitoring Health for the SDGs Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2016; ISBN 9241565268. [Google Scholar]
- Trost, S.; Blair, S.N.; Khan, K.M. Physical inactivity remains the greatest public health problem of the 21st century: Evidence, improved methods and solutions using the ‘7 investments that work’ as a framework. Br. J. Sports Med. 2014, 48, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M.; Scheerder, J.; Thibaut, E.; Brombacher, A.; Vos, S. Who uses running apps and sports watches? Determinants and consumer profiles of event runners’ usage of running-related smartphone applications and sports watches. PLoS ONE 2017, 12, e0181167. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hulteen, R.M.; Smith, J.J.; Morgan, P.J.; Barnett, L.M.; Hallal, P.C.; Colyvas, K.; Lubans, D.R. Global participation in sport and leisure-time physical activities: A systematic review and meta-analysis. Prev. Med. (Baltim) 2017, 95, 14–25. [Google Scholar] [CrossRef]
- Eime, R.M.; Sawyer, N.; Harvey, J.T.; Casey, M.M.; Westerbeek, H.; Payne, W.R. Integrating public health and sport management: SPORT participation trends 2001–2010. Sport Manag. Rev. 2015, 18, 207–217. [Google Scholar] [CrossRef][Green Version]
- Borgers, J.; Vanreusel, B.; Vos, S.; Forsberg, P.; Scheerder, J. Do light sport facilities foster sports participation? A case study on the use of bark running tracks. Int. J. Sport Policy 2016, 8, 287–304. [Google Scholar] [CrossRef]
- Shipway, R.; Holloway, I. Health and the running body: Notes from an ethnography. Int. Rev. Sociol. Sport 2016, 51, 78–96. [Google Scholar] [CrossRef]
- Grunseit, A.; Richards, J.; Merom, D. Running on a high: Parkrun and personal well-being. BMC Public Health 2017, 18, 1–11. [Google Scholar] [CrossRef][Green Version]
- Nezlek, J.B.; Cypryańska, M.; Cypryański, P.; Chlebosz, K.; Jenczylik, K.; Sztachańska, J.; Zalewska, A.M. Within-Person Relationships Between Recreational Running and Psychological Well-Being. J. Sport Exerc. Psychol. 2018, 40, 146–152. [Google Scholar] [CrossRef]
- Pedisic, Z.; Shrestha, N.; Kovalchik, S.; Stamatakis, E.; Liangruenrom, N.; Grgic, J.; Titze, S.; Biddle, S.J.H.; Bauman, A.E.; Oja, P. Is running associated with a lower risk of all-cause, cardiovascular and cancer mortality, and is the more the better? A systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 898–905. [Google Scholar] [CrossRef]
- van Iperen, L.P.; de Jonge, J.; Gevers, J.M.; Vos, S.B. Running-related demands and vigor in long-distance runners: The moderating role of resources and recovery. Curr. Psychol. 2020, 1–15. [Google Scholar] [CrossRef]
- Schoemaker, J.; van Genderen, S.; de Boer, W.I.J. Increased physical activity in preparation for a women-only mass participation sport event: A framework for estimating the health impact. Int. J. Environ. Res. Public Health 2020, 17, 98. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Junior, L.C.H.; Pillay, J.D.; van Mechelen, W.; Verhagen, E. Meta-Analyses of the Effects of Habitual Running on Indices of Health in Physically Inactive Adults. Sport. Med. 2015, 45, 1455–1468. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Scheerder, J.; Breedveld, K.; Borgers, J. Running across Europe: The Rise and Size of One of the Largest Sport Markets; Springer: New York, NY, USA, 2015; ISBN 1137446374. [Google Scholar]
- State of the Sport—Part II: Running Industry Report. 2014. Available online: http://runinfinity.com/2014/06/2014-state-of-the-sport-part-ii-running-industry-report.html (accessed on 19 August 2002).
- Ogles, B.; Masters, K. A Typology of Marathon Runners Based on Cluster Analysis of Motivations. J. Sport Behav. 2003, 26, 69. [Google Scholar]
- Rohm, A.J. A mixed-method approach for developing market segmentation typologies in the sports industry. Sport Mark. Q. 2006, 15, 29–39. [Google Scholar]
- Vos, S.; Walravens, R.; Hover, P.; Borgers, J.; Scheerder, J. Voor de pret of de prestatie? Typologieen van evenementenloopsters. Vrijetijdsstudies 2014, 32, 19–34. [Google Scholar]
- Scheerder, J.; Vanreusel, B.; Taks, M.; Renson, R. Social sports stratification in Flanders 1969–1999: Intergenerational reproduction of social inequalities? Int. Rev. Sociol. Sport 2002, 37, 219–245. [Google Scholar] [CrossRef]
- Van Bottenburg, M. De Tweede Loopgolf; W.J.H. Mulier Instituut: ‘s-Hertogenbosch, The Netherlands, 2006. [Google Scholar]
- Sosienski, S. Women Who Run; Seal Press: New York, NY, USA, 2006; ISBN 1580051839. [Google Scholar]
- Hover, P.; van der Werff, H.; Breedveld, K. Rising Participation Rates, Shifting Segments. In Running across Europe. The Rise and Size of One of the Largest Sport Markets; Springer: New York, NY, USA, 2015; pp. 187–207. [Google Scholar]
- Wilder, B. On the run: A Physician’s perspective. J. Orthop. Sports Phys. Ther. 2014, 44, 731–732. [Google Scholar] [CrossRef]
- Forsberg, P. Denmark: Running for the Sake of Running? A Profile and Segmentation of Danish Runners. In Running across Europe; Springer: New York, NY, USA, 2015; pp. 59–80. [Google Scholar]
- Scheerder, J.; Vos, S.; Taks, M. Expenditures on sport apparel: Creating consumer profiles through interval regression modelling. Eur. Sport Manag. Q. 2011, 11, 251–274. [Google Scholar] [CrossRef][Green Version]
- Clermont, C.A.; Duffett-Leger, L.; Hettinga, B.A.; Ferber, R. Runners’ Perspectives on “Smart” Wearable Technology and Its Use for Preventing Injury. Int. J. Hum. Comput. Interact. 2020, 36, 31–40. [Google Scholar] [CrossRef]
- Hallmann, K.; Wicker, P. Consumer profiles of runners at marathon races. Int. J. Event Festiv. Manag. 2012, 3, 171–187. [Google Scholar] [CrossRef]
- Videbæk, S.; Bueno, A.M.; Nielsen, R.O.; Rasmussen, S. Incidence of Running-Related Injuries Per 1000° h of running in Different Types of Runners: A Systematic Review and Meta-Analysis. Sport. Med. 2015, 45, 1017–1026. [Google Scholar] [CrossRef][Green Version]
- Kemler, E.; Blokland, D.; Backx, F.; Huisstede, B. Differences in injury risk and characteristics of injuries between novice and experienced runners over a 4-year period. Phys. Sportsmed. 2018, 46, 485–491. [Google Scholar] [CrossRef][Green Version]
- Junior, L.C.H.; Costa, L.O.P.; Lopes, A.D. Previous injuries and some training characteristics predict running-related injuries in recreational runners: A prospective cohort study. J. Physiother. 2013, 59, 263–269. [Google Scholar] [CrossRef][Green Version]
- Van Poppel, D.; Scholten-Peeters, G.G.M.; van Middelkoop, M.; Koes, B.W.; Verhagen, A.P. Risk models for lower extremity injuries among short and long distance runners: A prospective cohort study. Musculoskelet. Sci. Pract. 2018, 36, 48–53. [Google Scholar] [CrossRef][Green Version]
- Fokkema, T.; Hartgens, F.; Kluitenberg, B.; Verhagen, E.; Backx, F.J.G.; van der Worp, H.; Bierma-Zeinstra, S.M.A.; Koes, B.W.; van Middelkoop, M. Reasons and predictors of discontinuation of running after a running program for novice runners. J. Sci. Med. Sport 2019, 22, 106–111. [Google Scholar] [CrossRef]
- Parra-Camacho, D.; González-Serrano, M.H.; González-García, R.J.; Moreno, F.C. Sporting habits of urban runners: Classification according to their motivation. Int. J. Environ. Res. Public Health 2019, 16, 4990. [Google Scholar] [CrossRef][Green Version]
- Parra-Camacho, D.; Dos Santos, M.A.; González-Serrano, M.H. Amateur runners’ commitment: An analysis of sociodemographic and sports habit profiles. Int. J. Environ. Res. Public Health 2020, 17, 925. [Google Scholar] [CrossRef][Green Version]
- Hanson, N.; Madaras, L.; Dicke, J.; Buckworth, J. Motivational Differences between Half, Full and Ultramarathoners. J. Sport Behav. 2015, 38, 180. [Google Scholar]
- Deaner, R.O.; Masters, K.S.; Ogles, B.M.; Lacaille, R.A. Marathon Performance as a Predictor of Competitiveness and Training in Men and Women. J. Sport Behav. 2011, 34, 325–342. [Google Scholar]
- Mueller, F.F.; Tan, C.T.; Byrne, R.; Jones, M. 13 Game Lenses for Designing Diverse Interactive Jogging Systems. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play, Amsterdam, The Netherlands, 15–18 October 2017; pp. 43–56. [Google Scholar]
- Rocha, C.M.; Gratao, O.A. The process toward commitment to running—The role of different motives, involvement, and coaching. Sport Manag. Rev. 2017, 21, 459–472. [Google Scholar] [CrossRef]
- Havenar, J.; Lochbaum, M. Differences in Participation Motives of First-time Marathon Finishers and Pre-Race Dropouts. J. Sport Behav. 2007, 30, 270. [Google Scholar]
- Janssen, M.; Walravens, R.; Thibaut, E.; Scheerder, J.; Brombacher, A.; Vos, S. Understanding Different Types of Recreational Runners and How They Use Running-Related Technology. Int. J. Environ. Res. Public Health 2020, 17, 2276. [Google Scholar] [CrossRef][Green Version]
- Scheerder, J.; Boen, F. The Flanders Run! Social-scientific research on the market of running. In Vlaanderen Loopt! Sociaal-Wetenschappelijk Onderzoek Naar de Loopsportmarkt; Academia Press: Cambridge, MA, USA, 2010; ISBN 9038214847. [Google Scholar]
- Deelen, I.; Janssen, M.; Vos, S.; Kamphuis, C.B.M.; Ettema, D. Attractive running environments for all? A cross-sectional study on physical environmental characteristics and runners’ motives and attitudes, in relation to the experience of the running environment. BMC Public Health 2019, 19, 366. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S. Applied Logistic Regression; John Wiley: New York, NY, USA, 2000; ISBN 0471654027. [Google Scholar]
- Menard, S. Applied Logistic Regression Analysis, 2nd ed.; Quantitative Applications in the Social Sciences No. 106; Sage Publications: Newbury Park, CA, USA, 2002; p. 111. [Google Scholar]
- Stragier, J.; Vanden Abeele, M.; Marez, L. De Recreational athletes’ running motivations as predictors of their use of online fitness community features. Behav. Inf. Technol. 2018, 37, 815–827. [Google Scholar] [CrossRef]
- James, D.V.B.; Johnston, L.H.; Crone, D.; Sidford, A.H.; Gidlow, C.; Morris, C.; Foster, C. Factors associated with physical activity referral uptake and participation. J. Sports Sci. 2008, 26, 217–224. [Google Scholar] [CrossRef]
- McArthur, D.; Dumas, A.; Woodend, K.; Beach, S.; Stacey, D. Factors influencing adherence to regular exercise in middle-aged women: A qualitative study to inform clinical practice. N. Engl. J. Med. 2014, 300, 1056–1057. [Google Scholar] [CrossRef][Green Version]
- Pridgeon, L.; Grogan, S. Understanding exercise adherence and dropout: An interpretative phenomenological analysis of men and women’s accounts of gym attendance and non-attendance. Qual. Res. Sport. Exerc. Heal. 2012, 4, 382–399. [Google Scholar] [CrossRef]
- Hickey, M.; Mason, S. Age and gender differences in particpation rates, motivators for, and barriers to exercise. Mod. Psychol. Stud. 2017, 22, 3. [Google Scholar]
- Stoggl, T.; Wunsch, T. Biomechanics of Marathon Running. In Marathon Running: Physiology, Psychology, Nutrition and Training Aspects; Zinner, C., Sperlich, B., Eds.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Barz, M.; Lange, D.; Parschau, L.; Lonsdale, C.; Knoll, N.; Schwarzer, R. Self-efficacy, planning, and preparatory behaviours as joint predictors of physical activity: A conditional process analysis. Psychol. Heal. 2016, 31, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Breedveld, K.; Scheerder, J.; Borgers, J. Running across Europe: The way forward. In Running across Europe; Springer: New York City, NY, USA, 2015; pp. 241–264. [Google Scholar]
Scale | Attitudes toward Running | Items | Cronbach α | N | Mean | SD |
---|---|---|---|---|---|---|
1 | Perceived advantages of running | 4 | 0.794 | 853 | 4.29 | 0.458 |
2 | Identification with running | 5 | 0.738 | 853 | 3.33 | 0.640 |
3 | Running as a sport that is easy to practice | 3 | 0.781 | 853 | 4.22 | 0.623 |
4 | Social motives for quitting | 3 | 0.941 | 853 | 1.79 | 0.722 |
5 | Individual motives for quitting | 4 | 0.712 | 853 | 3.33 | 0.784 |
Variable | Measurement | n | % |
---|---|---|---|
Individual Motives Binary | Below | 399 | 46.8 |
Above | 454 | 53.2 | |
Social Motives Binary | Below | 390 | 45.7 |
Above | 463 | 54.3 | |
Gender | Male | 387 | 47.8 |
Female | 422 | 52.2 | |
Age | ≤35 year | 261 | 32.1 |
36–45 year | 239 | 29.4 | |
≥46 year | 313 | 38.5 | |
Education | Lower or middle education | 273 | 33.5 |
Higher education | 332 | 40.8 | |
University | 209 | 25.7 | |
Experience | <1 years | 248 | 29.2 |
1–5 years | 364 | 42.8 | |
>5 years | 238 | 28.0 | |
Running frequency | ≤1x/week | 384 | 45.1 |
2x/week | 350 | 41.1 | |
≥3x/week | 117 | 13.7 | |
Running context | Individual | 526 | 61.8 |
Friends, colleagues, small groups | 226 | 26.6 | |
Clubs | 99 | 11.6 |
Item No. | Item | Mean | SD | Min | Max |
---|---|---|---|---|---|
1 | My running partners quit running 1 | 1.82 | 0.85 | 1 | 5 |
2 | My running group falls apart 1 | 1.80 | 0.84 | 1 | 5 |
3 | My trainer/coach is leaving 1 | 1.76 | 0.80 | 1 | 5 |
4 | Preference for another sport 2 | 3.06 | 1.04 | 1 | 5 |
5 | Reduction of leisure time 2 | 2.95 | 1.05 | 1 | 5 |
6 | Tired of running 2 | 3.20 | 1.06 | 1 | 5 |
7 | Physical constraints or injuries 2 | 4.14 | 0.77 | 1 | 5 |
Social Reasons (n = 803) | Individual Reasons (n = 803) | ||
---|---|---|---|
Constant | 646,050 *** | 42,827 *** | |
Gender | Male | Ref. | Ref. |
Female | 1.642 ** | 1.234 | |
Age | ≤35 year | Ref. | Ref. |
36–45 year | 1.018 | 0.777 | |
≥46 year | 1.402 | 0.498 *** | |
Education | Lower or middle education | Ref. | Ref. *** |
Higher education | 1.193 | 2.012 *** | |
University | 0.972 | 2.721 *** | |
Experience | <1 years | Ref. | Ref. |
1–5 years | 0.829 | 0.888 | |
>5 years | 0.610 * | 0.610 * | |
Running frequency | ≤1x/week | Ref. | Ref. |
2x/week | 0.717 | 0.654 * | |
≥3x/week | 0.734 | 0.799 | |
Running context | Individual | Ref. *** | Ref. |
Friends, colleagues, small groups | 3.352 *** | 1.203 | |
Clubs | 4.541 *** | 1.361 | |
AIO toward running | Running as a sport that is easy to practice | 0.502 *** | 0.985 |
Perceived advantages of running | 0.314 *** | 0.992 | |
Identification | 1.366 * | 0.352 *** | |
Nagelkerke R2 | 0.278 | 0.244 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menheere, D.; Janssen, M.; Funk, M.; van der Spek, E.; Lallemand, C.; Vos, S. Runner’s Perceptions of Reasons to Quit Running: Influence of Gender, Age and Running-Related Characteristics. Int. J. Environ. Res. Public Health 2020, 17, 6046. https://doi.org/10.3390/ijerph17176046
Menheere D, Janssen M, Funk M, van der Spek E, Lallemand C, Vos S. Runner’s Perceptions of Reasons to Quit Running: Influence of Gender, Age and Running-Related Characteristics. International Journal of Environmental Research and Public Health. 2020; 17(17):6046. https://doi.org/10.3390/ijerph17176046
Chicago/Turabian StyleMenheere, Daphne, Mark Janssen, Mathias Funk, Erik van der Spek, Carine Lallemand, and Steven Vos. 2020. "Runner’s Perceptions of Reasons to Quit Running: Influence of Gender, Age and Running-Related Characteristics" International Journal of Environmental Research and Public Health 17, no. 17: 6046. https://doi.org/10.3390/ijerph17176046