Comparative Indoor Pollution from Glo, Iqos, and Juul, Using Traditional Combustion Cigarettes as Benchmark: Evidence from the Randomized SUR-VAPES AIR Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Experiment
2.2. Analysis
3. Result
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- GBD 2015 Tobacco Collaborators. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: A systematic analysis from the Global Burden of Disease Study 2015. Lancet 2017, 389, 1885–1906. [Google Scholar] [CrossRef][Green Version]
- Weishaar, H.B.; Ikegwuonu, T.; Smith, K.E.; Buckton, C.H.; Hilton, S. E-Cigarettes: A Disruptive Technology? An Analysis of Health Actors’ Positions on E-Cigarette Regulation in Scotland. Int. J. Environ. Res. Public Health 2019, 16, 3103. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fairchild, A.L.; Lee, J.S.; Bayer, R.; Curran, J. E-Cigarettes and the Harm-Reduction Continuum. N. Engl. J. Med. 2018, 378, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Lüdicke, F.; Ansari, S.M.; Lama, N.; Blanc, N.; Bosilkovska, M.; Donelli, A.; Picavet, P.; Baker, G.; Haziza, C.; Peitsch, M.; et al. Effects of Switching to a Heat-Not-Burn Tobacco Product on Biologically Relevant Biomarkers to Assess a Candidate Modified Risk Tobacco Product: A Randomized Trial. Cancer Epidemiol. Biomarkers Prev. 2019, 28, 1934–1943. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huang, J.; Duan, Z.; Kwok, J.; Binns, S.; Vera, L.E.; Kim, Y.; Szczypka, G.; Emery, S.L. Vaping versus JUULing: How the extraordinary growth and marketing of JUUL transformed the US retail e-cigarette market. Tob. Control 2018, 28, 146–151. [Google Scholar] [CrossRef][Green Version]
- Al-Hamdani, M.; Hopkins, D.B.; Park, T. Vaping among youth and young adults: A “red alert” state. J. Public Health Policy 2020, 41, 63–69. [Google Scholar] [CrossRef]
- Ratajczak, A.; Jankowski, P.; Strus, P.; Feleszko, W. Heat Not Burn Tobacco Product—A New Global Trend: Impact of Heat-Not-Burn Tobacco Products on Public Health, a Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 409. [Google Scholar] [CrossRef][Green Version]
- Gentry, S.; Forouhi, N.G.; Notley, C. Are Electronic Cigarettes an Effective Aid to Smoking Cessation or Reduction Among Vulnerable Groups? A Systematic Review of Quantitative and Qualitative Evidence. Nicotine. Tob. Res. 2019, 21, 602–616. [Google Scholar] [CrossRef]
- Gilmore, A.B.; Hartwell, G. E-cigarettes: Threat or opportunity? Eur. J. Public Health 2014, 24, 532–533. [Google Scholar] [CrossRef][Green Version]
- Shein, M.; Jeschke, G. Comparison of Free Radical Levels in the Aerosol from Conventional Cigarettes, Electronic Cigarettes, and Heat-Not-Burn Tobacco Products. Chem. Res. Toxicol. 2019, 32, 1289–1298. [Google Scholar] [CrossRef]
- Savdie, J.; Canha, N.; Buitrago, N.; Almeida, S.M. Passive Exposure to Pollutants from a New Generation of Cigarettes in Real Life Scenarios. Int. J. Environ. Res. Public Health 2020, 17, 3455. [Google Scholar] [CrossRef]
- Bitzer, Z.T.; Goel, R.; Trushin, N.; Muscat, J.; Richie, J.P., Jr. Free Radical Production and Characterization of Heat-Not-Burn Cigarettes in Comparison to Conventional and Electronic Cigarettes. Chem. Res. Toxicol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Protano, C.; Avino, P.; Manigrasso, M.; Vivaldi, V.; Perna, F.; Valeriani, F.; Vitali, M. Environmental Electronic Vape Exposure from Four Different Generations of Electronic Cigarettes: Airborne Particulate Matter Levels. Int. J. Environ. Res. Public Health 2018, 15, 2172. [Google Scholar] [CrossRef][Green Version]
- Protano, C.; Manigrasso, M.; Avino, P.; Sernia, S.; Vitali, M. Second-hand smoke generated by new electronic device (IQOS and e-cigs) and traditional cigarettes: Submicron particle behaviour in human respiratory system. Ann. Ig. 2016, 28, 109–112. [Google Scholar] [CrossRef]
- Benowitz, N.L. Nicotine and coronary heart disease. Trends Cardiovasc. Med. 1991, 1, 315–321. [Google Scholar] [CrossRef]
- Protano, C.; Manigrasso, M.; Avino, P.; Vitali, M. Second-hand smoke generated by combustion and electronic smoking devices used in real scenarios: Ultrafine particle pollution and age-related dose assessment. Environ. Int. 2017, 107, 190–195. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Münzel, T.; Hahad, O.; Kuntic, M.; Keaney, J.F.; Deanfield, J.E.; Daiber, A. Effects of tobacco cigarettes, e-cigarettes, and waterpipe smoking on endothelial function and clinical outcomes. Eur. Heart J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Pataka, A.; Kotoulas, S.; Chatzopoulos, E.; Grigoriou, I.; Sapalidis, K.; Kosmidis, C.; Vagionas, A.; Perdikouri, E.I.; Drevelegas, K.; Zarogoulidis, P.; et al. Acute Effects of a Heat-Not-Burn Tobacco Product on Pulmonary Function. Medicina (Kaunas) 2020, 2, 292. [Google Scholar] [CrossRef] [PubMed]
- Başaran, R.; Güven, N.M.; Eke, B.C. An Overview of iQOS® as a New Heat-Not-Burn Tobacco Product and Its Potential Effects on Human Health and the Environment. Turk. J. Pharm. Sci. 2019, 16, 371–374. [Google Scholar] [CrossRef]
- Adriaens, K.; Gucht, D.V.; Baeyens, F. IQOSTM vs. e-Cigarette vs. Tobacco Cigarette: A Direct Comparison of Short-Term Effects after Overnight-Abstinence. Int. J. Environ. Res. Public Health 2018, 15, 2902. [Google Scholar] [CrossRef]
- Forster, M.; McAughey, J.; Prasad, K.; Mavropoulou, E.; Proctor, C. Assessment of tobacco heating product THP1.0. Part 4: Characterisation of indoor air quality and odour. Regul. Toxicol. Pharmacol. 2018, 93, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Marcham, C.L.; Springston, J.P. Electronic cigarettes in the indoor environment. Rev. Environ. Health 2019, 34, 105–124. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Friedman, A.S.; Xu, S. Associations of Flavored e-Cigarette Uptake With Subsequent Smoking Initiation and Cessation. JAMA Netw. Open 2020, 3, e203826. [Google Scholar] [CrossRef]
- Protano, C.; Manigrasso, M.; Cammalleri, V.; Biondi Zoccai, G.; Frati, G.; Avino, P.; Vitali, M. Impact of Electronic Alternatives to Tobacco Cigarettes on Indoor Air Particular Matter Levels. Int. J. Environ. Res. Public Health 2020, 17, 2947. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Monographs on the Evaluation of Carcinogenic Risks to Humans; WHO Press: Lyon, France, 2015. [Google Scholar]
- Nguyen, J.L.; Yang, W.; Ito, K.; Matte, T.D.; Shaman, J.; Kinney, P.L. Seasonal Influenza Infections and Cardiovascular Disease Mortality. JAMA Cardiol. 2016, 1, 274–281. [Google Scholar] [CrossRef][Green Version]
- Shen, Y.S.; Lung, S.C. Multiple impacts and pathways of urban form and environmental factors on cardiovascular mortality. Sci. Total Environ. 2020, 738, 139512. [Google Scholar] [CrossRef]
- Braun, M.; Koger, F.; Klingelhöfer, D.; Müller, R.; Groneberg, D.A. Particulate Matter Emissions of Four Different Cigarette Types of One Popular Brand: Influence of Tobacco Strength and Additives. Int. J. Environ. Res. Public Health 2019, 16, 263. [Google Scholar] [CrossRef][Green Version]
- Manigrasso, M.; Protano, C.; Vitali, M.; Avino, P. Where Do Ultrafine Particles and Nano-Sized Particles Come From? J. Alzheimers Dis. 2019, 68, 1371–1390. [Google Scholar] [CrossRef]
- Manigrasso, M.; Vitali, M.; Protano, C.; Avino, P. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room. Sci. Total Environ. 2017, 598, 1015–1026. [Google Scholar] [CrossRef]
- Manigrasso, M.; Vitali, M.; Protano, C.; Avino, P. Ultrafine particles in domestic environments: Regional doses deposited in the human respiratory system. Environ. Int. 2018, 118, 135. [Google Scholar] [CrossRef]
- Hiscock, R.; Silver, K.; Zatoński, M.; Gilmore, A.B. Tobacco industry tactics to circumvent and undermine the menthol cigarette ban in the UK. Tob. Control 2020. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S. Are e-cigarettes beneficial for public health: Hume’s guillotine-The debate continues? Indian Heart J. 2017, 69, 810–813. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, A.K.M.; De-Loyde, K.; Brocklebank, L.A.; Maynard, O.M.; Marteau, T.M.; Hollands, G.J.; Fletcher, P.C.; Attwood, A.S.; Morris, R.W.; Munafò, M.R. Tobacco and electronic cigarette cues for smoking and vaping: An online experimental study. BMC Res. Notes 2020, 13, 32. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schober, W.; Fembacher, L.; Frenzen, A.; Fromme, H. Passive exposure to pollutants from conventional cigarettes and new electronic smoking devices (IQOS, e-cigarette) in passenger cars. Int. J. Environ. Res. Public Health 2019, 222, 486–493. [Google Scholar] [CrossRef]
- Tzortzi, A.; Teloniatis, S.; Matiampa, G.; Bakelas, G.; Tzavara, C.; Vyzikidou, V.K.; Vardavas, C.; Behrakis, P.; Fernandez, E. TackSHS Project Investigators. Passive exposure of non-smokers to E-Cigarette aerosols: Sensory irritation, timing and association with volatile organic compounds. Environ. Res. 2020, 182, 108963. [Google Scholar] [CrossRef] [PubMed]
- Papaefstathiou, E.; Stylianou, M.; Agapiou, A. Main and side stream effects of electronic cigarettes. J. Environ. Manag. 2019, 238, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Fait, B.W.; Thompson, D.C.; Mose, T.N.; Jatlow, P.; Jordt, S.E.; Picciotto, M.R.; Mineur, Y.S. Menthol disrupts nicotine’s psychostimulant properties in an age and sex-dependent manner in C57BL/6J mice. Behav. Brain Res. 2017, 334, 72–77. [Google Scholar] [CrossRef]
- Girvalaki, C.; Tzatzarakis, M.; Kyriakos, C.N.; Vardavas, A.I.; Stivaktakis, P.D.; Kavvalakis, M.; Tsatsakis, A.; Vardavas, C. Composition and chemical health hazards of the most common electronic cigarette liquids in nine European countries. Inhal. Toxicol. 2018, 30, 361–369. [Google Scholar] [CrossRef]
- Kim, H.; Lim, J.; Buehler, S.S.; Brinkman, M.C.; Johnson, N.M.; Wilson, L.; Cross, K.S.; Clark, P.I. Role of sweet and other flavours in liking and disliking of electronic cigarettes. Tob. Control 2016, 25, ii55–ii61. [Google Scholar] [CrossRef][Green Version]
- Kuga, K.; Ito, K.; Chen, W.; Wang, P.; Kumagai, K. A numerical investigation of the potential effects of e-cigarette smoking on local tissue dosimetry and the deterioration of indoor air quality. Indoor 2020. [Google Scholar] [CrossRef]
- Litt, M.D.; Duffy, V.; Oncken, C. Cigarette smoking and electronic cigarette vaping patterns as a function of e-cigarette flavourings. Tob. Control 2016, 25, ii67–ii72. [Google Scholar] [CrossRef] [PubMed]
- Mead, E.L.; Duffy, V.; Oncken, C.; Litt, M.D. E-cigarette palatability in smokers as a function of flavorings, nicotine content and propylthiouracil (PROP) taster phenotype. Addict. Behav. 2019, 91, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Oncken, C.A.; Litt, M.D.; McLaughlin, L.D.; Burki, N.A. Nicotine concentrations with electronic cigarette use: Effects of sex and flavor. Nicotine Tob. Res. 2015, 17, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Voos, N.; Smith, D.; Kaiser, L.; Mahoney, M.C.; Bradizza, C.M.; Kozlowski, L.T.; Benowitz, N.L.; O’Connor, R.J.; Goniewicz, M.L. Effect of e-cigarette flavors on nicotine delivery and puffing topography: Results from a randomized clinical trial of daily smokers. Psychopharmacology 2020, 237, 491–502. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (US); National Center for Chronic Disease Prevention and Health Promotion (US); Office on Smoking and Health (US). How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General; Centers for Disease Control and Prevention (US): Atlanta, GA, USA, 2010. Available online: https://www.ncbi.nlm.nih.gov/books/NBK53017/ (accessed on 15 July 2020).
- Biondi-Zoccai, G.; Carnevale, R.; Vitali, M.; Tritapepe, L.; Martinelli, O.; Macrina, F.; Bullen, C.; Peruzzi, M.; Cavarretta, E.; Marullo, A.G.; et al. A randomized trial comparing the acute coronary, systemic, and environmental effects of electronic vaping cigarettes versus heat-not-burn cigarettes in smokers of combustible cigarettes undergoing invasive coronary assessment: Rationale and design of the SUR-VAPES 3 trial. Minerva Cardioangiol. 2020. [Google Scholar] [CrossRef]
- Lelieveld, J.; Münzel, T. Air pollution, the underestimated cardiovascular risk factor. Eur. Heart J. 2020, 41, 904–905. [Google Scholar] [CrossRef][Green Version]
- Unger, M.; Unger, D.W. E-cigarettes/electronic nicotine delivery systems: A word of caution on health and new product development. J. Thorac. Dis. 2018, 10, S2588–S2592. [Google Scholar] [CrossRef]
- Blount, B.C.; Karwowski, M.P.; Shields, P.G.; Morel-Espinosa, M.; Valentin-Blasini, L.; Gardner, M.; Braselton, M.; Brosius, C.R.; Caron, K.T.; Chambers, D.; et al. Lung Injury Response Laboratory Working Group. Vitamin E Acetate in Bronchoalveolar-Lavage Fluid Associated with EVALI. N. Engl. J. Med. 2020, 382, 697–705. [Google Scholar] [CrossRef]
- Nitzkin, J.L. The Case in Favor of E-Cigarettes for Tobacco Harm Reduction. Int. J. Environ. Res. Public Health 2014, 11, 6459–6471. [Google Scholar] [CrossRef][Green Version]
Device | Timing | PM10 | PM4 | PM2.5 | PM1 | Total |
---|---|---|---|---|---|---|
Glo | Before | 16 (11; 24) | 14 (10; 23) | 14 (10; 23) | 14 (10; 22) | 19 (12; 29) |
During | 31 (19; 120) | 29 (17; 120) | 28 (17; 120) | 28 (16; 28) | 39 (24; 127) | |
After | 25 (19; 31) | 25 (18; 29) | 24 (18; 29) | 24 (18; 29) | 28 (22; 39) | |
Iqos | Before | 14 (11; 19) | 13 (10; 17) | 13 (10; 17) | 13 (10; 17) | 16 (12; 23) |
During | 26 (17; 59) | 25 (16; 57) | 25 (15; 57) | 25 (15; 57) | 31 (20; 63) | |
After | 25 (19; 31) | 25 (17; 30) | 24 (17; 30) | 24 (17; 29) | 28 (21; 39) | |
Before | 15 (13; 18) | 14 (12; 17) | 14 (12; 16) | 14 (12; 16) | 16 (14; 22) | |
Juul | During | 75 (17; 565) | 73 (16; 565) | 73 (15; 565) | 73 (15; 559) | 76 (20; 565) |
After | 23 (16; 35) | 22 (14; 34) | 21 (14; 33) | 21 (14; 33) | 26 (18; 43) | |
Before | 10 (6; 12) | 9 (5; 11) | 8 (4; 11) | 8 (4; 11) | 10 (6; 14) | |
TCC | During | 1245 (392; 3360) | 1245 (392; 3360) | 1245 (391; 3360) | 1245 (391; 3350) | 1250 (401; 3360) |
After | 1400 (896; 1580) | 1390 (894; 1580) | 1390 (894; 1580) | 1390 (892; 1580) | 1400 (905; 1580) | |
P Glo vs. Iqos | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
P Glo vs. Juul | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
P Glo vs. TCC | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
P Iqos vs. Juul | - | 0.016 | 0.031 | 0.038 | 0.045 | 0.021 |
P Iqos vs. TCC | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
P Juul vs. TCC | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Flavor | Timing | PM10 | PM4 | PM2.5 | PM1 | Total |
---|---|---|---|---|---|---|
Aegean | Before | 12 (9; 18) | 10 (8; 11) | 10 (8; 11) | 10 (8; 12) | 11 (9; 13) |
During | 82 (31; 277) | 75 (22; 276) | 75 (22; 276) | 75 (22; 276) | 76 (24; 277) | |
After | 26 (23; 35) | 24 (21; 28) | 24 (21; 28) | 24 (21; 28) | 25 (22; 29) | |
Beryl | Before | 18 (10; 35) | 13 (8; 17) | 13 (9; 18) | 13 (9; 18) | 15 (10; 20) |
During | 39 (18; 145) | 28 (13; 128) | 28 (14; 130) | 28 (14; 130) | 30 (15; 136) | |
After | 25 (16; 31) | 23 (12; 25) | 23 (13; 26) | 23 (13; 26) | 24 (14; 27) | |
Ultramarine | Before | 28 (19; 31) | 23 (14; 27) | 24 (14; 27) | 24 (15; 28) | 26 (16; 29) |
During | 33 (22; 59) | 25 (17; 32) | 26 (17; 33) | 26 (17; 33) | 28 (19; 37) | |
After | 39 (23; 48) | 27 (18; 38) | 28 (18; 39) | 28 (19; 39) | 34 (20; 42) | |
Before | 23 (14; 25) | 22 (12; 23) | 22 (12; 24) | 22 (13; 24) | 13 (22; 24) | |
Yellow | During | 36 (24; 90) | 26 (22; 82) | 27 (22; 82) | 27 (23; 82) | 29 (24; 83) |
After | 29 (23; 39) | 27 (17; 29) | 27 (18; 29) | 27 (18; 30) | 28 (20; 31) | |
P Aegean vs. Beryl | - | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
P Aegean vs. Ultramarine | - | 0.027 | 0.013 | 0.010 | 0.007 | 0.126 |
P Aegean vs. Yellow | - | 0.049 | 0.041 | 0.036 | 0.029 | 0.114 |
P Beryl vs. Ultramarine | - | 0.132 | 0.168 | 0.168 | 0.162 | 0.125 |
P Beryl vs. Yellow | - | 0.031 | 0.020 | 0.017 | 0.014 | 0.099 |
P Ultramarine vs. Yellow | - | 0.658 | 0.482 | 0.457 | 0.416 | 0.975 |
Measurements | PM10 | PM4 | PM2.5 | PM1 | Total | |
---|---|---|---|---|---|---|
Before | 15 (14; 17) | 14 (14; 16) | 14 (14; 16) | 14 (13; 15) | 16 (14; 23) | |
Amber | During | 32 (24; 172) | 31 (22; 170) | 30 (22; 170) | 30 (22; 170) | 42 (24; 176) |
After | 24 (22; 27) | 23 (21; 26) | 23 (21; 26) | 23 (20; 25) | 25 (22; 34) | |
Before | 11 (6; 13) | 11 (5; 13) | 11 (5; 13) | 10 (5; 13) | 12 (6; 17) | |
Blue | During | 19 (11; 27) | 17 (10; 26) | 10 (7; 26) | 17 (10; 26) | 22 (13; 35) |
After | 14 (10; 21) | 12 (9; 19) | 12 (9; 19) | 12 (9; 19) | 16 (11; 27) | |
Before | 12 (10; 15) | 11 (9; 14) | 10 (9; 13) | 10 (9; 13) | 14 (11; 21) | |
Bronze | During | 16 (12; 26) | 14 (11; 25) | 14 (11; 25) | 14 (11; 25) | 20 (13; 32) |
After | 20 (17; 25) | 18 (16; 24) | 18 (15; 24) | 18 (15; 23) | 23 (18; 31) | |
Before | 13 (9; 16) | 12 (8; 14) | 12 (7; 14) | 12 (7; 14) | 14 (11; 21) | |
Sienna | During | 80 (25; 1370) | 80 (23; 1370) | 79 (22; 1370) | 79 (22; 1370) | 90 (28; 1370) |
After | 23 (17; 27) | 22 (15; 26) | 22 (15; 25) | 22 (15; 25) | 25 (17; 30) | |
Before | 21 (15; 25) | 20 (14; 23) | 19 (14; 23) | 19 (14; 22) | 21 (15; 27) | |
Turquoise | During | 39 (26; 51) | 37 (24; 49) | 37 (24; 49) | 37 (24; 49) | 43 (31; 61) |
After | 44 (34; 51) | 43 (33; 49) | 42 (32; 49) | 42 (32; 49) | 47 (35; 58) | |
Before | 20 (12; 22) | 19 (11; 22) | 19 (10; 21) | 19 (10; 21) | 21 (13; 24) | |
Yellow | During | 24 (20; 33) | 23 (19; 32) | 22 (19; 32) | 22 (19; 32) | 26 (20; 42) |
After | 30 (28; 35) | 29 (27; 32) | 29 (27; 32) | 28 (26; 32) | 32 (28; 42) | |
P Amber vs. Blue | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
P Amber vs. Bronze | - | 0.002 | 0.003 | 0.003 | 0.004 | <0.001 |
P Amber vs. Sienna | - | 0.122 | 0.175 | 0.190 | 0.202 | 0.078 |
P Amber vs. Turquoise | - | 0.637 | 0.725 | 0.743 | 0.751 | 0.581 |
P Amber vs. Yellow | - | 0.102 | 0.120 | 0.125 | 0.133 | 0.032 |
P Blue vs. Bronze | - | 0.373 | 0.353 | <0.001 | 0.366 | 0.403 |
P Blue vs. Sienna | - | <0.001 | <0.001 | 0.353 | <0.001 | <0.001 |
P Blue vs. Turquoise | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
P Blue vs. Yellow | - | 0.020 | 0.019 | <0.001 | 0.022 | 0.027 |
P Bronze vs. Sienna | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
P Bronze vs. Turquoise | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
P Bronze vs. Yellow | - | 0.001 | 0.001 | 0.001 | 0.001 | 0.006 |
P Sienna vs. Turquoise | - | 0.247 | 0.279 | 0.290 | 0.301 | 0.195 |
P Sienna vs. Yellow | - | 0.001 | 0.003 | 0.003 | 0.004 | <0.001 |
P Turquoise vs. Yellow | - | <0.001 | <0.001 | 0.001 | 0.001 | <0.001 |
Measurements | PM10 | PM4 | PM2.5 | PM1 | Total | |
---|---|---|---|---|---|---|
Before | 17 (9; 19) | 17 (8; 19) | 16 (8; 18) | 16 (8; 18) | 18 (9; 22) | |
Golden Tobacco | During | 216 (61; 1280) | 214 (61; 1270) | 214 (61; 1270) | 214 (60; 1270) | 221 (63; 1280) |
After | 22 (13; 36) | 22 (12; 34) | 21 (12; 34) | 21 (11; 34) | 24 (19; 44) | |
Before | 15 (12; 17) | 14 (11; 16) | 14 (11; 15) | 13 (10; 15) | 15 (12; 22) | |
Mango | During | 20 (13; 200) | 17 (11; 199) | 16 (11; 199) | 16 (11; 195) | 34 (14; 212) |
After | 21 (13; 35) | 20 (11; 34) | 20 (11; 33) | 19 (11; 33) | 25 (16; 46) | |
Before | 15 (14; 17) | 14 (14; 15) | 14 (13; 15) | 14 (13; 15) | 15 (14; 19) | |
Mint | During | 26 (17; 304) | 25 (14; 304) | 25 (15; 304) | 25 (15; 300) | 42 (20; 314) |
After | 23 (18; 34) | 22 (16; 34) | 22 (16; 33) | 22 (16; 32) | 26 (19; 39) | |
Before | 15 (14; 17) | 15 (13; 16) | 15 (13; 16) | 14 (13; 16) | 16 (15; 23) | |
Royal Crème | During | 50 (17; 529) | 50 (16; 527) | 49 (15; 526) | 48 (15; 521) | 60 (19; 538) |
After | 25 (17; 36) | 23 (15; 34) | 22 (15; 33) | 22 (15; 32) | 28 (20; 47) | |
P Golden Tobacco vs. Mango | - | 0.055 | 0.042 | 0.039 | 0.035 | 0.140 |
P Golden Tobacco vs. Mint | - | 0.588 | 0.578 | 0.570 | 0.526 | 0.519 |
P Golden Tobacco vs. Royal Crème | - | 0.593 | 0.608 | 0.598 | 0.640 | 0.712 |
P Mango vs. Mint | - | 0.125 | 0.100 | 0.096 | 0.100 | 0.339 |
P Mango vs. Royal Crème | - | 0.008 | 0.006 | 0.005 | 0.005 | 0.045 |
P Mint vs. Royal Crème | - | 0.152 | 0.155 | 0.145 | 0.143 | 0.177 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peruzzi, M.; Cavarretta, E.; Frati, G.; Carnevale, R.; Miraldi, F.; Biondi-Zoccai, G.; Sciarretta, S.; Versaci, F.; Cammalleri, V.; Avino, P.; Protano, C.; Vitali, M. Comparative Indoor Pollution from Glo, Iqos, and Juul, Using Traditional Combustion Cigarettes as Benchmark: Evidence from the Randomized SUR-VAPES AIR Trial. Int. J. Environ. Res. Public Health 2020, 17, 6029. https://doi.org/10.3390/ijerph17176029
Peruzzi M, Cavarretta E, Frati G, Carnevale R, Miraldi F, Biondi-Zoccai G, Sciarretta S, Versaci F, Cammalleri V, Avino P, Protano C, Vitali M. Comparative Indoor Pollution from Glo, Iqos, and Juul, Using Traditional Combustion Cigarettes as Benchmark: Evidence from the Randomized SUR-VAPES AIR Trial. International Journal of Environmental Research and Public Health. 2020; 17(17):6029. https://doi.org/10.3390/ijerph17176029
Chicago/Turabian StylePeruzzi, Mariangela, Elena Cavarretta, Giacomo Frati, Roberto Carnevale, Fabio Miraldi, Giuseppe Biondi-Zoccai, Sebastiano Sciarretta, Francesco Versaci, Vittoria Cammalleri, Pasquale Avino, Carmela Protano, and Matteo Vitali. 2020. "Comparative Indoor Pollution from Glo, Iqos, and Juul, Using Traditional Combustion Cigarettes as Benchmark: Evidence from the Randomized SUR-VAPES AIR Trial" International Journal of Environmental Research and Public Health 17, no. 17: 6029. https://doi.org/10.3390/ijerph17176029