Comparative Indoor Pollution from Glo, Iqos, and Juul, Using Traditional Combustion Cigarettes as Benchmark: Evidence from the Randomized SUR-VAPES AIR Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Experiment
2.2. Analysis
3. Result
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- GBD 2015 Tobacco Collaborators. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: A systematic analysis from the Global Burden of Disease Study 2015. Lancet 2017, 389, 1885–1906. [Google Scholar] [CrossRef]
- Weishaar, H.B.; Ikegwuonu, T.; Smith, K.E.; Buckton, C.H.; Hilton, S. E-Cigarettes: A Disruptive Technology? An Analysis of Health Actors’ Positions on E-Cigarette Regulation in Scotland. Int. J. Environ. Res. Public Health 2019, 16, 3103. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, A.L.; Lee, J.S.; Bayer, R.; Curran, J. E-Cigarettes and the Harm-Reduction Continuum. N. Engl. J. Med. 2018, 378, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Lüdicke, F.; Ansari, S.M.; Lama, N.; Blanc, N.; Bosilkovska, M.; Donelli, A.; Picavet, P.; Baker, G.; Haziza, C.; Peitsch, M.; et al. Effects of Switching to a Heat-Not-Burn Tobacco Product on Biologically Relevant Biomarkers to Assess a Candidate Modified Risk Tobacco Product: A Randomized Trial. Cancer Epidemiol. Biomarkers Prev. 2019, 28, 1934–1943. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Duan, Z.; Kwok, J.; Binns, S.; Vera, L.E.; Kim, Y.; Szczypka, G.; Emery, S.L. Vaping versus JUULing: How the extraordinary growth and marketing of JUUL transformed the US retail e-cigarette market. Tob. Control 2018, 28, 146–151. [Google Scholar] [CrossRef]
- Al-Hamdani, M.; Hopkins, D.B.; Park, T. Vaping among youth and young adults: A “red alert” state. J. Public Health Policy 2020, 41, 63–69. [Google Scholar] [CrossRef]
- Ratajczak, A.; Jankowski, P.; Strus, P.; Feleszko, W. Heat Not Burn Tobacco Product—A New Global Trend: Impact of Heat-Not-Burn Tobacco Products on Public Health, a Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 409. [Google Scholar] [CrossRef]
- Gentry, S.; Forouhi, N.G.; Notley, C. Are Electronic Cigarettes an Effective Aid to Smoking Cessation or Reduction Among Vulnerable Groups? A Systematic Review of Quantitative and Qualitative Evidence. Nicotine. Tob. Res. 2019, 21, 602–616. [Google Scholar] [CrossRef]
- Gilmore, A.B.; Hartwell, G. E-cigarettes: Threat or opportunity? Eur. J. Public Health 2014, 24, 532–533. [Google Scholar] [CrossRef][Green Version]
- Shein, M.; Jeschke, G. Comparison of Free Radical Levels in the Aerosol from Conventional Cigarettes, Electronic Cigarettes, and Heat-Not-Burn Tobacco Products. Chem. Res. Toxicol. 2019, 32, 1289–1298. [Google Scholar] [CrossRef]
- Savdie, J.; Canha, N.; Buitrago, N.; Almeida, S.M. Passive Exposure to Pollutants from a New Generation of Cigarettes in Real Life Scenarios. Int. J. Environ. Res. Public Health 2020, 17, 3455. [Google Scholar] [CrossRef]
- Bitzer, Z.T.; Goel, R.; Trushin, N.; Muscat, J.; Richie, J.P., Jr. Free Radical Production and Characterization of Heat-Not-Burn Cigarettes in Comparison to Conventional and Electronic Cigarettes. Chem. Res. Toxicol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Protano, C.; Avino, P.; Manigrasso, M.; Vivaldi, V.; Perna, F.; Valeriani, F.; Vitali, M. Environmental Electronic Vape Exposure from Four Different Generations of Electronic Cigarettes: Airborne Particulate Matter Levels. Int. J. Environ. Res. Public Health 2018, 15, 2172. [Google Scholar] [CrossRef]
- Protano, C.; Manigrasso, M.; Avino, P.; Sernia, S.; Vitali, M. Second-hand smoke generated by new electronic device (IQOS and e-cigs) and traditional cigarettes: Submicron particle behaviour in human respiratory system. Ann. Ig. 2016, 28, 109–112. [Google Scholar] [CrossRef]
- Benowitz, N.L. Nicotine and coronary heart disease. Trends Cardiovasc. Med. 1991, 1, 315–321. [Google Scholar] [CrossRef]
- Protano, C.; Manigrasso, M.; Avino, P.; Vitali, M. Second-hand smoke generated by combustion and electronic smoking devices used in real scenarios: Ultrafine particle pollution and age-related dose assessment. Environ. Int. 2017, 107, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Hahad, O.; Kuntic, M.; Keaney, J.F.; Deanfield, J.E.; Daiber, A. Effects of tobacco cigarettes, e-cigarettes, and waterpipe smoking on endothelial function and clinical outcomes. Eur. Heart J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Pataka, A.; Kotoulas, S.; Chatzopoulos, E.; Grigoriou, I.; Sapalidis, K.; Kosmidis, C.; Vagionas, A.; Perdikouri, E.I.; Drevelegas, K.; Zarogoulidis, P.; et al. Acute Effects of a Heat-Not-Burn Tobacco Product on Pulmonary Function. Medicina (Kaunas) 2020, 2, 292. [Google Scholar] [CrossRef] [PubMed]
- Başaran, R.; Güven, N.M.; Eke, B.C. An Overview of iQOS® as a New Heat-Not-Burn Tobacco Product and Its Potential Effects on Human Health and the Environment. Turk. J. Pharm. Sci. 2019, 16, 371–374. [Google Scholar] [CrossRef]
- Adriaens, K.; Gucht, D.V.; Baeyens, F. IQOSTM vs. e-Cigarette vs. Tobacco Cigarette: A Direct Comparison of Short-Term Effects after Overnight-Abstinence. Int. J. Environ. Res. Public Health 2018, 15, 2902. [Google Scholar] [CrossRef]
- Forster, M.; McAughey, J.; Prasad, K.; Mavropoulou, E.; Proctor, C. Assessment of tobacco heating product THP1.0. Part 4: Characterisation of indoor air quality and odour. Regul. Toxicol. Pharmacol. 2018, 93, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Marcham, C.L.; Springston, J.P. Electronic cigarettes in the indoor environment. Rev. Environ. Health 2019, 34, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.S.; Xu, S. Associations of Flavored e-Cigarette Uptake With Subsequent Smoking Initiation and Cessation. JAMA Netw. Open 2020, 3, e203826. [Google Scholar] [CrossRef]
- Protano, C.; Manigrasso, M.; Cammalleri, V.; Biondi Zoccai, G.; Frati, G.; Avino, P.; Vitali, M. Impact of Electronic Alternatives to Tobacco Cigarettes on Indoor Air Particular Matter Levels. Int. J. Environ. Res. Public Health 2020, 17, 2947. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Monographs on the Evaluation of Carcinogenic Risks to Humans; WHO Press: Lyon, France, 2015. [Google Scholar]
- Nguyen, J.L.; Yang, W.; Ito, K.; Matte, T.D.; Shaman, J.; Kinney, P.L. Seasonal Influenza Infections and Cardiovascular Disease Mortality. JAMA Cardiol. 2016, 1, 274–281. [Google Scholar] [CrossRef]
- Shen, Y.S.; Lung, S.C. Multiple impacts and pathways of urban form and environmental factors on cardiovascular mortality. Sci. Total Environ. 2020, 738, 139512. [Google Scholar] [CrossRef]
- Braun, M.; Koger, F.; Klingelhöfer, D.; Müller, R.; Groneberg, D.A. Particulate Matter Emissions of Four Different Cigarette Types of One Popular Brand: Influence of Tobacco Strength and Additives. Int. J. Environ. Res. Public Health 2019, 16, 263. [Google Scholar] [CrossRef]
- Manigrasso, M.; Protano, C.; Vitali, M.; Avino, P. Where Do Ultrafine Particles and Nano-Sized Particles Come From? J. Alzheimers Dis. 2019, 68, 1371–1390. [Google Scholar] [CrossRef]
- Manigrasso, M.; Vitali, M.; Protano, C.; Avino, P. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room. Sci. Total Environ. 2017, 598, 1015–1026. [Google Scholar] [CrossRef]
- Manigrasso, M.; Vitali, M.; Protano, C.; Avino, P. Ultrafine particles in domestic environments: Regional doses deposited in the human respiratory system. Environ. Int. 2018, 118, 135. [Google Scholar] [CrossRef]
- Hiscock, R.; Silver, K.; Zatoński, M.; Gilmore, A.B. Tobacco industry tactics to circumvent and undermine the menthol cigarette ban in the UK. Tob. Control 2020. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S. Are e-cigarettes beneficial for public health: Hume’s guillotine-The debate continues? Indian Heart J. 2017, 69, 810–813. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, A.K.M.; De-Loyde, K.; Brocklebank, L.A.; Maynard, O.M.; Marteau, T.M.; Hollands, G.J.; Fletcher, P.C.; Attwood, A.S.; Morris, R.W.; Munafò, M.R. Tobacco and electronic cigarette cues for smoking and vaping: An online experimental study. BMC Res. Notes 2020, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Schober, W.; Fembacher, L.; Frenzen, A.; Fromme, H. Passive exposure to pollutants from conventional cigarettes and new electronic smoking devices (IQOS, e-cigarette) in passenger cars. Int. J. Environ. Res. Public Health 2019, 222, 486–493. [Google Scholar] [CrossRef]
- Tzortzi, A.; Teloniatis, S.; Matiampa, G.; Bakelas, G.; Tzavara, C.; Vyzikidou, V.K.; Vardavas, C.; Behrakis, P.; Fernandez, E. TackSHS Project Investigators. Passive exposure of non-smokers to E-Cigarette aerosols: Sensory irritation, timing and association with volatile organic compounds. Environ. Res. 2020, 182, 108963. [Google Scholar] [CrossRef] [PubMed]
- Papaefstathiou, E.; Stylianou, M.; Agapiou, A. Main and side stream effects of electronic cigarettes. J. Environ. Manag. 2019, 238, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Fait, B.W.; Thompson, D.C.; Mose, T.N.; Jatlow, P.; Jordt, S.E.; Picciotto, M.R.; Mineur, Y.S. Menthol disrupts nicotine’s psychostimulant properties in an age and sex-dependent manner in C57BL/6J mice. Behav. Brain Res. 2017, 334, 72–77. [Google Scholar] [CrossRef]
- Girvalaki, C.; Tzatzarakis, M.; Kyriakos, C.N.; Vardavas, A.I.; Stivaktakis, P.D.; Kavvalakis, M.; Tsatsakis, A.; Vardavas, C. Composition and chemical health hazards of the most common electronic cigarette liquids in nine European countries. Inhal. Toxicol. 2018, 30, 361–369. [Google Scholar] [CrossRef]
- Kim, H.; Lim, J.; Buehler, S.S.; Brinkman, M.C.; Johnson, N.M.; Wilson, L.; Cross, K.S.; Clark, P.I. Role of sweet and other flavours in liking and disliking of electronic cigarettes. Tob. Control 2016, 25, ii55–ii61. [Google Scholar] [CrossRef]
- Kuga, K.; Ito, K.; Chen, W.; Wang, P.; Kumagai, K. A numerical investigation of the potential effects of e-cigarette smoking on local tissue dosimetry and the deterioration of indoor air quality. Indoor 2020. [Google Scholar] [CrossRef]
- Litt, M.D.; Duffy, V.; Oncken, C. Cigarette smoking and electronic cigarette vaping patterns as a function of e-cigarette flavourings. Tob. Control 2016, 25, ii67–ii72. [Google Scholar] [CrossRef] [PubMed]
- Mead, E.L.; Duffy, V.; Oncken, C.; Litt, M.D. E-cigarette palatability in smokers as a function of flavorings, nicotine content and propylthiouracil (PROP) taster phenotype. Addict. Behav. 2019, 91, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Oncken, C.A.; Litt, M.D.; McLaughlin, L.D.; Burki, N.A. Nicotine concentrations with electronic cigarette use: Effects of sex and flavor. Nicotine Tob. Res. 2015, 17, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Voos, N.; Smith, D.; Kaiser, L.; Mahoney, M.C.; Bradizza, C.M.; Kozlowski, L.T.; Benowitz, N.L.; O’Connor, R.J.; Goniewicz, M.L. Effect of e-cigarette flavors on nicotine delivery and puffing topography: Results from a randomized clinical trial of daily smokers. Psychopharmacology 2020, 237, 491–502. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (US); National Center for Chronic Disease Prevention and Health Promotion (US); Office on Smoking and Health (US). How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General; Centers for Disease Control and Prevention (US): Atlanta, GA, USA, 2010. Available online: https://www.ncbi.nlm.nih.gov/books/NBK53017/ (accessed on 15 July 2020).
- Biondi-Zoccai, G.; Carnevale, R.; Vitali, M.; Tritapepe, L.; Martinelli, O.; Macrina, F.; Bullen, C.; Peruzzi, M.; Cavarretta, E.; Marullo, A.G.; et al. A randomized trial comparing the acute coronary, systemic, and environmental effects of electronic vaping cigarettes versus heat-not-burn cigarettes in smokers of combustible cigarettes undergoing invasive coronary assessment: Rationale and design of the SUR-VAPES 3 trial. Minerva Cardioangiol. 2020. [Google Scholar] [CrossRef]
- Lelieveld, J.; Münzel, T. Air pollution, the underestimated cardiovascular risk factor. Eur. Heart J. 2020, 41, 904–905. [Google Scholar] [CrossRef]
- Unger, M.; Unger, D.W. E-cigarettes/electronic nicotine delivery systems: A word of caution on health and new product development. J. Thorac. Dis. 2018, 10, S2588–S2592. [Google Scholar] [CrossRef]
- Blount, B.C.; Karwowski, M.P.; Shields, P.G.; Morel-Espinosa, M.; Valentin-Blasini, L.; Gardner, M.; Braselton, M.; Brosius, C.R.; Caron, K.T.; Chambers, D.; et al. Lung Injury Response Laboratory Working Group. Vitamin E Acetate in Bronchoalveolar-Lavage Fluid Associated with EVALI. N. Engl. J. Med. 2020, 382, 697–705. [Google Scholar] [CrossRef]
- Nitzkin, J.L. The Case in Favor of E-Cigarettes for Tobacco Harm Reduction. Int. J. Environ. Res. Public Health 2014, 11, 6459–6471. [Google Scholar] [CrossRef]




| Device | Timing | PM10 | PM4 | PM2.5 | PM1 | Total |
|---|---|---|---|---|---|---|
| Glo | Before | 16 (11; 24) | 14 (10; 23) | 14 (10; 23) | 14 (10; 22) | 19 (12; 29) |
| During | 31 (19; 120) | 29 (17; 120) | 28 (17; 120) | 28 (16; 28) | 39 (24; 127) | |
| After | 25 (19; 31) | 25 (18; 29) | 24 (18; 29) | 24 (18; 29) | 28 (22; 39) | |
| Iqos | Before | 14 (11; 19) | 13 (10; 17) | 13 (10; 17) | 13 (10; 17) | 16 (12; 23) |
| During | 26 (17; 59) | 25 (16; 57) | 25 (15; 57) | 25 (15; 57) | 31 (20; 63) | |
| After | 25 (19; 31) | 25 (17; 30) | 24 (17; 30) | 24 (17; 29) | 28 (21; 39) | |
| Before | 15 (13; 18) | 14 (12; 17) | 14 (12; 16) | 14 (12; 16) | 16 (14; 22) | |
| Juul | During | 75 (17; 565) | 73 (16; 565) | 73 (15; 565) | 73 (15; 559) | 76 (20; 565) |
| After | 23 (16; 35) | 22 (14; 34) | 21 (14; 33) | 21 (14; 33) | 26 (18; 43) | |
| Before | 10 (6; 12) | 9 (5; 11) | 8 (4; 11) | 8 (4; 11) | 10 (6; 14) | |
| TCC | During | 1245 (392; 3360) | 1245 (392; 3360) | 1245 (391; 3360) | 1245 (391; 3350) | 1250 (401; 3360) |
| After | 1400 (896; 1580) | 1390 (894; 1580) | 1390 (894; 1580) | 1390 (892; 1580) | 1400 (905; 1580) | |
| P Glo vs. Iqos | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
| P Glo vs. Juul | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
| P Glo vs. TCC | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
| P Iqos vs. Juul | - | 0.016 | 0.031 | 0.038 | 0.045 | 0.021 |
| P Iqos vs. TCC | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
| P Juul vs. TCC | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
| Flavor | Timing | PM10 | PM4 | PM2.5 | PM1 | Total |
|---|---|---|---|---|---|---|
| Aegean | Before | 12 (9; 18) | 10 (8; 11) | 10 (8; 11) | 10 (8; 12) | 11 (9; 13) |
| During | 82 (31; 277) | 75 (22; 276) | 75 (22; 276) | 75 (22; 276) | 76 (24; 277) | |
| After | 26 (23; 35) | 24 (21; 28) | 24 (21; 28) | 24 (21; 28) | 25 (22; 29) | |
| Beryl | Before | 18 (10; 35) | 13 (8; 17) | 13 (9; 18) | 13 (9; 18) | 15 (10; 20) |
| During | 39 (18; 145) | 28 (13; 128) | 28 (14; 130) | 28 (14; 130) | 30 (15; 136) | |
| After | 25 (16; 31) | 23 (12; 25) | 23 (13; 26) | 23 (13; 26) | 24 (14; 27) | |
| Ultramarine | Before | 28 (19; 31) | 23 (14; 27) | 24 (14; 27) | 24 (15; 28) | 26 (16; 29) |
| During | 33 (22; 59) | 25 (17; 32) | 26 (17; 33) | 26 (17; 33) | 28 (19; 37) | |
| After | 39 (23; 48) | 27 (18; 38) | 28 (18; 39) | 28 (19; 39) | 34 (20; 42) | |
| Before | 23 (14; 25) | 22 (12; 23) | 22 (12; 24) | 22 (13; 24) | 13 (22; 24) | |
| Yellow | During | 36 (24; 90) | 26 (22; 82) | 27 (22; 82) | 27 (23; 82) | 29 (24; 83) |
| After | 29 (23; 39) | 27 (17; 29) | 27 (18; 29) | 27 (18; 30) | 28 (20; 31) | |
| P Aegean vs. Beryl | - | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
| P Aegean vs. Ultramarine | - | 0.027 | 0.013 | 0.010 | 0.007 | 0.126 |
| P Aegean vs. Yellow | - | 0.049 | 0.041 | 0.036 | 0.029 | 0.114 |
| P Beryl vs. Ultramarine | - | 0.132 | 0.168 | 0.168 | 0.162 | 0.125 |
| P Beryl vs. Yellow | - | 0.031 | 0.020 | 0.017 | 0.014 | 0.099 |
| P Ultramarine vs. Yellow | - | 0.658 | 0.482 | 0.457 | 0.416 | 0.975 |
| Measurements | PM10 | PM4 | PM2.5 | PM1 | Total | |
|---|---|---|---|---|---|---|
| Before | 15 (14; 17) | 14 (14; 16) | 14 (14; 16) | 14 (13; 15) | 16 (14; 23) | |
| Amber | During | 32 (24; 172) | 31 (22; 170) | 30 (22; 170) | 30 (22; 170) | 42 (24; 176) |
| After | 24 (22; 27) | 23 (21; 26) | 23 (21; 26) | 23 (20; 25) | 25 (22; 34) | |
| Before | 11 (6; 13) | 11 (5; 13) | 11 (5; 13) | 10 (5; 13) | 12 (6; 17) | |
| Blue | During | 19 (11; 27) | 17 (10; 26) | 10 (7; 26) | 17 (10; 26) | 22 (13; 35) |
| After | 14 (10; 21) | 12 (9; 19) | 12 (9; 19) | 12 (9; 19) | 16 (11; 27) | |
| Before | 12 (10; 15) | 11 (9; 14) | 10 (9; 13) | 10 (9; 13) | 14 (11; 21) | |
| Bronze | During | 16 (12; 26) | 14 (11; 25) | 14 (11; 25) | 14 (11; 25) | 20 (13; 32) |
| After | 20 (17; 25) | 18 (16; 24) | 18 (15; 24) | 18 (15; 23) | 23 (18; 31) | |
| Before | 13 (9; 16) | 12 (8; 14) | 12 (7; 14) | 12 (7; 14) | 14 (11; 21) | |
| Sienna | During | 80 (25; 1370) | 80 (23; 1370) | 79 (22; 1370) | 79 (22; 1370) | 90 (28; 1370) |
| After | 23 (17; 27) | 22 (15; 26) | 22 (15; 25) | 22 (15; 25) | 25 (17; 30) | |
| Before | 21 (15; 25) | 20 (14; 23) | 19 (14; 23) | 19 (14; 22) | 21 (15; 27) | |
| Turquoise | During | 39 (26; 51) | 37 (24; 49) | 37 (24; 49) | 37 (24; 49) | 43 (31; 61) |
| After | 44 (34; 51) | 43 (33; 49) | 42 (32; 49) | 42 (32; 49) | 47 (35; 58) | |
| Before | 20 (12; 22) | 19 (11; 22) | 19 (10; 21) | 19 (10; 21) | 21 (13; 24) | |
| Yellow | During | 24 (20; 33) | 23 (19; 32) | 22 (19; 32) | 22 (19; 32) | 26 (20; 42) |
| After | 30 (28; 35) | 29 (27; 32) | 29 (27; 32) | 28 (26; 32) | 32 (28; 42) | |
| P Amber vs. Blue | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
| P Amber vs. Bronze | - | 0.002 | 0.003 | 0.003 | 0.004 | <0.001 |
| P Amber vs. Sienna | - | 0.122 | 0.175 | 0.190 | 0.202 | 0.078 |
| P Amber vs. Turquoise | - | 0.637 | 0.725 | 0.743 | 0.751 | 0.581 |
| P Amber vs. Yellow | - | 0.102 | 0.120 | 0.125 | 0.133 | 0.032 |
| P Blue vs. Bronze | - | 0.373 | 0.353 | <0.001 | 0.366 | 0.403 |
| P Blue vs. Sienna | - | <0.001 | <0.001 | 0.353 | <0.001 | <0.001 |
| P Blue vs. Turquoise | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
| P Blue vs. Yellow | - | 0.020 | 0.019 | <0.001 | 0.022 | 0.027 |
| P Bronze vs. Sienna | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
| P Bronze vs. Turquoise | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
| P Bronze vs. Yellow | - | 0.001 | 0.001 | 0.001 | 0.001 | 0.006 |
| P Sienna vs. Turquoise | - | 0.247 | 0.279 | 0.290 | 0.301 | 0.195 |
| P Sienna vs. Yellow | - | 0.001 | 0.003 | 0.003 | 0.004 | <0.001 |
| P Turquoise vs. Yellow | - | <0.001 | <0.001 | 0.001 | 0.001 | <0.001 |
| Measurements | PM10 | PM4 | PM2.5 | PM1 | Total | |
|---|---|---|---|---|---|---|
| Before | 17 (9; 19) | 17 (8; 19) | 16 (8; 18) | 16 (8; 18) | 18 (9; 22) | |
| Golden Tobacco | During | 216 (61; 1280) | 214 (61; 1270) | 214 (61; 1270) | 214 (60; 1270) | 221 (63; 1280) |
| After | 22 (13; 36) | 22 (12; 34) | 21 (12; 34) | 21 (11; 34) | 24 (19; 44) | |
| Before | 15 (12; 17) | 14 (11; 16) | 14 (11; 15) | 13 (10; 15) | 15 (12; 22) | |
| Mango | During | 20 (13; 200) | 17 (11; 199) | 16 (11; 199) | 16 (11; 195) | 34 (14; 212) |
| After | 21 (13; 35) | 20 (11; 34) | 20 (11; 33) | 19 (11; 33) | 25 (16; 46) | |
| Before | 15 (14; 17) | 14 (14; 15) | 14 (13; 15) | 14 (13; 15) | 15 (14; 19) | |
| Mint | During | 26 (17; 304) | 25 (14; 304) | 25 (15; 304) | 25 (15; 300) | 42 (20; 314) |
| After | 23 (18; 34) | 22 (16; 34) | 22 (16; 33) | 22 (16; 32) | 26 (19; 39) | |
| Before | 15 (14; 17) | 15 (13; 16) | 15 (13; 16) | 14 (13; 16) | 16 (15; 23) | |
| Royal Crème | During | 50 (17; 529) | 50 (16; 527) | 49 (15; 526) | 48 (15; 521) | 60 (19; 538) |
| After | 25 (17; 36) | 23 (15; 34) | 22 (15; 33) | 22 (15; 32) | 28 (20; 47) | |
| P Golden Tobacco vs. Mango | - | 0.055 | 0.042 | 0.039 | 0.035 | 0.140 |
| P Golden Tobacco vs. Mint | - | 0.588 | 0.578 | 0.570 | 0.526 | 0.519 |
| P Golden Tobacco vs. Royal Crème | - | 0.593 | 0.608 | 0.598 | 0.640 | 0.712 |
| P Mango vs. Mint | - | 0.125 | 0.100 | 0.096 | 0.100 | 0.339 |
| P Mango vs. Royal Crème | - | 0.008 | 0.006 | 0.005 | 0.005 | 0.045 |
| P Mint vs. Royal Crème | - | 0.152 | 0.155 | 0.145 | 0.143 | 0.177 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peruzzi, M.; Cavarretta, E.; Frati, G.; Carnevale, R.; Miraldi, F.; Biondi-Zoccai, G.; Sciarretta, S.; Versaci, F.; Cammalleri, V.; Avino, P.; et al. Comparative Indoor Pollution from Glo, Iqos, and Juul, Using Traditional Combustion Cigarettes as Benchmark: Evidence from the Randomized SUR-VAPES AIR Trial. Int. J. Environ. Res. Public Health 2020, 17, 6029. https://doi.org/10.3390/ijerph17176029
Peruzzi M, Cavarretta E, Frati G, Carnevale R, Miraldi F, Biondi-Zoccai G, Sciarretta S, Versaci F, Cammalleri V, Avino P, et al. Comparative Indoor Pollution from Glo, Iqos, and Juul, Using Traditional Combustion Cigarettes as Benchmark: Evidence from the Randomized SUR-VAPES AIR Trial. International Journal of Environmental Research and Public Health. 2020; 17(17):6029. https://doi.org/10.3390/ijerph17176029
Chicago/Turabian StylePeruzzi, Mariangela, Elena Cavarretta, Giacomo Frati, Roberto Carnevale, Fabio Miraldi, Giuseppe Biondi-Zoccai, Sebastiano Sciarretta, Francesco Versaci, Vittoria Cammalleri, Pasquale Avino, and et al. 2020. "Comparative Indoor Pollution from Glo, Iqos, and Juul, Using Traditional Combustion Cigarettes as Benchmark: Evidence from the Randomized SUR-VAPES AIR Trial" International Journal of Environmental Research and Public Health 17, no. 17: 6029. https://doi.org/10.3390/ijerph17176029
APA StylePeruzzi, M., Cavarretta, E., Frati, G., Carnevale, R., Miraldi, F., Biondi-Zoccai, G., Sciarretta, S., Versaci, F., Cammalleri, V., Avino, P., Protano, C., & Vitali, M. (2020). Comparative Indoor Pollution from Glo, Iqos, and Juul, Using Traditional Combustion Cigarettes as Benchmark: Evidence from the Randomized SUR-VAPES AIR Trial. International Journal of Environmental Research and Public Health, 17(17), 6029. https://doi.org/10.3390/ijerph17176029

