Serum Per- and Polyfluoroalkyl Substances Are Associated with Increased Hearing Impairment: A Re-Analysis of the National Health and Nutrition Examination Survey Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Exposure Assessment—Serum PFAS
2.3. Audiometric Measures
2.4. Statistical Analysis
3. Results
4. Discussions
Supplementary Materials
Funding
Conflicts of Interest
References
- Olusanya, B.O.; Neumann, K.J.; Saunders, J.E. The global burden of disabling hearing impairment: A call to action. Bull. World Health Organ. 2014, 92, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Carroll, Y.I.; Eichwald, J.; Scinicariello, F.; Hoffman, H.J.; Deitchman, S.; Radke, M.S.; Themann, C.L.; Breysse, P. Vital signs: Noise-induced hearing loss among adults—United States 2011–2012. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 139. [Google Scholar] [CrossRef] [PubMed]
- Kurabi, A.; Keithley, E.M.; Housley, G.D.; Ryan, A.F.; Wong, A.C.-Y. Cellular mechanisms of noise-induced hearing loss. Hear. Res. 2017, 349, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, P.; Schmiedge, J.; Manchaiah, V.; Swapna, S.; Dhandayutham, S.; Kothandaraman, P.P. Ototoxicity: A Challenge in Diagnosis and Treatment. J. Audiol. Otol. 2018, 22, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Fabelova, L.; Loffredo, C.A.; Klanova, J.; Hilscherova, K.; Horvat, M.; Tihanyi, J.; Richterova, D.; Palkovicova Murinova, L.; Wimmerova, S.; Sisto, R.; et al. Environmental ototoxicants, a potential new class of chemical stressors. Environ. Res. 2019, 171, 378–394. [Google Scholar] [CrossRef]
- Nakhooda, F.; Sartorius, B.; Govender, S.M. The effects of combined exposure of solvents and noise on auditory function—A systematic review and meta-analysis. S. Afr. J. Commun. Disord. 2019, 66, e1–e11. [Google Scholar] [CrossRef]
- Li, Q.Q.; Loganath, A.; Chong, Y.S.; Tan, J.; Philip Obbard, J. Persistent organic pollutants and adverse health effects in humans. J. Toxicol. Environ. Health Part A 2006, 69, 1987–2005. [Google Scholar]
- Li, M.C.; Wu, H.P.; Yang, C.Y.; Chen, P.C.; Lambert, G.H.; Leon Guo, Y. Gestational exposure to polychlorinated biphenyls and dibenzofurans induced asymmetric hearing loss: Yucheng children study. Environ. Res. 2015, 137, 65–71. [Google Scholar] [CrossRef]
- Grandjean, P.; Weihe, P.; Burse, V.W.; Needham, L.L.; Storr-Hansen, E.; Heinzow, B.; Debes, F.; Murata, K.; Simonsen, H.; Ellefsen, P.; et al. Neurobehavioral deficits associated with PCB in 7-year-old children prenatally exposed to seafood neurotoxicants. Neurotoxicol. Teratol. 2001, 23, 305–317. [Google Scholar] [CrossRef]
- Khalil, N.; Chen, A.; Lee, M.; Czerwinski, S.A.; Ebert, J.R.; DeWitt, J.C.; Kannan, K. Association of Perfluoroalkyl Substances, Bone Mineral Density, and Osteoporosis in the U.S. Population in NHANES 2009-2010. Environ. Health Perspect. 2016, 124, 81–87. [Google Scholar] [CrossRef]
- Shiue, I. Urinary heavy metals, phthalates, perchlorate, nitrate, thiocyanate, hydrocarbons, and polyfluorinated compounds are associated with adult hearing disturbance: USA NHANES, 2011-2012. Environ. Sci. Pollut. Res. Int. 2015, 22, 20306–20311. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Park, S.K. Perfluoroalkyl substances exposure and hearing impairment in US adults. Environ. Res. 2020, 187, 109686. [Google Scholar] [CrossRef]
- Li, M.-C.; Mínguez-Alarcón, L.; Bellavia, A.; Williams, P.L.; James-Todd, T.; Hauser, R.; Chavarro, J.E.; Chiu, Y.-H. Serum beta-carotene modifies the association between phthalate mixtures and insulin resistance: The National Health and Nutrition Examination Survey 2003–2006. Environ. Res. 2019, 178, 108729. [Google Scholar] [CrossRef] [PubMed]
- Calafat, A.M.; Kuklenyik, Z.; Reidy, J.A.; Caudill, S.P.; Tully, J.S.; Needham, L.L. Serum concentrations of 11 polyfluoroalkyl compounds in the u.s. population: Data from the national health and nutrition examination survey (NHANES). Environ. Sci. Technol. 2007, 41, 2237–2242. [Google Scholar] [CrossRef]
- Su, B.M.; Chan, D.K. Prevalence of Hearing Loss in US Children and Adolescents: Findings From NHANES 1988–2010. JAMA Otolaryngol. Head Neck Surg. 2017, 143, 920–927. [Google Scholar] [CrossRef] [PubMed]
- VanderWeele, T.J.; Ding, P. Sensitivity analysis in observational research: Introducing the E-value. Ann. Intern. Med. 2017, 167, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Butenhoff, J.L.; Ehresman, D.J.; Chang, S.C.; Parker, G.A.; Stump, D.G. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats: Developmental neurotoxicity. Reprod. Toxicol. 2009, 27, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Butenhoff, J.L.; Bjork, J.A.; Chang, S.C.; Ehresman, D.J.; Parker, G.A.; Das, K.; Lau, C.; Lieder, P.H.; van Otterdijk, F.M.; Wallace, K.B. Toxicological evaluation of ammonium perfluorobutyrate in rats: Twenty-eight-day and ninety-day oral gavage studies. Reprod. Toxicol. 2012, 33, 513–530. [Google Scholar] [CrossRef]
- Morrill, S.; He, D.Z.Z. Apoptosis in inner ear sensory hair cells. J. Otol. 2017, 12, 151–164. [Google Scholar] [CrossRef]
- Fettiplace, R.; Nam, J.H. Tonotopy in calcium homeostasis and vulnerability of cochlear hair cells. Hear. Res. 2019, 376, 11–21. [Google Scholar] [CrossRef]
- Coperchini, F.; Awwad, O.; Rotondi, M.; Santini, F.; Imbriani, M.; Chiovato, L. Thyroid disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). J. Endocrinol. Investig. 2017, 40, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Poirrier, A.L.; Pincemail, J.; Van Den Ackerveken, P.; Lefebvre, P.P.; Malgrange, B. Oxidative stress in the cochlea: An update. Curr. Med. Chem. 2010, 17, 3591–3604. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, L.; Zhang, W.; Zhang, J.; Du, X.; Huang, Q.; Tian, M.; Shen, H. Serum metabolome biomarkers associate low-level environmental perfluorinated compound exposure with oxidative /nitrosative stress in humans. Environ. Pollut. 2017, 229, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Kamendulis, L.M.; Wu, Q.; Sandusky, G.E.; Hocevar, B.A. Perfluorooctanoic acid exposure triggers oxidative stress in the mouse pancreas. Toxicol. Rep. 2014, 1, 513–521. [Google Scholar] [CrossRef]
- Ma, Q. Induction of CYP1A1. The AhR/DRE paradigm transcription, receptor regulation, and expanding biological roles. Curr. Drug Metab. 2001, 2, 149–164. [Google Scholar] [CrossRef]
- La Rocca, C.; Alessi, E.; Bergamasco, B.; Caserta, D.; Ciardo, F.; Fanello, E.; Focardi, S.; Guerranti, C.; Stecca, L.; Moscarini, M.; et al. Exposure and effective dose biomarkers for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in infertile subjects: Preliminary results of the PREVIENI project. Int. J. Hyg. Environ. Health 2012, 215, 206–211. [Google Scholar] [CrossRef]
- Long, M.; Ghisari, M.; Bonefeld-Jorgensen, E.C. Effects of perfluoroalkyl acids on the function of the thyroid hormone and the aryl hydrocarbon receptor. Environ. Sci. Pollut. Res. Int. 2013, 20, 8045–8056. [Google Scholar] [CrossRef]
Variables | N = 2525 |
---|---|
Age (years) | |
20–29 | 506 (20.0%) |
30–39 | 495 (19.6%) |
40–59 | 855 (33.9%) |
≥60 | 669 (26.5%) |
Gender | |
Female | 1349 (53.4%) |
Male | 1176 (46.6%) |
Body Mass Index | |
<18.5 | 29 (1.2%) |
18.5–24.99 | 718 (28.4%) |
25–29.99 | 825 (32.7%) |
≥30 | 953 (37.7%) |
Education level | |
Less Than 9th Grade | 237 (9.4%) |
9–11th Grade (Includes 12th grade with no diploma) | 342 (13.5%) |
High School Grad/GED or Equivalent | 550 (21.8%) |
Some College or AA degree | 786 (31.1%) |
College Graduate or above | 610 (24.2%) |
Family poverty-income ratio * | |
<1 | 512 (20.3%) |
1–4.99 | 1560 (61.8%) |
≥5 | 453 (17.9%) |
Race/Ethnicity | |
Mexican American | 412 (16.3%) |
Other Hispanic | 259 (10.3%) |
Non-Hispanic White | 1016 (40.2%) |
Non-Hispanic Black | 517 (20.5%) |
Other Race | 321 (12.7%) |
Range of Each Quartile | |||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Median | |
PFOA | 0.07–1.36 | 1.37–2.24 | 2.25–3.61 | 3.62–51.1 | 2.25 |
PFOS | 0.14–4.02 | 4.03–7.98 | 8.0–17.0 | 17.1–392 | 8.00 |
PFNA | 0.06–0.49 | 0.50–0.79 | 0.80–1.20 | 1.21–19.4 | 0.8 |
PFHS | 0.07–0.70 | 0.71–1.29 | 1.30–2.28 | 2.29–36.5 | 1.3 |
Hearing Threshold | |||||||
---|---|---|---|---|---|---|---|
PFAS | 500 | 1K | 2K | 3K | 4K | 6K | 8K |
PFOA | |||||||
Q1 | Referent | Referent | Referent | Referent | Referent | Referent | Referent |
Q2 | 0.83 (0.54–1.27) | 1.21 (0.79–1.85) | 1.41 (0.95–2.10) | 1.39 (0.98–1.98) | 1.31 (0.95–1.83) | 1.08 (0.82–1.43) | 1.24 (0.93–1.66) |
Q3 | 0.89 (0.58–1.35) | 1.22 (0.80–1.85) | 1.26 (0.85–1.87) | 1.38 (0.98–1.96) | 1.12 (0.81–1.56) | 1.08 (0.81–1.44) | 0.87 (0.65–1.18) |
Q4 | 1.06 (0.70–1.60) | 1.21 (0.80–1.85) | 1.76 (1.20–2.60) | 1.64 (1.16–2.34) | 1.41 (1.01–1.98) | 1.16 (0.86–1.56) | 0.87 (0.64–1.20) |
P-trend | 0.36 | 0.58 | <0.01 | 0.02 | 0.11 | 0.38 | 0.11 |
PFOS | |||||||
Q1 | Referent | Referent | Referent | Referent | Referent | Referent | Referent |
Q2 | 0.83 (0.53–1.31) | 0.77 (0.49–1.22) | 0.70 (0.46–1.06) | 0.76 (0.53–1.08) | 0.69 (0.50–0.97) | 0.99 (0.75–1.31) | 1.03 (0.77–1.37) |
Q3 | 0.91 (0.59–1.39) | 1.07 (0.71–1.63) | 1.12 (0.76–1.65) | 1.00 (0.71–1.41) | 0.89 (0.65–1.24) | 1.14 (0.86–1.51) | 0.98 (0.72–1.32) |
Q4 | 1.41 (0.93–2.17) | 1.16 (0.76–1.77) | 1.60 (1.09–2.37) | 1.20 (0.85–1.71) | 1.02 (0.73–1.44) | 1.11 (0.82–1.50) | 0.99 (0.72–1.35) |
P-trend | <0.01 | 0.13 | <0.0001 | 0.02 | 0.14 | 0.42 | 0.85 |
PFNA | |||||||
Q1 | Referent | Referent | Referent | Referent | Referent | Referent | Referent |
Q2 | 1.53 (0.99–2.34) | 1.43 (0.93–2.19) | 1.61 (1.09–2.39) | 1.12 (0.80–1.58) | 1.28 (0.93–1.77) | 1.09 (0.83–1.44) | 1.35 (1.01–1.82) |
Q3 | 1.23 (0.81–1.90) | 1.36 (0.90–2.07) | 1.29 (0.87–1.90) | 0.98 (0.70–1.37) | 1.12 (0.81–1.55) | 1.03 (0.78–1.37) | 1.49 (1.10–2.00) |
Q4 | 1.37 (0.90–2.10) | 1.39 (0.91–2.12) | 1.68 (1.14–2.46) | 1.52 (1.08–2.13) | 1.53 (1.10–2.14) | 1.30 (0.97–1.75) | 1.59 (1.16–2.17) |
P-trend | 0.45 | 0.33 | 0.05 | <0.01 | 0.02 | 0.09 | <0.01 |
PFHxS | |||||||
Q1 | Referent | Referent | Referent | Referent | Referent | Referent | Referent |
Q2 | 0.79 (0.52–1.21) | 1.08 (0.72–1.65) | 1.13 (0.76–1.68) | 1.30 (0.91–1.85) | 0.89 (0.63–1.24) | 0.95 (0.72–1.27) | 1.06 (0.78–1.42) |
Q3 | 0.89 (0.59–1.34) | 0.96 (0.63–1.44) | 1.21 (0.83–1.77) | 1.29 (0.91–1.82) | 0.87 (0.62–1.21) | 1.01 (0.76–1.35) | 1.11 (0.82–1.50) |
Q4 | 1.26 (0.85–1.87) | 1.44 (0.97–2.15) | 1.73 (1.19–2.52) | 1.44 (1.01–2.05) | 0.93 (0.66–1.31) | 0.94 (0.70–1.28) | 0.84 (0.61–1.15) |
P-trend | 0.04 | 0.03 | <0.01 | 0.10 | 0.96 | 0.74 | 0.14 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.-C. Serum Per- and Polyfluoroalkyl Substances Are Associated with Increased Hearing Impairment: A Re-Analysis of the National Health and Nutrition Examination Survey Data. Int. J. Environ. Res. Public Health 2020, 17, 5836. https://doi.org/10.3390/ijerph17165836
Li M-C. Serum Per- and Polyfluoroalkyl Substances Are Associated with Increased Hearing Impairment: A Re-Analysis of the National Health and Nutrition Examination Survey Data. International Journal of Environmental Research and Public Health. 2020; 17(16):5836. https://doi.org/10.3390/ijerph17165836
Chicago/Turabian StyleLi, Ming-Chieh. 2020. "Serum Per- and Polyfluoroalkyl Substances Are Associated with Increased Hearing Impairment: A Re-Analysis of the National Health and Nutrition Examination Survey Data" International Journal of Environmental Research and Public Health 17, no. 16: 5836. https://doi.org/10.3390/ijerph17165836
APA StyleLi, M.-C. (2020). Serum Per- and Polyfluoroalkyl Substances Are Associated with Increased Hearing Impairment: A Re-Analysis of the National Health and Nutrition Examination Survey Data. International Journal of Environmental Research and Public Health, 17(16), 5836. https://doi.org/10.3390/ijerph17165836