Prenatal Fine Particulate Matter (PM2.5) Exposure and Pregnancy Outcomes—Analysis of Term Pregnancies in Poland
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ten threats to global health in 2019. Available online: https://www.who.int/emergencies/ten-threats-to-global-health-in-2019 (accessed on 29 April 2020).
- Parascandola, M. Ambient air pollution and lung cancer in Poland: Research findings and gaps. J. Health. Inequal. 2018, 4, 3–8. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe—2019 Report; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Jedrychowski, W.A.; Majewska, R.; Spengler, J.D.; Camann, D.; Roen, E.L.; Perera, F.P. Prenatal exposure to fine particles and polycyclic aromatic hydrocarbons and birth outcomes: A two-pollutant approach. Int. Arch. Occup. Environ. Health. 2017, 90, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Perera, F. Molecular epidemiology, prenatal exposure and prevention of cancer. Environmen. Health. 2011, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Jirtle, R.L.; Skinner, M.K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 2007, 8, 253–262. [Google Scholar] [CrossRef]
- Karaguliana, F.; Belisd, C.A.; Francisco, C.; Dorab, C.; Prüss-Ustünb, A.M.; Bonjourb, S.; Adair-Rohanib, H.; Amannc, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- European Environment Agency. Poland—Air pollution country fact sheet 2019. Available online: https://www.eea.europa.eu/themes/air/country-fact-sheets/2019-country-fact-sheets/poland (accessed on 29 April 2020).
- Wojtyla, C.; Wojtyla-Buciora, P. Polish Pregnancy-related Assessment Monitoring System (Pol-PrAMS): Research on lifestyle health behaviours of Polish women during gestation—Study design. J. Health. Inequal. 2016, 2, 185–191. [Google Scholar] [CrossRef]
- Wojtyła, C.; Biliński, P.; Paprzycki, P.; Warzocha, K. Haematological parameters in postpartum women and their babies in Poland - comparison of urban and rural areas. Ann. Agric. Environ. Med. 2011, 18, 380–385. [Google Scholar]
- European Commission. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe OJ L 152, 11.6.2008; European Commission: Brussels, Belgium, 2008; pp. 1–44. [Google Scholar]
- American College of Obstetricians and Gynecologists. Committee on Practice Bulletins —Obstetrics. ACOG Practice Bulletin Number 190: Gestational Diabetes Mellitus. Obstet. Gynecol. 2018, 131, e49–e64. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. Committee on Practice Bulletins—Obstetrics. ACOG Practice Bulletin Number 222: Gestational Hypertension and Preeclampsia. Obstet. Gynecol. 2020, 135, e237–e260. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, Y.; Gao, Y.; Tian, Y. Maternal fine particulate matter (PM2.5) exposure and adverse birth outcomes: An updated systematic review based on cohort studies. Environ. Sci. Pollut. Res. Int. 2019, 26, 13963–13983. [Google Scholar] [CrossRef]
- Rosa, M.J.; Pajak, A.; Just, A.C.; Sheffield, P.E.; Kloog, I.; Schwartz, J.; Coull, B.; Enlow, M.B.; Baccarelli, A.A.; Huddleston, K.; et al. Prenatal exposure to PM 2.5 and birth weight: A pooled analysis from three North American longitudinal pregnancy cohort studies. Environ. Int. 2017, 107, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.; Giorgis-Allemand, L.; Bernard, C.; Aguilera, I.; Andersen, A.M.N.; Ballester, F.; Beelen, R.M.J.; Chatzi, L.; Cirach, M.; Danileviciute, A.; et al. Ambient air pollution and low birthweight: A European cohort study (ESCAPE). Lancet Respir. Med. 2013, 1, 695–704. [Google Scholar] [CrossRef]
- Kumar, N. The Exposure Uncertainty Analysis: The Association between Birth Weight and Trimester Specific Exposure to Particulate Matter (PM2.5 vs. PM10). Int. J. Environ. Res. Public Health. 2016, 13, 906. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, J.; Chen, D.; Sun, P.; Ma, X. The association between air pollution and preterm birth and low birth weight in Guangdong, China. BMC Public Health 2019, 19, 3. [Google Scholar] [CrossRef] [PubMed]
- Smarr, M.M.; Vadillo-Ortega, F.; Castillo-Castrejon, M.; O’Neill, M.S. The use of ultrasound measurements in environmental epidemiological studies of air pollution and fetal growth. Curr. Opin. Pediatr. 2013, 25, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Maciel-Ruiz, J.A.; López-Rivera, C.; Robles-Morales, R.; Veloz-Martínez, M.G.; López-Arellano, R.; Rodríguez-Patiño, G.; Petrosyan, P.; Govezensky, T.; Salazar, A.M.; Ostrosky-Wegman, P.; et al. Prenatal exposure to particulate matter and ozone: Bulky DNA adducts, plasma isoprostanes, allele risk variants, and neonate susceptibility in the Mexico City Metropolitan Area. Environ. Mol. Mutagen. 2019, 60, 428–442. [Google Scholar] [CrossRef]
- Vrijheid, M.; Martinez, D.; Manzanares, S.; Dadvand, P.; Schembari, A.; Rankin, J.; Nieuwenhuijsen, M. Ambient Air Pollution and Risk of Congenital Anomalies: A Systematic Review and Meta-analysis. Environ. Health Perspect. 2010, 119, 598–606. [Google Scholar] [CrossRef]
- Tanwar, V.; Gorr, M.W.; Velten, M.; Eichenseer, C.M.; Long, V.P.; Bonilla, I.M.; Shettigar, V.; Ziolo, M.T.; Davis, J.P.; Baine, S.H.; et al. In Utero Particulate Matter Exposure Produces Heart Failure, Electrical Remodeling, and Epigenetic Changes at Adulthood. J. Am. Heart Assoc. 2017, 6, e005796. [Google Scholar] [CrossRef]
- Hall, K.C.; Robinson, J.C. The association between maternal exposure to pollutant particulate matter 2.5 and neonatal congenital heart defects. JBI Database of Syst. Rev. Implement. Rep. 2017, 15, 2257–2264. [Google Scholar] [CrossRef]
- Padula, A.M.; Tager, I.B.; Carmichael, S.L.; Hammond, S.K.; Yang, W.; Lurmann, F.; Shaw, G.M. Ambient Air Pollution and Traffic Exposures and Congenital Heart Defects in the San Joaquin Valley of California. Paediatr. Perinat. Epidemiol. 2013, 27, 329–339. [Google Scholar] [CrossRef]
- Schembari, A.; Nieuwenhuijsen, M.J.; Salvador, J.; de Nazelle, A.; Cirach, M.; Dadvand, P.; Beelen, R.; Hoek, G.; Basagaña, X.; Vrijheid, M. Traffic-Related Air Pollution and Congenital Anomalies in Barcelona. Environ. Health. Perspect. 2014, 122, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.P.; Salemi, J.L.; Stuart, A.L.; Yu, H.; Jordan, M.M.; DuClos, C.; Cavicchia, P.; Correia, J.A.; Watkins, S.M.; Kirby, R.S. Associations between exposure to ambient benzene and PM2.5 during pregnancy and the risk of selected birth defects in offspring. Environ. Res. 2015, 142, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Salavati, N.; Strak, M.; Burgerhof, J.G.M.; de Walle, H.E.K.; Erwich, J.J.H.M.; Bakker, M.K. The association of air pollution with congenital anomalies: An exploratory study in the northern Netherlands. Int. J. Hyg. Environ. Health. 2018, 221, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.C.; Huang, C.C.; Lin, S.J.; Chen, B.Y.; Chang, C.C.; Leon Guo, Y.L. Gestational diabetes mellitus was related to ambient air pollutant nitric oxide during early gestation. Environ. Res. 2017, 158, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dong, H.; Ren, M.; Liang, Q.; Shen, X.; Wang, Q.; Huang, C. Ambient air pollution exposure and gestational diabetes mellitus in Guangzhou, China: A prospective cohort study. Sci. Total Environ. 2020, 699, 134390. [Google Scholar] [CrossRef]
- Fleisch, A.F.; Kloog, I.; Luttmann-Gibson, H.; Gold, D.R.; Oken, E.; Schwartz, J.D. Air pollution exposure and gestational diabetes mellitus among pregnant women in Massachusetts: A cohort study. Environ. Health 2016, 15, 40. [Google Scholar] [CrossRef]
- Samet, J.; Buran, M. The burden of avoidable disease from air pollution: Implications for prevention. J. Health Inequal. 2020, 6, 2–6. [Google Scholar] [CrossRef]
Average Annual PM2.5 Concentration (µg/m3) | ||||||||
---|---|---|---|---|---|---|---|---|
≤25 µg/m3 | >25 µg/m3 | All | p | |||||
N | % | N | % | N | % | |||
Age | ns | |||||||
<25 | 104 | 16.1% | 71 | 16.2% | 175 | 16.2% | ||
26–30 | 222 | 34.4% | 147 | 33.6% | 369 | 34.1% | ||
31–35 | 228 | 35.4% | 144 | 33.0% | 372 | 34.4% | ||
>35 | 91 | 14.1% | 75 | 17.2% | 166 | 15.3% | ||
Education | <0.05 | |||||||
Basic | 32 | 5.1% | 19 | 4.4% | 51 | 4.8% | ||
Secondary | 188 | 29.8% | 164 | 38.2% | 352 | 33.2% | ||
Higher | 410 | 65.1% | 246 | 57.4% | 656 | 62.0% | ||
Economic Status | <0.05 | |||||||
Very good | 156 | 24.1% | 77 | 17.4% | 233 | 21.4% | ||
Good | 372 | 57.5% | 287 | 64.8% | 659 | 60.4% | ||
Average/bad | 119 | 18.4% | 79 | 17.8% | 198 | 18.2% | ||
Social Conditions | <0.05 | |||||||
Very good | 289 | 44.7% | 154 | 34.8% | 443 | 40.7% | ||
Good | 298 | 46.2% | 245 | 55.5% | 543 | 49.9% | ||
Average/bad | 59 | 9.1% | 43 | 9.7% | 102 | 9.4% | ||
Cigarette Smoking | ns | |||||||
Yes | 39 | 6.1% | 16 | 3.7% | 55 | 5.1% | ||
Quit during pregnancy | 99 | 15.5% | 56 | 13.0% | 155 | 14.5% | ||
No, from several years | 71 | 11.1% | 52 | 12.0% | 123 | 11.5% | ||
No, never | 429 | 67.3% | 308 | 71.3% | 737 | 68.9% | ||
Alcohol Consumption | ns | |||||||
Never | 374 | 57.5% | 265 | 59.6% | 639 | 58.3% | ||
At most once per month | 169 | 26.0% | 99 | 22.2% | 268 | 24.5% | ||
Twice per month and more often | 107 | 16.5% | 81 | 18.2% | 188 | 17.2% | ||
Gestational Diabetes Mellitus | ns | |||||||
No | 598 | 92.0% | 419 | 94.2% | 1017 | 82.9% | ||
Yes | 52 | 8.0% | 26 | 5.8% | 78 | 7.1% | ||
Pregnancy-induced Hypertension | ns | |||||||
No | 571 | 94.2% | 396 | 94.5% | 967 | 94.3% | ||
Yes | 35 | 5.8% | 23 | 5.5% | 58 | 5.7% |
Variable | N | Mean | Mean Difference | S.D. | 95% CI Lower Limit | 95% CI Upper Limit | p-Value |
---|---|---|---|---|---|---|---|
Weight (g) | <0.05 | ||||||
PM2.5 ≤ 25 µg/m3 | 634 | 3478 | 0 | 446 | 3444 | 3513 | |
PM2.5 > 25 µg/m3 | 432 | 3363 | −115 | 490 | 3317 | 3409 | |
Length (cm) | ns | ||||||
PM2.5 ≤ 25 µg/m3 | 608 | 55.0 | 0 | 2.7 | 54.7 | 55.1 | |
PM2.5 > 25 µg/m3 | 418 | 55.0 | −0.4 | 3.1 | 54.3 | 54.9 |
Average Annual PM2.5 Concentration (µg/m3) | p | ||||
---|---|---|---|---|---|
≤25 µg/m3 | >25 µg/m3 | ||||
N | % | N | % | ||
Pregnancy Outcome | |||||
Birthweight (g) | <0.05 | ||||
>2500 | 629 | 99.2 | 419 | 97.0 | |
<2500 | 5 | 0.8 | 13 | 3.0 | |
PROM | ns | ||||
No | 454 | 71.6 | 282 | 66.4 | |
Yes | 180 | 28.4 | 143 | 33.6 | |
Type of Labor | ns | ||||
Vaginal | 387 | 59.8 | 250 | 57.1 | |
Cesarean section | 260 | 40.2 | 188 | 42.9 | |
APGAR | <0.05 | ||||
≥8 | 590 | 97.0 | 415 | 94.3 | |
<8 | 18 | 3.0 | 25 | 5.7 | |
Birth Defects | ns | ||||
No | 520 | 98.7 | 363 | 99.5 | |
Yes | 7 | 1.3 | 2 | 0.5 | |
Sex of the Child | ns | ||||
Female | 306 | 47.9 | 202 | 47.8 | |
Male | 333 | 52.1 | 221 | 52.2 | |
Hospitalization | ns | ||||
No | 372 | 62.0 | 257 | 62.8 | |
Yes | 228 | 38.0 | 152 | 37.2 | |
Pathology | <0.05 | ||||
No | 451 | 69.5 | 274 | 61.7 | |
Yes | 198 | 30.5 | 170 | 38.3 |
Adjusted Odds Ratio | |||||
---|---|---|---|---|---|
aOR | 95% CI | p | |||
Birthweight (g) | <0.05 | ||||
>2500 | Reference | ||||
<2500 | 4.3 | 1.5–12.3 | |||
PROM | ns | ||||
No | Reference | ||||
Yes | 1.2 | 0.9–1.6 | |||
Type of Labor | ns | ||||
Vaginal | Reference | ||||
Cesarean section | 1.2 | 0.9–1.5 | |||
APGAR | |||||
≥8 | Reference | <0.05 | |||
<8 | 2.4 | 1.2–4.6 | |||
Birth Defects | |||||
No | Reference | ns | |||
Yes | 0.4 | 0.1–1.9 | |||
GDM | <0.05 | ||||
No | Reference | ||||
Yes | 0.5 | 0.3–0.9 | |||
PIH | ns | ||||
No | Reference | ||||
Yes | 1.0 | 0.6–1.7 | |||
Hospitalization | ns | ||||
No | Reference | ||||
Yes | 0.9 | 0.7–1.2 | |||
Pathology | <0.05 | ||||
No | Reference | ||||
Yes | 1.4 | 1.1–1.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtyla, C.; Zielinska, K.; Wojtyla-Buciora, P.; Panek, G. Prenatal Fine Particulate Matter (PM2.5) Exposure and Pregnancy Outcomes—Analysis of Term Pregnancies in Poland. Int. J. Environ. Res. Public Health 2020, 17, 5820. https://doi.org/10.3390/ijerph17165820
Wojtyla C, Zielinska K, Wojtyla-Buciora P, Panek G. Prenatal Fine Particulate Matter (PM2.5) Exposure and Pregnancy Outcomes—Analysis of Term Pregnancies in Poland. International Journal of Environmental Research and Public Health. 2020; 17(16):5820. https://doi.org/10.3390/ijerph17165820
Chicago/Turabian StyleWojtyla, Cezary, Karolina Zielinska, Paulina Wojtyla-Buciora, and Grzegorz Panek. 2020. "Prenatal Fine Particulate Matter (PM2.5) Exposure and Pregnancy Outcomes—Analysis of Term Pregnancies in Poland" International Journal of Environmental Research and Public Health 17, no. 16: 5820. https://doi.org/10.3390/ijerph17165820
APA StyleWojtyla, C., Zielinska, K., Wojtyla-Buciora, P., & Panek, G. (2020). Prenatal Fine Particulate Matter (PM2.5) Exposure and Pregnancy Outcomes—Analysis of Term Pregnancies in Poland. International Journal of Environmental Research and Public Health, 17(16), 5820. https://doi.org/10.3390/ijerph17165820