COVID-19 Global Risk: Expectation vs. Reality
Abstract
:1. Introduction
2. Method
2.1. Data Collection
2.2. Modelling Techniques
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pica, N.; Bouvier, N.M. Environmental factors affecting the transmission of respiratory viruses. Curr. Opin. Virol. 2012, 2, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, J. Coronavirus COVID-19 Global Cases by Johns Hopkins CSSE [Internet]. Available online: https://coronavirus.jhu.edu/data (accessed on 14 May 2020).
- Fernandes, N. Economic effects of coronavirus outbreak (COVID-19) on the world economy. Available SSRN 3557504 2020. [Google Scholar] [CrossRef]
- Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 2020, 395, 931–934. [Google Scholar] [CrossRef]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Cox, N.J.; Trock, S.C.; Burke, S.A. Pandemic preparedness and the influenza risk assessment tool (IRAT). In Influenza Pathogenesis and Control-Volume I; Springer: Cham, Switzerland, 2014; pp. 119–136. [Google Scholar]
- Rocklöv, J.; Sjödin, H. High population densities catalyse the spread of COVID-19. J. Travel Med. 2020, 27, taaa038. [Google Scholar] [CrossRef]
- Duggal, A.; Pinto, R.; Rubenfeld, G.; Fowler, R.A. Global variability in reported mortality for critical illness during the 2009-10 influenza A (H1N1) pandemic: A systematic review and meta-regression to guide reporting of outcomes during disease outbreaks. PLoS ONE 2016, 11, e0155044. [Google Scholar] [CrossRef] [Green Version]
- Blumenshine, P.; Reingold, A.; Egerter, S.; Mockenhaupt, R.; Braveman, P.; Marks, J. Pandemic influenza planning in the United States from a health disparities perspective. Emerg. Infect. Dis. 2008, 14, 709. [Google Scholar] [CrossRef]
- Hu, W.; Williams, G.; Phung, H.; Birrell, F.; Tong, S.; Mengersen, K.; Huang, X.; Clements, A. Did socio-ecological factors drive the spatiotemporal patterns of pandemic influenza A (H1N1)? Environ. Int. 2012, 45, 39–43. [Google Scholar] [CrossRef]
- Summers, J.A.; Wilson, N.; Baker, M.G.; Shanks, G.D. Mortality risk factors for pandemic influenza on New Zealand troop ship, 1918. Emerg. Infect. Dis. 2010, 16, 1931. [Google Scholar] [CrossRef]
- Lönnroth, K.; Jaramillo, E.; Williams, B.G.; Dye, C.; Raviglione, M. Drivers of tuberculosis epidemics: The role of risk factors and social determinants. Soc. Sci. Med. 2009, 68, 2240–2246. [Google Scholar] [CrossRef] [PubMed]
- Pellowski, J.A.; Kalichman, S.C.; Matthews, K.A.; Adler, N. A pandemic of the poor: Social disadvantage and the US HIV epidemic. Am. Psychol. 2013, 68, 197. [Google Scholar] [CrossRef] [Green Version]
- Ajisegiri, W.S.; Chughtai, A.A.; MacIntyre, C.R. A risk analysis approach to prioritizing epidemics: Ebola virus disease in West Africa as a case study. Risk Anal. 2018, 38, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- The, L. Redefining vulnerability in the era of COVID-19. Lancet 2020, 395, 1089. [Google Scholar]
- Qiu, Y.; Chen, X.; Shi, W. Impacts of Social and Economic Factors on the Transmission of Coronavirus Disease 2019 (COVID-19) in China. Technical Report, GLO Discussion Paper. 2020. Available online: https://link.springer.com/article/10.1007/s00148-020-00778-2 (accessed on 31 July 2020).
- Mogi, R.; Spijker, J. The influence of social and economic ties to the spread of COVID-19 in Europe 2020. Available online: https://osf.io/preprints/socarxiv/sb8xn/ (accessed on 22 July 2020).
- Gilbert, M.; Pullano, G.; Pinotti, F.; Valdano, E.; Poletto, C.; Boëlle, P.Y.; d’Ortenzio, E.; Yazdanpanah, Y.; Eholie, S.P.; Altmann, M.; et al. Preparedness and vulnerability of African countries against importations of COVID-19: A modelling study. Lancet 2020, 395, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Zanakis, S.H.; Alvarez, C.; Li, V. Socio-economic determinants of HIV/AIDS pandemic and nations efficiencies. Eur. J. Oper. Res. 2007, 176, 1811–1838. [Google Scholar] [CrossRef]
- The World Bank Development Indicators. 2020. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 14 May 2020).
- Global Burden of Disease Collaborative Network. In Global Burden of Disease Study 2016 (GBD 2016) Results; Institute for Health Metrics and Evaluation: Seattle, WA, USA, 2017.
- Center for International Earth Science Information Network–CIESIN–Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density; Columbia University: Palisades, NY, USA, 2016. [Google Scholar]
- Hale, T.; Webster, S.; Petherick, A.; Phillips, T.; Kira, B. Oxford COVID-19 Government Response Tracker. Available online: https://www.bsg.ox.ac.uk/research/research-projects/oxford-covid-19-government-response-tracker (accessed on 26 March 2020).
- Stojkoski, V.; Utkovski, Z.; Jolakoski, P.; Tevdovski, D.; Kocarev, L. The socio-economic determinants of the coronavirus disease (COVID-19) pandemic. arXiv 2020, arXiv:2004.07947. [Google Scholar]
- Esteve, A.; Permanyer, I.; Boertien, D.; Vaupel, J.W. National age and co-residence patterns shape covid-19 vulnerability. medRxiv 2020. [Google Scholar] [CrossRef]
- Guarini, M.R.; Battisti, F.; Chiovitti, A. A methodology for the selection of multi-criteria decision analysis methods in real estate and land management processes. Sustainability 2018, 10, 507. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol.) 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Peterson, R.A.; Peterson, M.R.A. Package ‘bestNormalize’. 2017. Available online: https://github.com/petersonR/bestNormalize (accessed on 14 May 2020).
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Topuz, E.; Talinli, I.; Aydin, E. Integration of environmental and human health risk assessment for industries using hazardous materials: A quantitative multi criteria approach for environmental decision makers. Environ. Int. 2011, 37, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Kull, T.J.; Talluri, S. A supply risk reduction model using integrated multicriteria decision making. IEEE Trans. Eng. Manag. 2008, 55, 409–419. [Google Scholar] [CrossRef]
- Grömping, U. Relative importance for linear regression in R: The package relaimpo. J. Stat. Softw. 2006, 17, 1–27. [Google Scholar]
- Bharati, T.; Fakir, A. Pandemic Catch-22: How Effective Are Mobility Restrictions in Halting the Spread of COVID-19? Technical Report; The University of Western Australia: Perth, Australia, 2020. [Google Scholar]
- Dowd, J.B.; Andriano, L.; Brazel, D.M.; Rotondi, V.; Block, P.; Ding, X.; Liu, Y.; Mills, M.C. Demographic Science Aids in Understanding the Spread and Fatality Rates of COVID-19. Proc. Nat. Acad. Sci. USA 2020, 117, 9696–9698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barmparis, G.D.; Tsironis, G. Estimating the infection horizon of COVID-19 in eight countries with a data-driven approach. Chaos Solitons Fractals 2020, 135, 109842. [Google Scholar] [CrossRef]
- Miller, A.; Reandelar, M.J.; Fasciglione, K.; Roumenova, V.; Li, Y.; Otazu, G.H. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: An epidemiological study. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
Variable | Weight |
---|---|
Average Population Density | 0.027 |
Population | 0.039 |
Health Expenditure | 0.058 |
GDP | 0.09 |
DALY | 0.157 |
Nurses | 0.157 |
Physicians | 0.157 |
Hospital Beds | 0.157 |
A65abp | 0.157 |
Consistency Ratio < 0.01 |
Regression Model | Significant p-Values | Top Weights | |
---|---|---|---|
Static factors | 0.69 | A65abp *** | A65abp (0.19), GDP (0.22) |
Static and dynamic factors | 0.88 | A65abp ***, nurses *, susceptible *, active ***, mortality growth ** | active (0.20), susceptibles (0.15), mortality growth (0.11), A65abp (0.10) |
Country Name | Mortality Rate (Actual) | Pre-COVID-19 Mortality Risk Rank (Predicted) | COVID-19 Mortality Risk Rank as at 13 May 2020 (Predicted) |
---|---|---|---|
San Marino | 1213.6 | 41 | 3 |
Belgium | 774.2 | 7 | 8 |
Andorra | 636.3 | 46 | 60 |
Spain | 580.1 | 35 | 41 |
Italy | 514.1 | 14 | 17 |
United Kingdom | 499.1 | 25 | 16 |
France | 403.5 | 11 | 13 |
Sweden | 339.8 | 9 | 11 |
Netherlands | 322.8 | 10 | 12 |
Ireland | 308.4 | 27 | 33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsalan, M.; Mubin, O.; Alnajjar, F.; Alsinglawi, B. COVID-19 Global Risk: Expectation vs. Reality. Int. J. Environ. Res. Public Health 2020, 17, 5592. https://doi.org/10.3390/ijerph17155592
Arsalan M, Mubin O, Alnajjar F, Alsinglawi B. COVID-19 Global Risk: Expectation vs. Reality. International Journal of Environmental Research and Public Health. 2020; 17(15):5592. https://doi.org/10.3390/ijerph17155592
Chicago/Turabian StyleArsalan, Mudassar, Omar Mubin, Fady Alnajjar, and Belal Alsinglawi. 2020. "COVID-19 Global Risk: Expectation vs. Reality" International Journal of Environmental Research and Public Health 17, no. 15: 5592. https://doi.org/10.3390/ijerph17155592
APA StyleArsalan, M., Mubin, O., Alnajjar, F., & Alsinglawi, B. (2020). COVID-19 Global Risk: Expectation vs. Reality. International Journal of Environmental Research and Public Health, 17(15), 5592. https://doi.org/10.3390/ijerph17155592