Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview
Abstract
:1. Introduction
2. Chromium in the Environment: Natural Occurrence and Anthropogenic Source
3. Chromium Emissions and Discharge Limits for EU Member States
4. Chromium Prevalent Forms in Aqueous Environment
Determination of Environmental Chromium
5. Health Risk
Cellular Intake, Metabolism, and Toxicity of Cr (VI)
6. Remediation Strategies
6.1. Physico-Chemical Tratments
6.1.1. Chemical Reduction
6.1.2. Adsorption and Ion Exchange
6.1.3. Electrocoagulation
6.2. Bacterial Resistance and Remediation Capabilities
6.2.1. Biosorption
6.2.2. Bioaccumulation
6.2.3. Bioreduction
6.3. Comparison between Chemical and Biological Strategies for Cr (VI) Remediating
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Rank | Industrial Activities | Facilities | Tons | % |
---|---|---|---|---|
1 | Energy sector | 74 | 699.94 | 83.9 |
1.a | Thermal power stations and other combustion installations | 59 | 699.30 | 83.8 |
1.b | Mineral oil and gas refineries | 15 | 0.64 | 0.1 |
2 | Waste and wastewater management | 248 | 90.99 | 10.9 |
2.a | Urban wastewater treatment plants | 215 | 84.30 | 10.1 |
2.b | Independently operated industrial wastewater treatment plants serving a listed activity | 11 | 2.63 | 0.3 |
2.c | Disposal or recovery of hazardous waste | 6 | 2.15 | 0.3 |
2.d | Disposal of non-hazardous waste | 11 | 1.39 | 0.2 |
2.e | Landfills (excluding landfills closed before the 16/7/2001) | 3 | 0.52 | 0.1 |
2.f | Incineration of non-hazardous waste included in Directive 2000/76/EC—waste incineration | 2 | - | 0.0 |
3 | Production and processing of metals | 93 | 18.50 | 2.2 |
3.a | Surface treatment of metals and plastics using electrolytic or chemical processes | 17 | 9.04 | 1.1 |
3.b | Production of pig iron or steel including continuous casting | 45 | 5.84 | 0.7 |
3.c | Production of non-ferrous crude metals from ore, concentrates, or secondary raw materials | 13 | 1.79 | 0.2 |
3.d | Metal ore (including sulphide ore) roasting or sintering installations | 6 | 1.32 | 0.2 |
3.e | Processing of ferrous metals | 7 | 0.51 | 0.1 |
3.f | Ferrous metal foundries | 5 | - | 0.0 |
4 | Chemical industry | 39 | 17.89 | 2.1 |
4.a | Industrial scale production of basic inorganic chemicals | 14 | 8.65 | 1.0 |
4.b | Industrial scale production of basic organic chemicals | 19 | 8.15 | 1.0 |
4.c | Industrial scale production of basic plant health products and of biocides | 2 | 0.77 | 0.1 |
4.d | Industrial scale production of phosphorous, nitrogen, or potassium-based fertilizers | 2 | 0.15 | 0.0 |
4.e | Industrial scale production of basic pharmaceutical products | 1 | 0.09 | 0.0 |
5 | Mineral industry | 24 | 3.99 | 0.5 |
5.a | Underground mining and related operations | 11 | 3.23 | 0.4 |
5.b | Opencast mining and quarrying | 5 | 0.76 | 0.1 |
5.c | Production of cement clinker or lime in rotary kilns or other furnaces | 3 | - | - |
5.d | Manufacture of ceramic products including tiles, bricks, stoneware, or porcelain | 1 | - | - |
5.e | Manufacture of glass, including glass fibre | 4 | - | - |
6 | Paper and wood production processing | 29 | 2.43 | 0.3 |
6.a | Production of pulp from timber or similar fibrous materials | 20 | 2.03 | 0.2 |
6.b | Production of paper and board and other primary wood products | 9 | 0.40 | 0.0 |
7 | Animal and vegetable products from the food and beverage sector | 1 | 0.16 | 0.0 |
7.a | Treatment and processing of milk | 1 | 0.16 | 0.0 |
8 | Other activities | 4 | 0.37 | 0.0 |
8.a | Pre-treatment or dyeing of fibres or textiles | 2 | 0.18 | 0.0 |
8.b | Tanning of hides and skins | 1 | 0.11 | 0.0 |
8.c | Surface treatment of substances, objects, or products using organic solvents | 1 | 0.08 | 0.0 |
Total | 512 | 834.26 |
References
- Sharma, S.K.; Petrusevski, B.; Amy, G. Chromium removal from water: A review. J. Water Supply Res. Technol.-Aqua 2008, 57, 541–553. [Google Scholar] [CrossRef]
- Unceta, N.; Séby, F.; Malherbe, J.; Donard, O.F.X. Chromium speciation in solid matrices and regulation: A review. Anal. Bioanal. Chem. 2010, 397, 1097–1111. [Google Scholar] [CrossRef] [PubMed]
- Rai, D.; Eary, L.E.; Zachara, J.M. Environmental chemistry of chromium. Sci. Total Environ. 1989, 86, 15–23. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Advanced Oxidation Process Based on the Cr(III)/Cr(VI) Redox Cycle. Environ. Sci. Technol. 2011, 45, 9332–9338. [Google Scholar] [CrossRef]
- Bianco Prevot, A.; Ginepro, M.; Peracaciolo, E.; Zelano, V.; De Luca, D.A. Chemical vs bio-mediated reduction of hexavalent chromium. An in-vitro study for soil and deep waters remediation. Geoderma 2018, 312, 17–23. [Google Scholar] [CrossRef]
- Alemayehu, E.; Thiele-Bruhn, S.; Lennartz, B. Adsorption behaviour of Cr(VI) onto macro and micro-vesicular volcanic rocks from water. Sep. Purif. Technol. 2011, 78, 55–61. [Google Scholar] [CrossRef]
- Zhang, R.; Xiang, Y.; Ran, Q.; Deng, X.; Xiao, Y.; Xiang, L.; Li, Z. Involvement of Calcium, Reactive Oxygen Species, and ATP in Hexavalent Chromium-Induced Damage in Red Blood Cells. Cell Physiol. Biochem. 2014, 34, 1780–1791. [Google Scholar] [CrossRef]
- Wilbur, S.; Abadin, H.; Fay, M.; Yu, D.; Tencza, B.; Ingerman, L.; Klotzbach, J.; James, S. Health Effects; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2012.
- Wise, J.T.F.; Wang, L.; Xu, J.; Zhang, Z.; Shi, X. Oxidative stress of Cr(III) and carcinogenesis. In The Nutritional Biochemistry of Chromium (III); Elsevier: Amsterdam, The Netherlands, 2019; pp. 323–340. ISBN 978-0-444-64121-2. [Google Scholar]
- Mishra, S.; Bharagava, R.N. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J. Environ. Sci. Health Part C 2016, 34, 1–32. [Google Scholar] [CrossRef]
- Brasili, E.; Bavasso, I.; Petruccelli, V.; Vilardi, G.; Valletta, A.; Bosco, C.D.; Gentili, A.; Pasqua, G.; Di Palma, L. Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Sci. Rep. 2020, 10, 1920. [Google Scholar] [CrossRef]
- Ashraf, A.; Bibi, I.; Niazi, N.K.; Ok, Y.S.; Murtaza, G.; Shahid, M.; Kunhikrishnan, A.; Li, D.; Mahmood, T. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. Int. J. Phytoremed. 2017, 19, 605–613. [Google Scholar] [CrossRef]
- Kazakis, N.; Kantiranis, N.; Kalaitzidou, K.; Kaprara, E.; Mitrakas, M.; Frei, R.; Vargemezis, G.; Tsourlos, P.; Zouboulis, A.; Filippidis, A. Origin of hexavalent chromium in groundwater: The example of Sarigkiol Basin, Northern Greece. Sci. Total Environ. 2017, 593–594, 552–566. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.S.; Marini, J.; Solo-Gabriele, H.M.; Robey, N.M.; Townsend, T.G. Arsenic, copper, and chromium from treated wood products in the U.S. disposal sector. Waste Manag. 2019, 87, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Achmad, R.T.; Budiawan;Auerkari, E.I. Effects of Chromium on Human Body. ARRB 2017, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pellerin, C.; Booker, S.M. Reflections on hexavalent chromium: Health hazards of an industrial heavyweight. Environ. Health Perspect. 2000, 108, A402–A407. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ma, H.; Chen, X.; Zhu, C.; Li, X. Effect of incineration temperature on chromium speciation in real chromium-rich tannery sludge under air atmosphere. Environ. Res. 2020, 183, 109159. [Google Scholar] [CrossRef] [PubMed]
- Vaiopoulou, E.; Gikas, P. Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere 2020, 254, 126876. [Google Scholar] [CrossRef]
- Munn, S.J.; Allanou, R.; Aschberger, K.; Berthault, F.; Cosgrove, O.; Luotamo, M.; Pakalin, S.; Paya-Perez, A.; Pellegrini, G.; Schwarz-Schulz, B.; et al. Chromium Trioxide, Sodium Chromate, Sodium Dichromate, Ammonium Dichromate, Potassium Dichromate, EUR 21508 EN; European Union Risk Assessment Report; Office for Official Publications of the European Communities: Luxembourg, 2005; Volume 53. [Google Scholar]
- Feng, Z.-Q.; Yuan, X.; Wang, T. Porous polyacrylonitrile/graphene oxide nanofibers designed for high efficient adsorption of chromium ions (VI) in aqueous solution. Chem. Eng. J. 2020, 392, 123730. [Google Scholar] [CrossRef]
- Dhal, B.; Thatoi, H.N.; Das, N.N.; Pandey, B.D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013, 250–251, 272–291. [Google Scholar] [CrossRef]
- Ancona, V.; Campanale, C.; Tumolo, M.; De Paola, D.; Ardito, C.; Volpe, A.; Uricchio, V.F. Enhancement of Chromium (VI) Reduction in Microcosms Amended with Lactate or Yeast Extract: A Laboratory-Scale Study. Int. J. Environ. Res. Public Health 2020, 17, 704. [Google Scholar] [CrossRef] [Green Version]
- Thatoi, H.; Das, S.; Mishra, J.; Rath, B.P.; Das, N. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review. J. Environ. Manag. 2014, 146, 383–399. [Google Scholar] [CrossRef]
- Garbisu, C.; Garaiyurrebaso, O.; Epelde, L.; Grohmann, E.; Alkorta, I. Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils. Front. Microbiol. 2017, 8, 1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Xu, J.; Chen, N.; Li, M.; Feng, C. Microbial reduction fate of chromium (Cr) in aqueous solution by mixed bacterial consortium. Ecotoxicol. Environ. Saf. 2019, 170, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Al-Battashi, H.; Joshi, S.J.; Pracejus, B.; Al-Ansari, A. The Geomicrobiology of Chromium (VI) Pollution: Microbial Diversity and its Bioremediation Potential. TOBIOTJ 2016, 10, 379–389. [Google Scholar] [CrossRef]
- Koleli, N.; Demir, A. Chromite. In Environmental Materials and Waste; Academic Press: London, UK, 2016; pp. 245–263. ISBN 978-0-12-803837-6. [Google Scholar]
- Sanchez-Segado, S.; Makanyire, T.; Escudero-Castejon, L.; Hara, Y.; Jha, A. Reclamation of reactive metal oxides from complex minerals using alkali roasting and leaching—An improved approach to process engineering. Green Chem. 2015, 17, 2059–2080. [Google Scholar] [CrossRef] [Green Version]
- Haldar, S.K. Introduction. In Platinum-Nickel-Chromium Deposits; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–35. ISBN 978-0-12-802041-8. [Google Scholar]
- Escudero-Castejon, L.; Sanchez-Segado, S.; Parirenyatwa, S.; Jha, A. Formation of Chromium-Containing Molten Salt Phase during Roasting of Chromite Ore with Sodium and Potassium Hydroxides. J. Manuf. Sci. Prod. 2016, 16, 215–225. [Google Scholar] [CrossRef]
- Ripley, E.M.; Li, C. Chapter 3—Metallic Ore Deposits Associated With Mafic to Ultramafic Igneous Rocks. In Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time; Mondal, S.K., Griffin, W.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 79–111. ISBN 978-0-12-811159-8. [Google Scholar]
- Chrysochoou, M.; Theologou, E.; Bompoti, N.; Dermatas, D.; Panagiotakis, I. Occurrence, Origin and Transformation Processes of Geogenic Chromium in Soils and Sediments. Curr. Pollut. Rep. 2016, 2, 224–235. [Google Scholar] [CrossRef] [Green Version]
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorny, J.; Billon, G.; Noiriel, C.; Dumoulin, D.; Lesven, L.; Madé, B. Chromium behavior in aquatic environments: A review. Environ. Rev. 2016, 24, 503–516. [Google Scholar] [CrossRef]
- Zhou, B.; Huang, D.; Wu, J.; Zhu, Q.; Zhu, H. Horizontal and Vertical Distributions of Chromium in a Chromate Production District of South Central China. Int. J. Environ. Res. Public Health 2018, 15, 571. [Google Scholar] [CrossRef] [Green Version]
- Mcleod, N. Chemical Immobilisation of Chromium Wastes using Modified Smectite Clays (E-clays). Environ. Geochem. Health 2001, 23, 273–279. [Google Scholar] [CrossRef]
- Gattullo, C.E.; Allegretta, I.; Porfido, C.; Rascio, I.; Spagnuolo, M.; Terzano, R. Assessing chromium pollution and natural stabilization processes in agricultural soils by bulk and micro X-ray analyses. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Vogel, C.; Hoffmann, M.C.; Krüger, O.; Murzin, V.; Caliebe, W.; Adam, C. Chromium (VI) in phosphorus fertilizers determined with the diffusive gradients in thin-films (DGT) technique. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Coyte, R.M.; McKinley, K.L.; Jiang, S.; Karr, J.; Dwyer, G.S.; Keyworth, A.J.; Davis, C.C.; Kondash, A.J.; Vengosh, A. Occurrence and distribution of hexavalent chromium in groundwater from North Carolina, USA. Sci. Total Environ. 2020, 711, 135135. [Google Scholar] [CrossRef] [PubMed]
- Dokou, Z.; Karagiorgi, V.; Karatzas, G.P.; Nikolaidis, N.P.; Kalogerakis, N. Large scale groundwater flow and hexavalent chromium transport modeling under current and future climatic conditions: The case of Asopos River Basin. Environ. Sci. Pollut. Res. 2016, 23, 5307–5321. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, A.U.; Vithanage, M.; Ok, Y.S.; Oze, C. Cr(VI) Formation Related to Cr(III)-Muscovite and Birnessite Interactions in Ultramafic Environments. Available online: https://pubs.acs.org/doi/pdf/10.1021/es4015025 (accessed on 3 June 2020).
- Zhitkovich, A. Chromium in Drinking Water: Sources, Metabolism, and Cancer Risks. Chem. Res. Toxicol. 2011, 24, 1617–1629. [Google Scholar] [CrossRef]
- Benítez, S.V.B. Understanding of (Bio)geochemical Processes which Control Chromium Release, Speciation and Isotopic Fractionation in Ultramafic Environments Impacted by Mining Activitites. Ph.D. Thesis, Università Degli Studi, Cassino, Italy, 2018. [Google Scholar]
- European Environment Agency. European Pollutant Release and Transfer Register. Available online: https://prtr.eea.europa.eu/#/pollutantreleases (accessed on 19 May 2020).
- Vimercati, L.; Gatti, M.F.; Gagliardi, T.; Cuccaro, F.; De Maria, L.; Caputi, A.; Quarato, M.; Baldassarre, A. Environmental exposure to arsenic and chromium in an industrial area. Environ. Sci. Pollut. Res. 2017, 24, 11528–11535. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, Y.; Zhang, H.; Huang, G.; Yang, Q.; Wang, Y. Synchronous detoxification and reduction treatment of tannery sludge using Cr (VI) resistant bacterial strains. Sci. Total Environ. 2019, 687, 34–40. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A.; Xanthopoulou, M.; Zouboulis, A.I. Cr(VI) Femoval from Ground Waters by Ferrous Iron Redox-Assisted Coagulation in a Continuous Treatment Unit Comprising a Plug Flow Pipe Reactor and Downflow Sand Filtration. Appl. Sci. 2020, 10, 802. [Google Scholar] [CrossRef] [Green Version]
- Oruko Ongon’g, R.; Edokpayi, J.N.; Msagati, T.A.M.; Tavengwa, N.T.; Ijoma, G.N.; Odiyo, J.O. The Potential Health Risk Associated with Edible Vegetables Grown on Cr(VI) Polluted Soils. Int. J. Environ. Res. Public Health 2020, 17, 470. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Werth, C.J.; He, Y.; Su, Y.; Zhang, Y.; Zhou, X. Intracellular versus extracellular accumulation of Hexavalent chromium reduction products by Geobacter sulfurreducens PCA. Environ. Pollut. 2018, 240, 485–492. [Google Scholar] [CrossRef]
- Tsiridis, V.; Petala, M.; Samaras, P.; Kungolos, A.; Sakellaropoulos, G.P. Environmental hazard assessment of coal fly ashes using leaching and ecotoxicity tests. Ecotoxicol. Environ. Saf. 2012, 84, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Darakas, E.; Tsiridis, V.; Petala, M.; Kungolos, A. Hexavalent chromium release from lignite fly ash and related ecotoxic effects. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2013, 48, 1390–1398. [Google Scholar] [CrossRef] [PubMed]
- Ribé, V.; Nehrenheim, E.; Odlare, M. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays. Waste Manag. 2014, 34, 1871–1876. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Snellings, R.; Van den Heede, P.; Matthys, S.; De Belie, N. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View. Materials 2018, 11, 141. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Establishing a Framework for Community Action in the Field of Water Policy (L327/1-72). European Council Directive, 2000/60/EC (Water Framework Directive); European Commission: Brussels, Belgium, 2000. [Google Scholar]
- Kimbrough, D.E.; Cohen, Y.; Winer, A.M.; Creelman, L.; Mabuni, C. A Critical Assessment of Chromium in the Environment. Crit. Rev. Environ. Sci. Technol. 1999, 29, 1–46. [Google Scholar] [CrossRef]
- Pradhan, D.; Sukla, L.B.; Sawyer, M.; Rahman, P.K.S.M. Recent bioreduction of hexavalent chromium in wastewater treatment: A review. J. Ind. Eng. Chem. 2017, 55, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bharagava, R.N.; Mishra, S. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol. Environ. Saf. 2018, 147, 102–109. [Google Scholar] [CrossRef]
- Dermatas, D.; Mpouras, T.; Chrysochoou, M.; Panagiotakis, I.; Vatseris, C.; Linardos, N.; Theologou, E.; Boboti, N.; Xenidis, A.; Papassiopi, N.; et al. Origin and concentration profile of chromium in a Greek aquifer. J. Hazard. Mater. 2015, 281, 35–46. [Google Scholar] [CrossRef]
- Tista, M.; Gager, M.; Gaisbauer, S.; Ullrich, B.; European Environment Agency. European Union Emission Inventory Report 1990–2017 under the UNECE Convention on Long-Range Transboundary Air Pollution (LRTAP); Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-9480-078-7. [Google Scholar]
- Yan, B.; Chen, Z. Influence of pH on Cr(VI) reduction by organic reducing substances from sugarcane molasses. Appl. Water Sci. 2019, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Li, G.; Jiang, X.; Xiao, Q.; Niu, M.; Wang, Z.; Wang, Y. Non-biological reduction of Cr(VI) by reacting with humic acids composted from cattle manure. RSC Adv. 2017, 7, 26903–26911. [Google Scholar] [CrossRef] [Green Version]
- Shanker, A.K. Chromium: Environmental Pollution, Health Effects and Mode of Action. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 624–633. ISBN 978-0-444-63952-3. [Google Scholar]
- Albadarin, A.B.; Mangwandi, C.; Walker, G.M.; Allen, S.J.; Ahmad, M.N.M.; Khraisheh, M. Influence of solution chemistry on Cr(VI) reduction and complexation onto date-pits/tea-waste biomaterials. J. Environ. Manag. 2013, 114, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, R.J. Chromium cycling in soils and water: Links, gaps, and methods. Environ. Health Perspect. 1991, 92, 8. [Google Scholar] [CrossRef]
- Acosta-Rodríguez, I.; Cárdenas-González, J.F.; de Guadalupe Moctezuma-Zárate, M.; Martínez-Juárez, V.M. Removal of Hexavalent Chromium from Solutions and Contaminated Sites by Different Natural Biomasses. Appl. Bioremed.-Act. Passiv. Approaches 2013. [Google Scholar] [CrossRef]
- James, B.R. Chromium. In Encyclopedia of Water Science; CRC Press: Boca Raton, FL, USA, 2007; pp. 105–109. ISBN 978-1-351-24981-2. [Google Scholar]
- Jobby, R.; Jha, P.; Yadav, A.K.; Desai, N. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere 2018, 207, 255–266. [Google Scholar] [CrossRef]
- Michalke, B. Metallomics: Analytical Techniques and Speciation Methods; Wiley-VCH: Weinheim, Germany, 2016; ISBN 978-3-527-69493-8. [Google Scholar]
- Amy, G.; Yoon, J.; McNeill, L.; Banerjee, K. Chapter 2 Literature review. In Low-Level Hexavalent Chromium Treatment Options: Bench-Scale Evaluation; Brandhuber, P., Frey, M., McGuire, M.J., Chao, P., Seidel, C., Eds.; American Water Works Association Research Foundation: Denver, CO, USA, 2004; pp. 8–9. [Google Scholar]
- Lichtfouse, E. Sustainable Agriculture Reviews; Springer Nature: London, UK, 2019; Volume 40, ISBN 978-3-030-33281-5. [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Water and Wasterwater, 23rd ed.; Bridgewater, L.L., Baird, R.B., Eaton, A.D., Rice, E.W., American Public Health Association, American Water Works Association, Water Environment Federation, Eds.; American Public Health Association: Washington, DC, USA, 2017; ISBN 978-0-87553-287-5. [Google Scholar]
- Gonzalez, A.R.; Ndung’u, K.; Flegal, A.R. Natural Occurrence of Hexavalent Chromium in the Aromas Red Sands Aquifer, California. Environ. Sci. Technol. 2005, 39, 5505–5511. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, M.M.L.; Alonso, E.V.; Pavón, J.M.C.; Cordero, M.T.S.; de Torres, A.G. On-line preconcentration using chelating and ion-exchange minicolumns for the speciation of chromium(iii) and chromium(vi) and their quantitative determination in natural waters by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2012, 27, 682. [Google Scholar] [CrossRef]
- Parks, J.L.; McNeill, L.; Frey, M.; Eaton, A.D.; Haghani, A.; Ramirez, L.; Edwards, M. Determination of total chromium in environmental water samples. Water Res. 2004, 38, 2827–2838. [Google Scholar] [CrossRef]
- Yang, L.; Mester, Z.; Abranko, L.; Sturgeon, R.E. Determination of Total Chromium in Seawater by Isotope Dilution Sector Field ICPMS Using GC Sample Introduction. Anal. Chem. 2004, 76, 3510–3516. [Google Scholar] [CrossRef] [Green Version]
- Malinski, T.; Fish, J.; Matusiewicz, H. Determining Ultratrace Metal Concentrations by Inductively Coupled Plasma Emission Spectrometry. J. Am. Water Work. Assoc. 1988, 80, 81–85. [Google Scholar] [CrossRef]
- Rahman, G.M.M.; Kingston, H.M. ‘Skip’ Application of Speciated Isotope Dilution Mass Spectrometry To Evaluate Extraction Methods for Determining Mercury Speciation in Soils and Sediments. Anal. Chem. 2004, 76, 3548–3555. [Google Scholar] [CrossRef]
- Wendelken, S.; Smith, G.; Munch, D.; Zaffiro, A.; Zimmerman, M. Method 218.7: Determination of Hexavalent Chromium in Drinking Water by Ion Chromatography with Post-Column Derivatization and UV–Visible Spectroscopic Detection; Version 1.0 November 2011; U.S. EPA Office of Water: Washington, DC, USA, 2011.
- McNeill, L.; McLean, J.; Edwards, M.; Perks, J. Trace Level Hexavalent Chromium. Occurrence and Analysis; Project No. 4404; Water Research Foundation: Denver, CO, USA, 2013. [Google Scholar]
- Martin, T.; Brockhoff, C.; Creed, J.; EMMC Methods Work Group. Method 200.7 Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry; Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1994.
- Longbottom, J.E.; Martin, T.D.; Edgell, K.W.; Long, S.E.; Plantz, M.R.; Warden, B.E. Determination of Trace Elements in Water by Inductively Coupled Plasma–Mass Spectrometry: Collaborative Study. J. AOAC Int. 1994, 77, 1004–1023. [Google Scholar] [CrossRef]
- Creed, J.; Martin, T.; O’Dell, J. Determination of Trace Elements by Stabilized Temperature Graphite Furnace Atomic Absorption; Environmental Monitoring Systems Laboratory Office of Reasearch and Development, USEPA: Cincinnati, OH, USA, 1994.
- USEPA SW-846 Test Method 7199: Determination of Hexavalent Chromium in Drinking Water, Groundwater, and Industrial Wastewater Effluents by Ion Chromatography. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-7199-determination-hexavalent-chromium-drinking-water-groundwater-and (accessed on 27 July 2020).
- Lace, A.; Ryan, D.; Bowkett, M.; Cleary, J. Chromium Monitoring in Water by Colorimetry Using Optimised 1,5-Diphenylcarbazide Method. Int. J. Environ. Res. Public Health 2019, 16, 1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USEPA Method 7197 Chromium, Hexavalent (Chelation/Extraction). Available online: https://www.epa.gov/sites/production/files/2015-12/documents/7197.pdf (accessed on 27 July 2020).
- Hoshi, S.; Konuma, K.; Sugawara, K.; Uto, M.; Akatsuka, K. The simple and rapid spectrophotometric determination of trace chromium(VI) after preconcentration as its colored complex on chitin. Talanta 1998, 47, 659–663. [Google Scholar] [CrossRef]
- EFSA Scientific Opinion on the safety of trivalent chromium as a nutrient added for nutritional purposes to foodstuffs for particular nutritional uses and foods intended for the general population (including food supplements). EFSA J. 2010, 8, 1882. [CrossRef]
- Son, J.; Morris, J.; Park, K. Toenail Chromium Concentration and Metabolic Syndrome among Korean Adults. Int. J. Environ. Res. Public Health 2018, 15, 682. [Google Scholar] [CrossRef] [Green Version]
- Nordberg, M.; Cherian, G.M. Chapter 9 Biological Response of Elements. In Essentials of Medical Geology; Revised ed.; Springer Science & Business Media: Dordrecht, The Netherlands, 2013; pp. 195–213. ISBN 978-94-007-4375-5. [Google Scholar]
- IARC CHROMIUM (VI) COMPOUNDS. Arsenic, Metals, Fibres and Dusts; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2012. [Google Scholar]
- De Flora, S.; Serra, D.; Camoirano, A.; Zanacchi, P. Metabolic reduction of chromium, as related to its carcinogenic properties. Biol. Trace Elem. Res 1989, 21, 179–187. [Google Scholar] [CrossRef] [PubMed]
- De Flora, S. Threshold mechanisms and site specificity in chromium(VI) carcinogenesis. Carcinogenesis 2000, 21, 533–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Flora, S.; Camoirano, A.; Micale, R.T.; La Maestra, S.; Savarino, V.; Zentilin, P.; Marabotto, E.; Suh, M.; Proctor, D.M. Reduction of hexavalent chromium by fasted and fed human gastric fluid. I. Chemical reduction and mitigation of mutagenicity. Toxicol. Appl. Pharmacol. 2016, 306, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Ray, R.R. Review article. Adverse hematological effects of hexavalent chromium: An overview. Interdiscip. Toxicol. 2016, 9, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Korallus, U.; Harzdorf, C.; Lewalter, J. Experimental bases for ascorbic acid therapy of poisoning by hexavalent chromium compounds. Int. Arch. Occup. Environ. Health 1984, 53, 247–256. [Google Scholar] [CrossRef]
- Shrivastava, R.; Upreti, R.K.; Seth, P.K.; Chaturvedi, U.C. Effects of chromium on the immune system. FEMS Immunol. Med. Microbiol. 2002, 34, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Suh, M.; Wikoff, D.; Lipworth, L.; Goodman, M.; Fitch, S.; Mittal, L.; Ring, C.; Proctor, D. Hexavalent chromium and stomach cancer: A systematic review and meta-analysis. Crit. Rev. Toxicol. 2019, 49, 140–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, R.; Nandi, R.; Saha, B. Sources and toxicity of hexavalent chromium. J. Coord. Chem. 2011, 64, 1782–1806. [Google Scholar] [CrossRef]
- Fowler, J.F.J.; Kauffman, C.L.; Marks, J.G.J.; Proctor, D.M.; Fredrick, M.M.; Otani, J.M.; Finley, B.L.; Paustenbach, D.J.; Nethercott, J.R. An Environmental Hazard Assessment of Low-Level Dermal Exposure to Hexavalent Chromium in Solution among Chromium-Sensitized Volunteers. J. Occup. Environ. Med. 1999, 41, 150–160. [Google Scholar] [CrossRef]
- Tiwari, A.K.; De Maio, M. Assessment of risk to human health due to intake of chromium in the groundwater of the Aosta Valley region, Italy. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 1153–1163. [Google Scholar] [CrossRef]
- Sun, H.; Brocato, J.; Costa, M. Oral Chromium Exposure and Toxicity. Curr. Environ. Health Rep. 2015, 2, 295–303. [Google Scholar] [CrossRef] [Green Version]
- De Mandal, S.; Mathipi, V.; Muthukumaran, R.B.; Gurusubramanian, G.; Lalnunmawii, E.; Kumar, N.S. Amplicon sequencing and imputed metagenomic analysis of waste soil and sediment microbiome reveals unique bacterial communities and their functional attributes. Environ. Monit Assess 2019, 191, 778. [Google Scholar] [CrossRef]
- Wise, S.S.; Wise, J.P. Chromium and genomic stability. Mutat. Res./Fundam. Mol. Mech. Mutagenesis 2012, 733, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Shi, X. Reduction of Chromium (vi) and Its Relationship to Carcinogenesis. J. Toxicol. Environ. Health Part B 1999, 2, 87–104. [Google Scholar] [CrossRef]
- Messer, J.; Reynolds, M.; Stoddard, L.; Zhitkovich, A. Causes of DNA single-strand breaks during reduction of chromate by glutathione in vitro and in cells. Free Radic. Biol. Med. 2006, 40, 1981–1992. [Google Scholar] [CrossRef]
- DeLoughery, Z.; Luczak, M.W.; Ortega-Atienza, S.; Zhitkovich, A. DNA double-strand breaks by Cr(VI) are targeted to euchromatin and cause ATR-dependent phosphorylation of histone H2AX and its ubiquitination. Toxicol. Sci. 2015, 143, 54–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.-H.; Gao, X.-Y.; Li, C.; Yang, C.-L.; Fu, C.-A.; Liu, J.; Wang, R.; Chen, L.-X.; Lin, J.-Q.; Liu, X.-M.; et al. Isolation and Identification of Chromium Reducing Bacillus Cereus Species from Chromium-Contaminated Soil for the Biological Detoxification of Chromium. Int. J. Environ. Res. Public Health 2020, 17, 2118. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Wei, L.; Liu, R.; Jiang, F.; Hao, X.; Chen, G.-H. An Exploratory Study on the Pathways of Cr (VI) Reduction in Sulfate-reducing Up-flow Anaerobic Sludge Bed (UASB) Reactor. Sci. Rep. 2016, 6, 23694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Focardi, S.; Pepi, M.; Focardi, E.S. Microbial Reduction of Hexavalent Chromium as a Mechanism of Detoxification and Possible Bioremediation Applications. In Biodegradation—Life of Science; Chamy, R., Ed.; InTech: London, UK, 2013; ISBN 978-953-51-1154-2. [Google Scholar]
- Stylianou, S.; Simeonidis, K.; Mitrakas, M.; Zouboulis, A.; Ernst, M.; Katsoyiannis, I.A. Reductive precipitation and removal of Cr(VI) from groundwaters by pipe flocculation-microfiltration. Environ. Sci. Pollut. Res. 2018, 25, 12256–12262. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, X.; Chen, Z. Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res. 2011, 45, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, M.I.N.; Rajeshkumar, S.; Ragul, V.; Anand, S.; Kaviyarasu, K. Chromium remediation and toxicity assessment of nano zerovalent iron against contaminated lake water sample (Puliyanthangal Lake, Tamilnadu, India). S. Afr. J. Chem. Eng. 2018, 25, 128–132. [Google Scholar] [CrossRef]
- Fu, R.; Yang, Y.; Xu, Z.; Zhang, X.; Guo, X.; Bi, D. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere 2015, 138, 726–734. [Google Scholar] [CrossRef]
- Kononova, O.N.; Bryuzgina, G.L.; Apchitaeva, O.V.; Kononov, Y.S. Ion exchange recovery of chromium (VI) and manganese (II) from aqueous solutions. Arab. J. Chem. 2019, 12, 2713–2720. [Google Scholar] [CrossRef]
- Zhang, B.; Luan, L.; Gao, R.; Li, F.; Li, Y.; Wu, T. Rapid and effective removal of Cr(VI) from aqueous solution using exfoliated LDH nanosheets. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Kan, C.-C.; Ibe, A.H.; Rivera, K.K.P.; Arazo, R.O.; de Luna, M.D.G. Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals. Sustain. Environ. Res. 2017, 27, 163–171. [Google Scholar] [CrossRef]
- Choppala, G.; Kunhikrishnan, A.; Seshadri, B.; Park, J.H.; Bush, R.; Bolan, N. Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. J. Geochem. Explor. 2018, 184, 255–260. [Google Scholar] [CrossRef]
- Tamura, H.; Tanaka, A.; Mita, K.; Furuichi, R. Surface Hydroxyl Site Densities on Metal Oxides as a Measure for the Ion-Exchange Capacity. J. Colloid Interface Sci. 1999, 209, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Srivastava, V.; Banerjee, S.; Weng, C.-H.; Sharma, Y.C. Adsorption characteristics of modified sand for the removal of hexavalent chromium ions from aqueous solutions: Kinetic, thermodynamic and equilibrium studies. CATENA 2013, 100, 120–127. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Anagnostopoulos, V.A.; Bhatnagar, A.; Mitropoulos, A.C.; Kyzas, G.Z. A review for chromium removal by carbon nanotubes. Chem. Ecol. 2017, 33, 572–588. [Google Scholar] [CrossRef]
- Liu, H.-M.; Zhao, X.-J.; Zhu, Y.-Q.; Yan, H. DFT study on MgAl-layered double hydroxides with different interlayer anions: Structure, anion exchange, host–guest interaction and basic sites. Phys. Chem. Chem. Phys. 2020, 22, 2521–2529. [Google Scholar] [CrossRef]
- Xia, S.; Song, Z.; Jeyakumar, P.; Shaheen, S.M.; Rinklebe, J.; Ok, Y.S.; Bolan, N.; Wang, H. A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1027–1078. [Google Scholar] [CrossRef]
- Enniya, I.; Rghioui, L.; Jourani, A. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain. Chem. Pharm. 2018, 7, 9–16. [Google Scholar] [CrossRef]
- Guo, H.; Bi, C.; Zeng, C.; Ma, W.; Yan, L.; Li, K.; Wei, K. Camellia oleifera seed shell carbon as an efficient renewable bio-adsorbent for the adsorption removal of hexavalent chromium and methylene blue from aqueous solution. J. Mol. Liq. 2018, 249, 629–636. [Google Scholar] [CrossRef]
- Plummer, S.; Gorman, C.; Henrie, T.; Shimabuku, K.; Thompson, R.; Seidel, C. Optimization of strong-base anion exchange O&M costs for hexavalent chromium treatment. Water Res. 2018, 139, 420–433. [Google Scholar] [CrossRef]
- Korak, J.A.; Huggins, R.; Arias-Paic, M. Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal. Water Res. 2017, 118, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Golder, A.K.; Chanda, A.K.; Samanta, A.N.; Ray, S. Removal of Cr(VI) from Aqueous Solution: Electrocoagulation vs Chemical Coagulation. Sep. Sci. Technol. 2007, 42, 2177–2193. [Google Scholar] [CrossRef]
- El-Taweel, Y.A.; Nassef, E.M.; Elkheriany, I.; Sayed, D. Removal of Cr(VI) ions from waste water by electrocoagulation using iron electrode. Egypt. J. Pet. 2015, 24, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Al-Qodah, Z.; Al-Shannag, M. Heavy metal ions removal from wastewater using electrocoagulation processes: A comprehensive review. Sep. Sci. Technol. 2017, 1–28. [Google Scholar] [CrossRef]
- Zewail, T.M.; Yousef, N.S. Chromium ions (Cr6+ & Cr3+) removal from synthetic wastewater by electrocoagulation using vertical expanded Fe anode. J. Electroanal. Chem. 2014, 735, 123–128. [Google Scholar] [CrossRef]
- Sharma, D.; Chaudhari, P.K.; Prajapati, A.K. Removal of chromium (VI) and lead from electroplating effluent using electrocoagulation. Sep. Sci. Technol. 2020, 55, 321–331. [Google Scholar] [CrossRef]
- Genawi, N.M.; Ibrahim, M.H.; El-Naas, M.H.; Alshaik, A.E. Chromium Removal from Tannery Wastewater by Electrocoagulation: Optimization and Sludge Characterization. Water 2020, 12, 1374. [Google Scholar] [CrossRef]
- Dermentzis, K.; Christophoridis, A.; Valsamidou, E.; Lazaridou, A.; Kokkinos, N. Removal of hexavalent chromium from electroplating wastewater by electrocoagulation with iron electrodes. Glob. NEST J. 2011, 13, 412–418. [Google Scholar] [CrossRef]
- Majone, M.; Verdini, R.; Aulenta, F.; Rossetti, S.; Tandoi, V.; Kalogerakis, N.; Agathos, S.; Puig, S.; Zanaroli, G.; Fava, F. In situ groundwater and sediment bioremediation: Barriers and perspectives at European contaminated sites. New Biotechnol. 2015, 32, 133–146. [Google Scholar] [CrossRef]
- Mtimunye, P.J.; Lutsinge, T.B.; Molokwane, P.E.; Chirwa, E.M.N. Cr(vi) remediation in groundwater aquifer media using natural organic matter as carbon source. Chem. Eng. Trans. 2017, 61, 1831–1836. [Google Scholar] [CrossRef]
- Aslam, F.; Yasmin, A.; Sohail, S. Bioaccumulation of lead, chromium, and nickel by bacteria from three different genera isolated from industrial effluent. Int. Microbiol. 2020, 23, 253–261. [Google Scholar] [CrossRef]
- Elahi, A.; Rehman, A. Comparative behavior of two gram positive Cr6+ resistant bacterial strains Bacillus aerius S1 and Brevibacterium iodinum S2 under hexavalent chromium stress. Biotechnol. Rep. 2019, 21, e00307. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.; Guo, S.; Zhao, Y.; Hu, Q.; Liu, H.; Sun, D.; Li, M.; Qiu, B.; Guo, Z. Bacteria cell templated porous polyaniline facilitated detoxification and recovery of hexavalent chromium. J. Mater. Chem. A 2018, 6, 16824–16832. [Google Scholar] [CrossRef]
- Rajeswari, V.; Janaki, V.; Shanthi, K.; Kamala-Kannan, S. Adsorption and subsequent detoxification of hexavalent chromium in aqueous solution using polypyrrole-bacterial extracellular polysaccharide nanocomposite. Environ. Prog. Sustain. Energy 2016, 35, 1293–1297. [Google Scholar] [CrossRef]
- Alam, M.Z.; Ahmad, S. Chromium Removal through Biosorption and Bioaccumulation by Bacteria from Tannery Effluents Contaminated Soil. CLEAN–Soil Air Water 2011, 39, 226–237. [Google Scholar] [CrossRef]
- Shamim, S. Biosorption of Heavy Metals. In Biosorption; Derco, J., Vrana, B., Eds.; BoD–Books on Demand: London, UK, 2018; ISBN 978-1-78923-472-5. [Google Scholar]
- Asri, M.; Elabed, A.; Tirry, N.; Kouchou, A.; Ibnsouda Koraichi, S.; El Ghachtouli, N.; Elabed, S. Correlation between cell surface physicochemical properties of bacterial strains and their chromium removal potential. J. Adhes. Sci. Technol. 2017, 31, 2730–2740. [Google Scholar] [CrossRef]
- Beveridge, T.J.; Murray, R.G. Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 1980, 141, 876–887. [Google Scholar] [CrossRef] [Green Version]
- Karimpour, M.; Ashrafi, S.D.; Taghavi, K.; Mojtahedi, A.; Roohbakhsh, E.; Naghipour, D. Adsorption of cadmium and lead onto live and dead cell mass of Pseudomonas aeruginosa: A dataset. Data Brief 2018, 18, 1185–1192. [Google Scholar] [CrossRef]
- Igiri, B.E.; Okoduwa, S.I.R.; Idoko, G.O.; Akabuogu, E.P.; Adeyi, A.O.; Ejiogu, I.K. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J. Toxicol. 2018, 2018. [Google Scholar] [CrossRef]
- Gutiérrez-Corona, J.F.; Romo-Rodríguez, P.; Santos-Escobar, F.; Espino-Saldaña, A.E.; Hernández-Escoto, H. Microbial interactions with chromium: Basic biological processes and applications in environmental biotechnology. World J. Microbiol. Biotechnol. 2016, 32, 191. [Google Scholar] [CrossRef]
- Volesky, B.; Holan, Z.R. Biosorption of Heavy Metals. Available online: https://pubs.acs.org/doi/pdf/10.1021/bp00033a001 (accessed on 23 June 2020).
- Srinath, T.; Verma, T.; Ramteke, P.W.; Garg, S.K. Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 2002, 48, 427–435. [Google Scholar] [CrossRef]
- Raman, N.M.; Asokan, S.; Shobana Sundari, N.; Ramasamy, S. Bioremediation of chromium(VI) by Stenotrophomonas maltophilia isolated from tannery effluent. Int. J. Environ. Sci. Technol. 2018, 15, 207–216. [Google Scholar] [CrossRef]
- Xu, R.; Wu, K.; Han, H.; Ling, Z.; Chen, Z.; Liu, P.; Xiong, J.; Tian, F.; Zafar, Y.; Malik, K.; et al. Co-expression of YieF and PhoN in Deinococcus radiodurans R1 improves uranium bioprecipitation by reducing chromium interference. Chemosphere 2018, 211, 1156–1165. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Ye, X.; Yang, X.; Zhu, Z.; Sun, C.; Zhang, Q.; Xu, P. Isolation and characterization of chromium(VI)-reducing Bacillus sp. FY1 and Arthrobacter sp. WZ2 and their bioremediation potential. Bioremediation J. 2017, 21, 100–108. [Google Scholar] [CrossRef]
- Mohamed, M.S.M.; El-Arabi, N.I.; El-Hussein, A.; El-Maaty, S.A.; Abdelhadi, A.A. Reduction of chromium-VI by chromium-resistant Escherichia coli FACU: A prospective bacterium for bioremediation. Folia Microbiol. 2020. [Google Scholar] [CrossRef]
- Wani, P.A.; Wahid, S.; Khan, M.S.A.; Rafi, N.; Wahid, N. Investigation of the role of chromium reductase for Cr (VI) reduction by Pseudomonas species isolated from Cr (VI) contaminated effluent. Biotechnol. Res. Innov. 2019, 3, 38–46. [Google Scholar] [CrossRef]
- Gang, H.; Xiao, C.; Xiao, Y.; Yan, W.; Bai, R.; Ding, R.; Yang, Z.; Zhao, F. Proteomic analysis of the reduction and resistance mechanisms of Shewanella oneidensis MR-1 under long-term hexavalent chromium stress. Environ. Int. 2019, 127, 94–102. [Google Scholar] [CrossRef]
- Yan, J.; Ye, W.; Jian, Z.; Xie, J.; Zhong, K.; Wang, S.; Hu, H.; Chen, Z.; Wen, H.; Zhang, H. Enhanced sulfate and metal removal by reduced graphene oxide self-assembled Enterococcus avium sulfate-reducing bacteria particles. Bioresour. Technol. 2018, 266, 447–453. [Google Scholar] [CrossRef]
- Opperman, D.J.; Piater, L.A.; Heerden, E. van A Novel Chromate Reductase from Thermus scotoductus SA-01 Related to Old Yellow Enzyme. J. Bacteriol. 2008, 190, 3076–3082. [Google Scholar] [CrossRef] [Green Version]
- Tandon, S.; Jha, M.; Dudhwadkar, S. Study on Ochrobactrum pseudintermedium ADV31 for the removal of hexavalent chromium through different immobilization techniques. SN Appl. Sci. 2020, 2, 296. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Al, T.; Chapman, S.W.; Parker, B.L.; Mishkin, K.R.; Cutt, D.; Wilkin, R.T. Determination of Cr(III) solids formed by reduction of Cr(VI) in a contaminated fractured bedrock aquifer: Evidence for natural attenuation of Cr(VI). Chem. Geol. 2017, 474, 1–8. [Google Scholar] [CrossRef]
- Wen, C.; Sheng, H.; Ren, L.; Dong, Y.; Dong, J. Study on the removal of hexavalent chromium from contaminated groundwater using emulsified vegetable oil. Process Saf. Environ. Prot. 2017, 109, 599–608. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Shi, J.; Dong, H. Sulfur-based mixotrophic bio-reduction for efficient removal of chromium (VI) in groundwater. Geochim. Cosmochim. Acta 2020, 268, 296–309. [Google Scholar] [CrossRef]
- Zhao, Y.; Hsieh, H.-S.; Wang, M.; Jafvert, C.T. Light-independent redox reactions of graphene oxide in water: Electron transfer from NADH through graphene oxide to molecular oxygen, producing reactive oxygen species. Carbon 2017, 123, 216–222. [Google Scholar] [CrossRef]
- Liu, X.; Wu, G.; Zhang, Y.; Wu, D.; Li, X.; Liu, P. Chromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells. Int. J. Mol. Sci. 2015, 16, 11892–11902. [Google Scholar] [CrossRef] [PubMed]
- Eswaramoorthy, S.; Poulain, S.; Hienerwadel, R.; Bremond, N.; Sylvester, M.D.; Zhang, Y.-B.; Berthomieu, C.; Van Der Lelie, D.; Matin, A. Crystal Structure of ChrR—A Quinone Reductase with the Capacity to Reduce Chromate. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Ackerley, D.F.; Barak, Y.; Lynch, S.V.; Curtin, J.; Matin, A. Effect of Chromate Stress on Escherichia coli K-12. J. Bacteriol. 2006, 188, 3371–3381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Díaz, M.I.; Díaz-Pérez, C.; Vargas, E.; Riveros-Rosas, H.; Campos-García, J.; Cervantes, C. Mechanisms of bacterial resistance to chromium compounds. Biometals 2008, 21, 321–332. [Google Scholar] [CrossRef]
- Ma, L.; Chen, N.; Feng, C.; Li, M.; Gao, Y.; Hu, Y. Coupling enhancement of Chromium(VI) bioreduction in groundwater by phosphorus minerals. Chemosphere 2020, 240, 124896. [Google Scholar] [CrossRef]
- EPA. Chapter X In-Situ Groundwater Bioremediation. In How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites a Guide for Corrective Action Plan Reviewers. Available online: https://www.epa.gov/sites/production/files/2014-03/documents/tum_ch10.pdf (accessed on 27 July 2020).
- Linkov, I.; Varghese, A.; Jamil, S.; Seager, T.P.; Kiker, G.; Bridges, T. Multi-Criteria Decision Analysis: A Framework for Structuring Remedial Decisions at Contaminated Sites. In Comparative Risk Assessment and Environmental Decision Making; Linkov, I., Ramadan, A.B., Eds.; Nato Science Series: IV: Earth and Environmental Sciences; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2005; Volume 38, pp. 15–54. ISBN 978-1-4020-1895-4. [Google Scholar]
- Crini, G.; Lichtfouse, E. Green Adsorbents for Pollutant Removal: Innovative Materials; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-92162-4. [Google Scholar]
- GracePavithra, K.; Jaikumar, V.; Kumar, P.S.; SundarRajan, P. A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. J. Clean. Prod. 2019, 228, 580–593. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Mahvi, A.H.; Naseri, S.; Mesdaghinia, A.R. Performance Evaluation of Electrocoagulation Process for Removal of Chromium (VI) from Synthetic Chromium Solutions Using Iron and Aluminum Electrodes. Turk. J. Eng. Environ. Sci. 2008, 32, 59–66. [Google Scholar]
- Ihsanullah; Al-Khaldi, F.A.; Abu-Sharkh, B.; Abulkibash, A.M.; Qureshi, M.I.; Laoui, T.; Atieh, M.A. Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalin. Water Treat. 2016, 57, 7232–7244. [Google Scholar] [CrossRef]
Member State | Austria 1 | Belgium 1,2,3 | Croatia 3 | Cyprus 4 | Czech Republic 1,2 | Denmark 3 |
Total Cr | 0.5–3 | 0.5–5 | 1–4 | 0.5 | 0.5–1 | 0.001–0.3 |
Cr (VI) | - | 0.1–1 | 0.1 | 0.1 | 0.1–0.3 | - |
Member State | Estonia 4 | Finland 4 | France | Germany 1 | Greece 3,* | Hungary 1,3 |
Total Cr | 0.5 | 0.7 | 0.5 | 0.1–0.5 | 0.6–1.5 | 0.2–1 |
Cr (VI) | 0.1 | 0.2 | 0.1 | 0.05–0.5 | - | 0.1–0.5 |
Member State | Ireland | Italy 3 | Lithuania 3 | Luxembourg | Malta | The Netherlands 1 |
Total Cr | 0.5 | 2–4 | - | 0.5 | 0.5 | 0.5 |
Cr (VI) | 0.1 | 0.2 | 0.1–0.2 | 0.1 | 0.1 | 0.1–2 |
Member State | Norway | Poland 1 | Portugal | Sweden 4 | Slovak Republic 1 | Slovenia 1 |
Total Cr | - | - | 2 | 0.5 | 0.5–1 | 0.5–1 |
Cr (VI) | 0.05 | 0.05–0.5 | 0.1 | 0.1 | 0.1 | 0.1 |
Member State | Spain | Sweden 4 | - | - | - | - |
Total Cr | 5 | 0.5 | - | - | - | - |
Cr (VI) | 0.3 | 0.1 | - | - | - | - |
Oxidation State | Form | pH Condition | References |
---|---|---|---|
Cr (III) | Hexacoordinate complexes with complexing agents (i.e., water, ammonia, sulphate, urea, and organic acid) | 0 < pH < 4 | [2] |
Cr(H2O)5(OH)2+ abbreviated as [Cr(OH)]2+ | slightly acidic conditions, 3.8 < pH < 6.3 | [3,68,69] | |
[Cr(H2O)4(OH)2]+ abbreviated as [Cr(OH)2]+ | 6 < pH < 8 | [68,69] | |
Cr(OH)3 (aq) * | slightly acidic to alkaline conditions | [69] | |
Cr(OH)3 (s) | 6.4 < pH < 11.5; max at pH ≈ 8 | [1,66,69,70] | |
[Cr(OH)4]− | pH > 11.5 | [3] | |
Cr (VI) | H2CrO4 | pH < 1 | [66] |
[HCrO4]− | 1 < pH < 6.4 | [1,26,66,69] | |
[CrO4]2− | pH ≥ 6.4 | [1,26,66,69] | |
[Cr2O7]2− | pH < 3 | [66] |
Sample Description and Cr Oxidation State | Procedure | Analytical Method | Detection Limit | References |
---|---|---|---|---|
Water, wastewater, and solid wastes (total dissolved Cr) | For the determination of dissolved Cr in a filtered aqueous sample aliquot, nitric acid is added to the sample, and then it is diluted to a predetermined volume and mixed before analysis. | ICP-OES | 6.1 µg L−1 | [80] |
Groundwater, surface water and drinking water, wastewater, sludges, and soils (total dissolved Cr) | The same as the above procedure. | ICP-MS | 0.08 µg L−1 | [81] |
Groundwater, surface water, drinking water, storm runoff, industrial and domestic wastewater (total dissolved Cr) | The same as the above procedure. | GFAA | 0.1 µg L−1 | [82] |
Drinking water, groundwater, and water effluents (Cr (VI)) | A filtered aqueous sample is adjusted to a pH of 9–9.5 with a buffer solution. A 50–250 μL aliquot of sample is introduced into ion chromatograph and separated on an anion exchange column. Post-column derivatization with DPC is followed by detection to 530 nm. | Ion chromatography associated with post-column derivatization and UV/VIS detection | 0.3 µg L−1 | [83] |
Drinking water (dissolved Cr (VI)) | Samples are analyzed by direct injection. An aliquot of 1 mL of sample is introduced into the ion chromatograph and Cr (VI) is separated from the other matrix components by an anion exchange column followed by derivatization with DPC. | Ion chromatography with post-column derivatization and UV/VIS detection | 0.0044–0.015 µg L−1 | [78] |
Drinking water (Cr (VI)) | A 2 mL aliquot of sample is transferred to a glass vial and sulphuric acid (1 mL 0.2 M) and DPC (1 mL 0.5% w/v) are added. Following, the absorbance is measured in microcuvettes with 1 mm light path at 543 nm against reagent blank. | Colorimetric method based on DPC dye for incorporation into a microfluidic detection system | 0.023 µg L−1 | [84] |
Drinking water, surface water, and certain domestic and industrial effluents (dissolved Cr (VI)) | Chelation of Cr (VI) with ammonium pyrrolidine dithiocarbamate (APDC) and extraction with methyl isobutyl ketone (MIBK) at pH 2.4. The extract is aspirated into the flame of the atomic absorption spectrophotometer. | AAS | 2.3 µg L−1 | [85] |
Rain water, river water, spring water (Cr (VI)) | Cr (VI) is collected as DPC complex on a column of chitin in the presence of dodecyl sulfate as counter-ion. The Cr-DPC complex retained on the chitin is eluted with a methanol–1 M acetic acid mixture, and the absorbance of the eluent is measured at 541 nm. | Preconcentration on a chitin column and spectrophotometric determination | 0.05 µg L−1 | [86] |
Groundwater (Cr (VI) | A 25 mL aliquot of sample is added to 1 mL of 2.5 M H2SO4 and 1 mL of DPC 0.5%. The absorbance is measured after 10 min at 540 nm with a UV/VIS spectrophotometer using a cell with optical pathlengths of 10 cm. | Colorimetric assay using S-DPC | 1 µg L−1 | [22] |
Drinking water (Cr (III) and Cr (VI)) | On the basis of the type of ion exchange column used, HPLC is used to separate one of the two chromium forms. Following, a coupled ICP-MS is used to quantify the concentration of the species before and after the separation step. | HPLC-ICP-MS | 0.005 to 0.5 µg L−1 (Cr (III)) 0.009 to 1.0 µg L−1 (Cr (VI)) | [79] |
Sea water (Cr (III) and Cr (VI)) | A solid-phase extraction using anion exchange resins for Cr (VI) adsorption and chelating resins for Cr (III) adsorption is performed | ICP-MS | 0.03 (Cr (III)) and 0.009 (Cr (VI)) | [73] |
Treatment | Advantages | Disadvantages | References |
---|---|---|---|
Chemical reduction with nanoscale zero-valent iron | High efficiency; high reactive surface area; easy to inject in aquifers. | Low stability; aggregation of nZVI particles; ecotoxicological effects on native organisms. | [111,112,113] |
Adsorption coupled with ion exchange | Selective process; possible reuse of raw materials as green sorbents. | Complexity of adsorbents preparation; sludge generation; large amount of chemical required; waste generation; resin exhaustion; costly. | [126,131,169] |
Electrocoagulation | High efficiency rate also with high chromium initial concentration; quicker and more sustainable than chemical coagulation processes; almost zero waste generation. | Skilled man-power requirement, several parameters influence its efficiency | [122,170,171] |
Bioremediation | Cost-effective; ecological; sustainable; highly efficient with low and moderate pollutant concentration in large volume; no secondary pollution | Possibly inhibited by high pollutant concentrations; | [10,22,23] |
Cr (VI) Initial Concentration | Treatment | Removal Efficiency (%) | References |
---|---|---|---|
50 µg L−1 | Reduction by 1 mg L−1 of ferrous iron, | 92% | [47] |
300 µg L−1 | Fe (II)/Cr (VI) in a molar ratio of around 3 | Above 90% | [110] |
0.6 mg L−1 | Reduction by bentonite-supported nZVI | Above 90% | [112] |
50 mg L−1 | Electrocoagulation with Al-Al as pair of electrodes | 42% | [128] |
55.3 mg L−1 | Electrocoagulation with Fe-Fe as pair of electrodes | 91.7% | [131] |
5 mg L−1 | Electrocoagulation with Al alloy-Fe as pair of electrodes | 98.2% | [130] |
1 mg L−1 | Adsorption onto modified carbon nanotubes | 87% | [172] |
30 mg L−1 | Adsorption using biochar from Camellia oleifera seed shell | 99.99% | [124] |
0.5 mg L−1 | Adsorption onto pumice (VPum) and scoria (VSco) | 80% and 77%, respectively | [6] |
50 mg L−1 | Sulphur-based mixotrophic bio-reduction | 95.5% | [160] |
1000 µg L−1 | Bioreduction by indigenous microorganisms enhanced by yeast extract addition | 99.47% | [22] |
50 mg L−1 | Bioreduction by mixed bacterial consortium enhanced by phosphorus minerals addition | about 50% | [166] |
100 mg·L−1 | Biosorption using bacterial lawn deposited on membrane (seven bacterial strains tested) | from 5.32 to 99.87% | [142] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. https://doi.org/10.3390/ijerph17155438
Tumolo M, Ancona V, De Paola D, Losacco D, Campanale C, Massarelli C, Uricchio VF. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. International Journal of Environmental Research and Public Health. 2020; 17(15):5438. https://doi.org/10.3390/ijerph17155438
Chicago/Turabian StyleTumolo, Marina, Valeria Ancona, Domenico De Paola, Daniela Losacco, Claudia Campanale, Carmine Massarelli, and Vito Felice Uricchio. 2020. "Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview" International Journal of Environmental Research and Public Health 17, no. 15: 5438. https://doi.org/10.3390/ijerph17155438