Repeated Sprint Training vs. Repeated High-Intensity Technique Training in Adolescent Taekwondo Athletes—A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Training Intervention
2.4. Testing Procedure
2.5. The 20 m Multistage Shuttle Run Test
2.6. Progressive Specific Taekwondo Test (PSTT)
2.7. The 5 m Shuttle Run Test
2.8. Modified Agility T-test
2.9. Taekwondo-Specific Agility Test (TSAT)
2.10. Countermovement Jump (CMJ)
2.11. Specific Exercises
2.12. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bridge, C.A.; Ferreira da Silva Santos, J.; Chaabène, H.; Pieter, W.; Franchini, E. Physical and physiological profiles of taekwondo athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef]
- World Taekwondo Website. WT Competition Rules & Interpretation. Available online: http://www.worldtaekwondo.org/rules/ (accessed on 31 January 2020).
- Bridge, C.A.; Jones, M.A.; Drust, B. The activity profile in international Taekwondo competition is modulated by weight category. Int. J. Sports Physiol. Perform. 2011, 6, 344–357. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Farzad, B.; Gharakhanlou, R.; Agha-Alinejad, H.; Curby, D.G.; Bayati, M.; Bahraminejad, M.; Mäestu, J. Physiological and performance changes from the addition of a sprint interval program to wrestling training. J. Strength Cond. Res. 2011, 25, 2392–2399. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.; Chaouachi, A.; Wong, D.P.; Castagna, C.; Chamari, K. Heart rate responses and training load during nonspecific and specific aerobic training in adolescent taekwondo athletes. J. Hum. Kinet. 2011, 29, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, N.; Trilk, J.; Kim, E.J.; Kim, S.Y.; Lee, M.; Cho, H.C. Effects of sprint interval training on elite Judoists. Int. J. Sports Med. 2011, 32, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Monks, L.; Seo, M.W.; Kim, H.B.; Jung, H.C.; Song, J.K. High-intensity interval training and athletic performance in Taekwondo athletes. J. Sports Med. Phys. Fit. 2017, 57, 1252–1260. [Google Scholar]
- Ravier, G.; Dugué, B.; Grappe, F.; Rouillon, J.D. Impressive anaerobic adaptations in elite karate athletes due to few intensive intermittent sessions added to regular karate training. Scand. J. Med. Sci. Sports 2009, 19, 687–694. [Google Scholar] [CrossRef]
- Vasconcelos, B.B.; Protzen, G.V.; Galliano, L.M.; Kirk, C.; Del Vecchio, F.B. Effects of High-Intensity Interval Training in Combat Sports: A Systematic Review with Meta-Analysis. J. Strength Cond. Res. 2020, 34, 888–900. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Part II: Anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013, 43, 927–954. [Google Scholar] [CrossRef]
- Franchini, E.; Cormack, S.; Takito, M.Y. Effects of High-Intensity Interval Training on Olympic Combat Sports Athletes’ Performance and Physiological Adaptation: A Systematic Review. J. Strength Cond. Res. 2019, 33, 242–252. [Google Scholar] [CrossRef]
- Seo, M.W.; Lee, J.M.; Jung, H.C.; Jung, S.W.; Song, J.K. Effects of Various Work-to-rest Ratios during High-intensity Interval Training on Athletic Performance in Adolescents. Int. J. Sports Med. 2019, 40, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Kamandulis, S.; Bruzas, V.; Mockus, P.; Stasiulis, A.; Snieckus, A.; Venckunas, T. Sport-Specific Repeated Sprint Training Improves Punching Ability and Upper-Body Aerobic Power in Experienced Amateur Boxers. J. Strength Cond. Res. 2018, 32, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Engel, F.A.; Ackermann, A.; Chtourou, H.; Sperlich, B. High-Intensity Interval Training Performed by Young Athletes: A Systematic Review and Meta-Analysis. Front. Physiol. 2018, 9, 1012. [Google Scholar] [CrossRef] [PubMed]
- Chtourou, H.; Souissi, N. The effect of training at a specific time of day: A review. J. Strength Cond. Res. 2012, 26, 1984–2005. [Google Scholar] [CrossRef]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 meter shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- SantAna, J.; Franchini, E.; Murias, J.M.; Diefenthaeler, F. Validity of a Taekwondo-Specific Test to Measure VO2peak and the Heart Rate Deflection Point. J. Strength Cond. Res. 2019, 33, 2523–2529. [Google Scholar] [CrossRef] [PubMed]
- Cazorla, G.; Boussaidi, L.; Godemet, M. Evaluation du rugbyman sur le terrain. In Actes du Congrès Médical de la Fédération Française de Rugby: Pathologies du Rugbyman, Epaule, Genoux, Rachis, Physiologie; Deed of Medical Congress of French Federation of Rugby: Lyon, France, 2004; pp. 435–456. [Google Scholar]
- Sassi, R.H.; Dardouri, W.; Yahmed, M.H.; Gmada, N.; Mahfoudhi, M.E.; Gharbi, Z. Relative and absolute reliability of a modified agility T-test and its relationship with vertical jump and straight sprint. J. Strength Cond. Res. 2009, 23, 1644–1651. [Google Scholar] [CrossRef]
- Chaabene, H.; Negra, Y.; Capranica, L.; Bouguezzi, R.; Hachana, Y.; Rouahi, M.A.; Mkaouer, B. Validity and Reliability of a New Test of Planned Agility in Elite Taekwondo Athletes. J. Strength Cond. Res. 2018, 32, 2542–2547. [Google Scholar] [CrossRef]
- Bouhlel, E.; Jouini, A.; Gmada, N.; Nefzi, A.; Ben Abdallah, K.; Tabka, Z. Heart rate and blood lactate responses during Taekwondo training and competition. Sci. Sports 2006, 21, 285–290. [Google Scholar] [CrossRef]
- World Medical Association. Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [PubMed]
- Foster, C. Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc. 1998, 30, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Laurent, C.M.; Green, J.M.; Bishop, P.A.; Sjökvist, J.; Schumacker, R.E.; Richardson, M.T.; Curtner-Smith, M. A practical approach to monitoring recovery: Development of a perceived recovery status scale. J. Strength Cond. Res. 2011, 25, 620–628. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 2, 139–147. [Google Scholar] [CrossRef]
- Rocha, F.P.S.; Louro, H.; Matias, R.; Brito, J.; Costa, A.M. Determination of Aerobic Power Through a Specific Test for Taekwondo -A Predictive Equation Model. J. Hum. Kinet. 2016, 53, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A New View of Statistics: Effect Magnitudes. Available online: https://www.sportsci.org/resource/stats/effectmag.html (accessed on 15 March 2019).
- Freitas, V.H.; Nakamura, F.Y.; Miloski, B.; Samulski, D.; Bara-Filho, M.G. Sensitivity of physiological and psychological markers to training load intensification in volleyball players. J. Sports Sci. Med. 2014, 13, 571–579. [Google Scholar]
- Lee, N.; Kim, J.; Hyung, G.A.; Park, J.H.; Kim, S.J.; Kim, H.B.; Jung, H.S. Training Effects on Immune Function in Judoists. Asian J. Sports Med. 2015, 6, e24050. [Google Scholar] [CrossRef]
- Franchini, E.; Julio, U.F.; Panissa, V.L.G.; Lira, F.S.; Gerosa-Neto, J.; Branco, B.H. High-Intensity Intermittent Training Positively Affects Aerobic and Anaerobic Performance in Judo Athletes Independently of Exercise Mode. Front. Physiol. 2016, 7, 268. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Laursen, P.B.; Kuhnle, J.; Ruch, D.; Renaud, C.; Ahmaidi, S. Game-based training in young elite handball players. Int. J. Sports Med. 2009, 30, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Tolfrey, K.; Smallcombe, J. High-intensity interval training. In Textbook of Children’s Sport and Exercise Medicine; Armstrong, N., van Mechelen, W., Eds.; OUP: Oxford, UK, 2017; pp. 477–491. [Google Scholar]
- Fernandez-Fernandez, J.; Sanz, D.; Sarabia, J.M.; Moya, M. The Effects of Sport-Specific Drills Training or High-Intensity Interval Training in Young Tennis Players. Int. J. Sports Physiol. Perform. 2017, 12, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Quinzi, F.; Camomilla, V.; Di Mario, A.; Felici, F.; Sbriccoli, P. Repeated Kicking Actions in Karate: Effect on Technical Execution in Elite Practitioners. Int. J. Sports Physiol. Perform. 2016, 11, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Olek, R.A.; Kujach, S.; Ziemann, E.; Ziolkowski, W.; Waz, P.; Laskowski, R. Adaptive Changes after 2 Weeks of 10-s Sprint Interval Training with Various Recovery Times. Front. Physiol. 2018, 9, 392. [Google Scholar] [CrossRef] [PubMed]
Week | Group | Training Load (a.u.) | Monotony (a.u.) | Strain (a.u.) |
---|---|---|---|---|
Week 1 | RTT | 662 ± 26 | 3.6 ± 0.8 | 2431 ± 586 |
RST | 680 ± 64 | 3.7 ± 1.1 | 2512 ± 618 | |
CG | 671 ± 49 a,b,c | 3.7 ± 0.9 d | 2471 ± 603 d | |
Week 2 | RTT | 633 ± 40 | 4.4 ± 0.9 | 2752 ± 665 |
RST | 588 ± 73 | 6.1 ± 1.4 | 3558 ± 801 | |
CG | 610 ± 62 | 5.2 ± 1.5 | 3155 ± 841 | |
Week 3 | RTT | 617 ± 83 | 8.3 ± 3.1 | 5207 ± 2187 |
RST | 580 ± 67 | 8.4 ± 2.8 | 4940 ± 1703 | |
CG | 604 ± 77 | 8.4 ± 2.9 | 5074 ± 1975 | |
Week 4 | RTT | 585 ± 76 | 6.1 ± 2.1 | 3669 ± 1543 |
RST | 580 ± 59 | 7.4 ± 2.6 | 4247 ± 1437 | |
CG | 583 ± 68 | 6.8 ± 2.4 | 3958 ± 1522 |
Group | Session 1 | Session 2 | Session 3 | Session 4 | Session 5 | Session 6 | Session 7 | Session 8 | |
---|---|---|---|---|---|---|---|---|---|
PRS (a.u) | RTT | 5 ± 1 | 5 ± 1 | 5 ± 1 | 5 ± 1 | 5 ± 1 | 4.5 ± 1 | 6 ± 1 | 5 ± 1 |
RST | 4 ± 2 d,e | 4 ± 2 f | 6 ± 1 g | 5 ± 2 d,h | 4 ± 1 d,i | 7 ± 1 | 7 ± 1 | 6 ± 1 | |
CG | 4 ± 2 a,b | 4 ± 1 b,c | 5 ± 1 | 5 ± 1 | 4 ± 1 b,c | 6 ± 2 | 6 ± 1 | 5 ± 1 |
Tests | Performance | RTT | RST | CG | Overall | ||||
---|---|---|---|---|---|---|---|---|---|
Before Training | After Training | Before Training | After Training | Before Training | After Training | Before Training | After Training | ||
20 m multistage shuttle run test | VO2max (mL/kg/min) | 39.8 ± 3.1 b | 45.4 ± 4.2 a, b | 39.6 ± 3.6 b | 44.2 ± 3.9 a,b | 37.2 ± 4.9 | 36.8 ± 5.4 | 38.8 ± 4.0 | 42.0 ± 5.9 |
PSTT | 51.1 ± 4.9 b | 56.4 ± 3.7 a,b | 50.9 ± 3.4 b | 55.0 ± 2.9 a,b | 48.3± 3.2 | 49.5 ± 3.5 | 50.1 ± 4.0 | 53.5 ± 4.5 | |
5 m shuttle run test | Best distance (m) | 134 ± 26 b | 140 ± 19 b | 126 ± 22 | 129 ± 16 | 118 ± 18 | 115 ± 12 | 126 ± 8 | 128 ± 12 |
Fatigue index (%) | 81 ± 14 | 82 ± 5 | 85 ± 9 | 85 ± 5 | 86 ± 8 | 80 ± 12 | 84 ± 3 | 82 ± 3 | |
Total distance covered (m) | 678 ± 85 b | 741 ± 72 b | 642 ± 40 | 678 ± 59 | 668 ± 98 | 624 ± 84 | 663 ± 19 | 681 ± 59 | |
Δ[La] (mmol/L) | 15.0 ± 4.4 | 10.4 ± 3.0 | 13.0 ± 3.6 | 13.5 ± 3.7 | 14.5 ± 4.2 | 14.1 ± 4.4 | 14.2 ± 4.1 | 12.6 ± 4.0 | |
Countermovement jump | Jump height (cm) | 29.3 ± 7.2 a | 31.4 ± 5.9 a | 29.4 ± 6.4 a | 30.5 ± 6.8 a | 25.1 ± 4.7 | 25.3 ± 4.7 | 27.9 ± 2.5 | 27.9 ± 3.7 |
Agility | TAST (s) | 6.72 ± 0.5 a,c | 6.1 ± 0.3 a,b,c | 7.08 ± 0.7 | 6.7 ± 0.7 b | 7.03 ± 0.4 | 6.9 ± 0.4 b,c | 6.94 ± 0.2 | 6.6 ± 0.4 |
T-test (s) | 6.5 ± 0.5 a | 6.0 ± 0.5 a,b | 6.8 ± 0.6 | 6.3 ± 0.6 b | 7.18 ± 0.7 | 6.8 ± 0.6 b | 6.82 ± 0.3 | 6.4 ± 0.4 | |
1 min repeated technique exercise | DL (tech/min) | 101 ± 10 | 113 ± 10 a,b | 101 ± 6 | 108 ± 9 a,b | 90 ± 9 | 93 ± 7 a | 97 ± 6 | 105 ± 10 |
Δ[La]DL (mmol/L) | 12.8 ± 4.9 | 8.8 ± 3.4 b,c | 9.2 ± 3.1 | 11.3 ± 4.1 b | 7.7 ± 3.3 | 13.3 ± 4.0 | 9.9 ± 4.3 | 11.1 ± 4.2 | |
NDL (tech/min) | 99 ± 13 b | 108 ± 14 b | 96 ± 7 | 99 ± 14 | 91 ± 10 | 95 ± 9 | 95 ± 4 | 100 ± 7 | |
Δ[La]NDL (mmol/L) | 13.8 ± 5.3 | 11.1 ± 3.7 | 10.3 ± 2.5 | 14.7 ± 4.6 | 9.5 ± 3.9 | 14.0 ± 4.2 | 11.2 ± 4.4 | 13.3 ± 4.4 | |
10 s repeated technique exercise | DL (tech/s) | 22 ± 1 | 26 ± 2 a,b | 22 ± 2 | 24 ± 2 a | 21 ± 2 | 21 ± 2 | 22 ± 1 | 24 ± 2 |
NDL (tech/s) | 23 ± 2 b | 25 ± 2 a,b | 21 ± 2 | 24 ± 2 a,b | 20 ± 1 | 21 ± 1 | 21 ± 1 | 23 ± 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouergui, I.; Messaoudi, H.; Chtourou, H.; Wagner, M.O.; Bouassida, A.; Bouhlel, E.; Franchini, E.; Engel, F.A. Repeated Sprint Training vs. Repeated High-Intensity Technique Training in Adolescent Taekwondo Athletes—A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 4506. https://doi.org/10.3390/ijerph17124506
Ouergui I, Messaoudi H, Chtourou H, Wagner MO, Bouassida A, Bouhlel E, Franchini E, Engel FA. Repeated Sprint Training vs. Repeated High-Intensity Technique Training in Adolescent Taekwondo Athletes—A Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2020; 17(12):4506. https://doi.org/10.3390/ijerph17124506
Chicago/Turabian StyleOuergui, Ibrahim, Hamdi Messaoudi, Hamdi Chtourou, Matthias Oliver Wagner, Anissa Bouassida, Ezdine Bouhlel, Emerson Franchini, and Florian A. Engel. 2020. "Repeated Sprint Training vs. Repeated High-Intensity Technique Training in Adolescent Taekwondo Athletes—A Randomized Controlled Trial" International Journal of Environmental Research and Public Health 17, no. 12: 4506. https://doi.org/10.3390/ijerph17124506
APA StyleOuergui, I., Messaoudi, H., Chtourou, H., Wagner, M. O., Bouassida, A., Bouhlel, E., Franchini, E., & Engel, F. A. (2020). Repeated Sprint Training vs. Repeated High-Intensity Technique Training in Adolescent Taekwondo Athletes—A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 17(12), 4506. https://doi.org/10.3390/ijerph17124506